Empirical Evaluation of a Reinforcement Learning Spoken Dialogue System

S. Singh, M. Kearns, D. Litman, M. Walker
AT&T Labs
AAAI 2000

Motivation

- Builders of spoken dialogue systems face fundamental design choices that strongly influence system performance
- Can performance be improved by adapting a system's dialogue strategy via reinforcement learning?
Spoken Dialogue Systems

- Provide automated telephone access to DB
- Front end: ASR + TTS
- Back end: DB
- Middle: dialogue strategy is key component

Typical System Design: Sequential Search

- Choose and implement a particular, “reasonable” dialogue strategy
- Field system, gather dialogue data
- Do simple statistical analyses
- Re-field improved dialogue strategy
- Can only examine a handful of strategies
Why Reinforcement Learning?

- ASR output is noisy; user population leads to stochastic behavior
- Design choices have long-term impact; temporal credit assignment problem
- Many design choices can be fixed, but
 - Initiative strategy
 - Confirmation strategy
- Many different performance criteria

Example: Initiative Strategy

- System initiative vs. user initiative:
 - “Please state your departure city.”
 - “Please state your desired itinerary.”
 - “How can I help you?”
- Influences user expectations
- ASR grammar must be chosen accordingly
- Best choice may differ from state to state!
- May depend on user population & task

Suited to MDPs and Reinforcement Learning!
Markov Decision Processes

- System state s (in S)
- System action a in (in A)
- Transition probabilities $P(s'|s,a)$
- Reward function $R(s,a)$ (stochastic)
- Fast algorithms for optimal policy
- Our application: $P(s'|s,a)$ models the population of users

SDSs as MDPs

Initial system utterance

$S_1 \rightarrow U_1 \rightarrow S_2 \rightarrow U_2 \rightarrow S_3 \rightarrow U_3 \rightarrow ...$

Initial user utterance

$A_1 \rightarrow E_1 \rightarrow A_2 \rightarrow E_2 \rightarrow A_3 \rightarrow E_3 \rightarrow ...$

Actions have prob. outcomes

$P(\text{next state} | \text{current state} & \text{action})$

...and rewards...

$R(\text{current state, action})$

...from set of exploratory dialogues

Violations of Markov property! Will this work?
The RL Approach
(Levin, Pieraccini, Eckert; Singh, Kearns, Litman, Walker)

• Build initial system that is deliberately exploratory wrt state and action space
• Use dialogue data from initial system to build a Markov decision process (MDP)
• Use methods of reinforcement learning to compute optimal strategy of the MDP
• Re-field (improved?) system given by the optimal policy

The Application

• Dialogue system providing telephone access to a DB of activities in NJ
• Want to obtain 3 attributes:
 - activity type (e.g., wine tasting)
 - location (e.g., Lambertville)
 - time (e.g., morning)
• Failure to bind an attribute: query DB with don’t-care
The State Space

<table>
<thead>
<tr>
<th>Feature</th>
<th>Values</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute (A)</td>
<td>1,2,3</td>
<td>Which attribute is being worked on</td>
</tr>
<tr>
<td>Confidence/Confirmed (C)</td>
<td>0,1,2,3.4</td>
<td>0,1,2 for low, medium and high ASR confidence</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.4 for explicitly confirmed, disconfirmed</td>
</tr>
<tr>
<td>Value (V)</td>
<td>0,1</td>
<td>Whether value has been obtained for current attribute</td>
</tr>
<tr>
<td>Tries (T)</td>
<td>0,1,2</td>
<td>How many times current attr has been asked</td>
</tr>
<tr>
<td>Grammar (G)</td>
<td>0,1</td>
<td>Whether open or closed grammar was used</td>
</tr>
<tr>
<td>History (H)</td>
<td>0,1</td>
<td>Whether trouble on any previous attribute</td>
</tr>
</tbody>
</table>

N.B. Non-state variables record attribute values; state does not condition on previous attributes!

Will this work!

Sample Actions

• Initiative (when T = 0):
 - open or constrained prompt?
 - open or constrained grammar?
 - N.B. might depend on H, A,…

• Confirmation (when V = 1)
 - confirm or move on or re-ask?
 - N.B. might depend on C, H, A,…

• Only allowed “reasonable” actions
• Results in 42 states with (binary) choices
• Small state space, large policy space
The Experiment

- Designed 6 specific tasks, each with web survey
- Gathered 75 internal subjects
- Split into training and test, controlling for M/F, native/non-native, experienced/inexperienced
- 54 training subjects generated 311 dialogues
- Exploratory training dialogues used to build MDP
- Optimal strategy for objective TASK COMPLETION computed and implemented
- 21 test subjects performed tasks and web surveys for modified system generated 124 dialogues
- Did statistical analyses of performance changes

Reward Function

- Objective task completion:
 - -1 for an incorrect attribute binding
 - 0,1,2,3 correct attribute bindings
Main Result

- Objective task completion:
 - train mean ~ 1.722, test mean ~ 2.176
 - two-sample t-test p-value ~ 0.0289

Caveats

- Must still choose states and actions
- Must be exploratory with taste
- Data sparsity
- Violations of the Markov property
- A formal framework and methodology, hopefully automating one important step in system design
Tutor:

- Which principle should we apply?
- To calculate the rock’s instantaneous magnitude of velocity at T1, we will apply the definition of kinetic energy again.

- Please write the equation for how the definition of kinetic energy applies to this problem at T1.
- Okay. Let me just write the equation for you: \(ke_1 = \frac{1}{2}m v_1^2 \).

Do Micro-Level Tutorial Decisions Matter: Applying Reinforcement Learning To Induce Pedagogical Tutorial Tactics:

Min Chi dissertation

What is the best action for the tutor (agent) to take at any tutorial context (state) in order to maximize students’ learning (delayed reward) at the end?
Representational Choices Makes a Huge Difference

<table>
<thead>
<tr>
<th>Training Corpus</th>
<th>Study 2 (didn't work)</th>
<th>Study 3 (worked)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exploratory</td>
<td>Exploratory, Suboptimal, Combined</td>
</tr>
<tr>
<td>Reward</td>
<td>NLG, median split</td>
<td>NLG or (1-NLG)</td>
</tr>
<tr>
<td>State Representation</td>
<td>18 features</td>
<td>50 features</td>
</tr>
<tr>
<td></td>
<td>Median Split Discretization</td>
<td>K-means Discretization</td>
</tr>
<tr>
<td></td>
<td>Maximum: 4</td>
<td>Maximum: 6</td>
</tr>
<tr>
<td></td>
<td>Greedy feature selection</td>
<td>11 feature selection methods</td>
</tr>
</tbody>
</table>

Conclusions

- MDPs and RL a natural and promising framework for (automated) dialogue strategy design
- Have algorithms for learning dialogue strategy from data
- Broadly applicable: varying sensors (ASR, NL) and actions (initiative, confirmation, sales); web-based dialogue systems
- Our application: first empirical test of formalism
- Resulted in measurable and significant system improvements
- Care in application: choice of states and actions; gathering exploratory data; choice of reward to optimize