Assigned: November 17, 2010

Due: December 1, 2010

In addition, answer the following question using the *original*
network topology (that is in Figure 14.21) rather than the extension
used above.

(a) Assume we want to compute the probability of the car not moving, that is P(Moves = False). Write down the expression for computing the probability from conditionals via the blind approach.

(b) Write down a more efficient expression for computing P(Moves = False) that interleaves sums and products.

(c) Can we further speed up this computation by eliminating *irrelevant*
variables (because the summations equal 1 by definition)? Explain.

Assume that you have the following set of symptoms: Fever and Cough are true; Paleness and HighWBCcount are false. What is the probability P(Pneumonia = T|Fever = T, Paleness = F, Cough = T,HighWBCcount = F), that is, the probability that you suffer from Pneumonia, given the symptoms? Simplify the expression as much as possible before plugging in the values.

Download and install JavaBayes from www.cs.cmu.edu/~javabayes.
Follw the instructions to run JavaBayes.

Load an example by going to File -> Open, and then choosing an example from the Examples
directory.

For this problem load the car-starts problem from the Examples/CarStarts directory. Please express answers with 4 significant digits

Part 1: Warm up (3 points)

(a) What is the probability EngineCranks cranks? (Hint: use the Query button)

(b) What is the CPT (conditional probability table) for Lights? (Hint: use the Edit Function button)

(c) What is the probability BatteryPower is Good given that the Radio is Dead? (Hint: use the Observe button to observe that the radio is dead, and then use the Query button)

Part 2: Charge (8 points)

(a) What is the probability the Alternator is OK?

(b) What is the probability the Alternator is OK given that Charge is Low?

(c) What is the probability the Alternator is OK given that there is a Leak?

(d) What is the probability the Alternator is OK given that Charge is Low and there is a Leak?

Part 3: A bit trickier (4 points)

(a). What is the probability that Radio is Dead and that Lights is NoLight, given that BatteryPower is Good?