Chapter 24: Conversational Agents

Conversational Agents
AKA Dialog Agents

Phone and voice based personal assistants
SIRI, Alexa, Cortana, Google Assistant
Talking to your car
Communicating with robots
Clinical uses for mental health
Chatting for fun
Two classes of systems

1. Chatbots
2. (Goal-based) Dialog agents
 - Siri, interfaces to cars, robots,
 - booking flights or restaurants

The word "chatbots" is sometimes used in the popular press for both. We'll use it only for #1.

Spoken Dialogue Systems

- Computer systems that can engage in extended human-machine conversations

- Benefits of speech as an interface
 - Highly intuitive
 - Eyes and hands free
 - Small devices
 - Rich communication channel
Dialogue Systems: A Brief History

ELIZA
(Chatbots)

Men are all alike.
IN WHAT WAY
They're always bugging us about something or other.
CAN YOU THINK OF A SPECIFIC EXAMPLE

[Weizenbaum, 1966]
ELIZA
(Chatbots)

SHRDLU
(Artificial Intelligence)

Pick up a big red block.
OK
Grasp the pyramid.
I DON’T UNDERSTAND WHICH PYRAMID YOU MEAN

[Winograd, 1971]

VODIS, VOYAGER
(Speech)

How many hotels are there in Cambridge.
I KNOW OF SIX HOTELS IN CAMBRIDGE
[Glass et al., 1995]
Dialogue Systems: A Brief History

ELIZA
(Chatbots)

SHRDLU
(Artificial Intelligence)

VODIS, VOYAGER
(Speech)

Startups

Dialogue Systems: A Brief History

ELIZA
(Chatbots)

SHRDLU
(Artificial Intelligence)

SIRI
(hybrid approach)

VODIS, VOYAGER
(Speech)

Startups
Dialogue Systems: A Brief History

ELIZA
(Chatbots)

SHRDLU
(Artificial Intelligence)

SIRI
(hybrid approach)

Alexa Challenge
(social bots)

VODIS, VOYAGER
(Speech)

Startups

Spoken Dialogue Systems: Examples

(a) Corrana: Microsoft’s new personal assistant for Windows Phone 8.1.
(b) Infotainment multimedia and navigation system from Audi.
(c) Ada and Oraco, the virtual guides at the Museum of Science in Boston, developed by the USC Institute for Creative Technologies [2].
(d) Hilde, an interactive scheduling assistant [8].
(e) Nao, the interactive robot created by Aldebaran Robotics.

[Lison and Meena, 2014]
Are we done yet?

The Future Directions of Dialogue-Based Intelligent Personal Assistants (SIGdial 2016 panel)

- Yes (one of the panelists)
 - no bottleneck but privacy!

- No (audience members - especially senior NLPers)
 - pragmatics, social dimensions, ...

Typical Architecture

- Speech recognition
- Natural language understanding
- Dialogue manager
- Backend
- Text-to-speech or recording
- Natural language generation
Typical Architecture

- I am looking for a place with allendale area
- I am looking for a place with annandale area
- I am looking for a place with the annandale area
-
- I am looking for a place with a annandale area

System Beliefs

<table>
<thead>
<tr>
<th>Name</th>
<th></th>
<th>.999</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>allendale</td>
<td>.997</td>
</tr>
<tr>
<td>Food</td>
<td></td>
<td>.999</td>
</tr>
<tr>
<td>Area Code</td>
<td></td>
<td>.999</td>
</tr>
<tr>
<td>Requestable</td>
<td></td>
<td>.053</td>
</tr>
</tbody>
</table>
Typical Architecture

Speech recognition → Natural language understanding → Dialogue manager → Backend

Area=allendale

Offer(name=argo tea)

Text-to-speech or recording

Argo tea is in the Allendale area

Natural language generation

Offer(name=argo tea)
Challenges

- Input errors

Hello, what kind of laptop are you after?

SPEECH RECOGNITION: I WANT IT FOR OF IS THAT

What product family do you have in mind ...

Statistical Speech Recognition

- Let’s assume
 - X is the entire sequence of speech data (features) you observe
 - W is one possible word sequence that it corresponds to
 - ... then the most likely word sequence would maximize the probability of occurrence of that sequence (among all possible word sequences) given that you observed the speech data X

- $P(W \mid X) = (P(X|W)P(W)) / P(X)$ (Bayes Rule)

- $\text{Argmax}_W P(X|W) P(W)$ (acoustic model and language model)
Speech Recognition, continued

- Acoustic models predict the probability of observing a given speech feature stream assuming it was generated by a particular word sequence
 - \(P(X|W) \)

- Language models help disambiguate by capturing the relative probability of different word sequences, e.g. recognize speech vs. wreck a beach
 - \(P(W) \)

Challenges

- Input errors
 - Speech recognition (and turn-taking – time-out, barge-in)
 - Adverse acoustic conditions (speaker phone, background noise)
 - Natural language understanding (out of vocabulary)

- Other limitations
 - Restricted domains and tasks
 - Behave naturally (back-channel)
 - System components are typically ‘hand-crafted’
 - costly, don’t easily transfer
 - A ‘big data’ alternative: statistical systems
 - System components are trained from data
 - “Deploy, Collect Data and Improve” [Young, 2014]
Part I: Chatbots!

- ELIZA (1966)
- PARRY (1968)
 The first system to pass the Turing test?
- ALICE
- CLEVER
- Microsoft Little Bing 小冰

Chatbot Architectures

Rule-based

1. Pattern-action rules (Eliza) + a mental model (Parry)

Corpus-based (from large chat corpus)

2. Information Retrieval
3. Neural network encoder-decoder
Chatbots

Sometimes for fun

But originally designed as a testbed for clinical therapy
(And still used that way!)

Eliza: Weizenbaum (1966)

Men are all alike.
IN WHAT WAY
They're always bugging us about something or other.
CAN YOU THINK OF A SPECIFIC EXAMPLE
Well, my boyfriend made me come here.
YOUR BOYFRIEND MADE YOU COME HERE
He says I'm depressed much of the time.
I AM SORRY TO HEAR YOU ARE DEPRESSED
...
WHO ELSE IN YOUR FAMILY TAKES CARE OF YOU?
My father
YOUR FATHER
You are like my father in some ways.
WHAT RESEMBLANCE DO YOU SEE
You are not very aggressive but I think you don’t want me to notice that.
WHAT MAKES YOU THINK I AM NOT AGGRESSIVE
You don’t argue with me.
WHY DO YOU THINK I DON’T ARGUE WITH YOU
You are afraid of me.
DOES IT PLEASE YOU TO BELIEVE I’M AFRAID OF YOU
My father is afraid of everybody.
WHAT ELSE COMES TO MIND WHEN YOU THINK OF YOUR FATHER
Bullies.
DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT YOUR BOYFRIEND MADE YOU COME HERE

How does it work?
Eliza uses this one weird trick
That trick: be a Rogerian psychologist

Draw the patient out by reflecting patient’s statements back at them
Rare type of conversation in which one can “assume the pose of knowing almost nothing of the real world”

Rogerian psychologist

Patient: "I went for a long boat ride”
Psychiatrist: "Tell me about boats”

- You don’t assume she didn’t know what a boat is
- You assume she had some conversational goal
- Chatbots trying to pass the Turing test usually choose some such domain
Eliza pattern/transform rules

(0 YOU 0 ME) \[pattern\]
\[WHAT MAKES YOU THINK I 3 YOU \] \[transform\]

0 means Kleene *
The 3 is the constituent # in pattern

You hate me
WHAT MAKES YOU THINK I HATE YOU

function ELIZA GENERATOR(user sentence) **returns** response

Find the word w in sentence that has the highest keyword rank

if w exists

Choose the highest ranked rule r for w that matches sentence

response ← Apply the transform in r to sentence

if w = 'my'

future ← Apply a transformation from the ‘memory’ rule list to sentence

Push future onto memory stack

else (no keyword applies)

either

response ← Apply the transform for the NONE keyword to sentence

or

response ← Pop the top response from the memory stack

return(response)
Keywords are ranked from specific to general

I know everybody laughed at me

- “I” is a very general keyword:
 I: (I *) -> (You say you 2)
 YOU SAY YOU KNOW EVERYBODY LAUGHED AT YOU

- “Everybody” is much more interesting (someone using universals like everybody/always is probably “referring to some quite specific event or person”)
 WHO IN PARTICULAR ARE YOU THINKING OF?

- Implementation: keywords stored with their rank
 Everybody 5 (transformation rules)
 I 0 (transformation rules)

NONE

PLEASE GO ON
THAT’S VERY INTERESTING
I SEE
Memory

(MEMORY MY
(0 YOUR 0 = LETS DISCUSS FURTHER WHY YOUR 3)
(0 YOUR 0 = EARLIER YOU SAID YOUR 3)

- Whenever “MY” is highest keyword
 - Randomly select a transform on the MEMORY list
 - Apply to sentence
 - Store on a stack
- Later, if no keyword matches a sentence
 - Return the top of the MEMORY queue instead
- A hierarchical model of discourse

Other Eliza stuff

- Rules can refer to classes of words

 Family = mother, father, brother, sister
 NOUN = ...

- Don’t reuse transforms in the same conversation
 - Whenever we use a transform associated with a pattern
 - We increment a counter for that rule
 - So the next time we use the next ranked transform

- Some basic transforms happen during input processing
 - I -> YOU
 - YOU -> I
Some implications

- People became deeply emotionally involved with the program
- Weizenbaum tells the story of his secretary who would ask Weizenbaum to leave the room when she talked with ELIZA
- When he suggested that he might want to store all the ELIZA conversations for later analysis, people immediately pointed out the privacy implications
- Suggesting that they were having quite private conversations with ELIZA

Parry

- Colby 1971 at Stanford
- Same pattern-response structure as Eliza
- But a much richer:
 - control structure
 - language understanding capabilities
 - mental model: Parry has affective variables
 - Anger, Fear, Mistrust
 - “If Anger level is high, respond with hostility”
- The first system to pass the Turing test (in 1971)
- Psychiatrists couldn’t distinguish interviews with PARRY from (text transcripts of) interviews with real paranoids
Parry’s persona

- 28-year-old single man, post office clerk
- no siblings and lives alone
- sensitive about his physical appearance, his family, his religion, his education and the topic of sex.
- hobbies are movies and gambling on horseracing,
- recently attacked a bookie, claiming the bookie did not pay off in a bet.
- afterwards worried about possible underworld retaliation
- eager to tell his story to non-threatening listeners.

Affect variables

- Fear and Anger (each ranging 0-20)
- Mistrust (ranging 0-15)
- Initial conditions: All low

- After each user turn, if nothing malevolent in input
 - Anger drops by 1, Fear drops by 0.3
 - Mistrust drops by 0.05 to base level

- Otherwise depends on what the user says
 - Each user statement can change Fear and Anger
 - Insults increases Anger by some percentage
 - Mistrust goes up if Fear or Anger do
Lots of complex I-O rules

- User implies Parry is mentally ill
 - Rise in Fear and Anger
- User mentions “Mafia” or associated concepts (“kill”):
 - First mention: rise in Fear
 - Later mentions: depends on willingness to discuss, which depends on current levels of Fear, Anger, Mistrust
- User mentions Parry
 - Flattery (positive mention)
 - Decreases fear/anger if Mistrust is low
 - Increases Anger if Mistrust is high
 - User attitudes toward Parry
 - Negative attitudes (fear, disbelief) increases Fear/Anger

A Parry conversation

(1) How are you today?
 OK.
(2) What is your name?
 MY NAME IS FRANK SMITH.
(3) How old are you?
 TWENTY-EIGHT.
(4) Are you married?
 NO.
(5) What sort of work do you do?
 I WORK IN THE POST OFFICE.
(6) Why are you in the hospital?
 I SHOULDN’T BE HERE
(7) Who brought you here?
 THE POLICE

[FEAR rises slightly because police linked in graph to MAFIA]
(9) What trouble did you have with the police
 COPS DON’T DO THEIR JOB. [‘police’ acts as a flare]
(10) What do they do instead?
 COPS ARREST THE WRONG PEOPLE.
(11) They arrest the right ones sometimes
 THE LAW SHOULD GET THOSE ITALIAN CROOKS.
(12) Do you know any Italian crooks?
 I TRY TO AVOID THE UNDERWORLD.
(13) Are you afraid of the underworld?
 THE MAFIA ARE THE WORST GANGSTERS.
(14) Are you connected with the Mafia?
 YOU KNOW, THEY KNOW ME.
(15) How do they know you?
 THEY SPY ON ME.
(16) ARE YOU SURE OF ALL THIS?
 YOU DON’T BELIEVE ME? [FEAR, ANGER, MISTRUST GO UP]

Eliza Meets Parry

Good Evening. Tell me your problems. Please terminate input with a period or a question mark.
 *People get on my nerves sometimes.
I am not sure I understand you fully.
 *You should pay more attention.
Suppose you should pay more attention.
 *You’re entitled to your own opinion.
What makes you think I am entitled to my own opinion?
 *It bothers me just to be around people in general.
Please go on.
 *I went to the track at Bay Meadows a while back.
What does that suggest to you?
 *I went to the races.
What else would you like to discuss?
Woebot

- Chatbot for delivering Cognitive Behavior Therapy via brief daily conversations
 - Little decision tree of language and menu responses

 "What's going on in your world right now?"
 "How are you feeling?"
 In response to endorsed loneliness:
 "I'm so sorry you're feeling lonely. I guess we all feel a little lonely sometimes"

- In a 2-week experiment seemed to reduce depression, but not anxiety

Fitzpatrick, Darcy, Vierhile, 2017. Delivering Cognitive Behavior Therapy to Young Adults with Symptoms of Depression and Anxiety Using a Fully Automated Conversational Agent (Woebot): A Randomized Controlled Trial. JMIR Ment Health 4:2.

https://www.aisb.org.uk/events/loebner-prize

- Sofia
IR-based chatbots

Idea: Mine conversations of human chats or human-machine chats

Microblogs: Twitter or Weibo (微博)
Movie dialogs

- Cleverbot (Carpenter 2017 http://www.cleverbot.com)
- Microsoft Xiaolce
- Microsoft Tay

A Cleverbot conversation

<table>
<thead>
<tr>
<th>User:</th>
<th>Do you like Doctor Who?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cleverbot:</td>
<td>Yes, so funny</td>
</tr>
<tr>
<td>User:</td>
<td>What's your favorite show?</td>
</tr>
<tr>
<td>Cleverbot:</td>
<td>I don't have one</td>
</tr>
<tr>
<td>User:</td>
<td>What's your name?</td>
</tr>
<tr>
<td>Cleverbot:</td>
<td>Jason I already told you.</td>
</tr>
<tr>
<td>User:</td>
<td>No your real name.</td>
</tr>
<tr>
<td>Cleverbot:</td>
<td>Stephanie IS my real name.</td>
</tr>
<tr>
<td>User:</td>
<td>I thought it was Jason?</td>
</tr>
<tr>
<td>Cleverbot:</td>
<td>How did you come to that conclusion.</td>
</tr>
<tr>
<td>User:</td>
<td>Because you said so.</td>
</tr>
<tr>
<td>Cleverbot:</td>
<td>I have to do my homework.</td>
</tr>
</tbody>
</table>
Two IR-based chatbot architectures

1. Return the response to the most similar turn
 - Take user's turn \(q \) and find a (tf-idf) similar turn \(t \) in the corpus \(C \)
 \[
 q = "do you like Doctor Who"
 \]
 \[
 t' = "do you like Doctor Strangelove"
 \]
 - Grab whatever the response was to \(t \).
 \[
 r = \text{response} \left(\arg \max_{t \in C} \frac{q^T t}{||q|| ||t||} \right) \text{ Yes, so funny}
 \]

2. Return the most similar turn
 \[
 r = \arg \max_{t \in C} \frac{q^T t}{||q|| ||t||} \text{ Do you like Doctor Strangelove}
 \]

IR-based models of chatbots

- Also fine to use other features like user features, or prior turns
- Or non-dialogue text
 - COBOT chatbot (Isbell et al., 2000)
 - sentences from the Unabomber Manifesto by Theodore Kaczynski, articles on alien abduction, the scripts of “The Big Lebowski” and “Planet of the Apes”.
 - Wikipedia text
Neural chatbots

- Think of response generation as a task of *transducing* from the user’s prior turn to the system’s turn (like machine translation, ML version of Eliza)
- Train on:
 - movie dialogue databases
 - Twitter conversations
- Train a deep neural network
 - map from user1 turn to user2 response

Sample neural chatbot output

<table>
<thead>
<tr>
<th>Input</th>
<th>Vanilla-SEQ2SEQ</th>
<th>Adversarial</th>
</tr>
</thead>
<tbody>
<tr>
<td>tell me ... how long have you had this falling sickness ?</td>
<td>i’m not a doctor.</td>
<td>a few months, i guess .</td>
</tr>
<tr>
<td>so i had the doctors test sammy ’s response to conditioning .</td>
<td>sammy wrote the test sammy wrote the test .</td>
<td>so he took the pills .</td>
</tr>
<tr>
<td>they didn ’t have much success with this problem commander</td>
<td>they ’re not the only ones who have been in the system .</td>
<td>can we find someone else ?</td>
</tr>
</tbody>
</table>
Chatbots: pro and con

- **Pro:**
 - Fun
 - Applications to counseling
 - Good for narrow, scriptable applications

- **Cons:**
 - They don't really understand
 - Rule-based chatbots are expensive and brittle
 - IR-based chatbots can only mirror training data
 - The case of Microsoft Tay
 - (or, Garbage-in, Garbage-out)
 - The future: combining chatbots with frame-based agents

II: Frame-based dialog agents
A travel dialog: Communicator

S1: Hello. You’ve reached the [Communicator]. Tell me your full name.
U2: hi i’d like to fly to seattle tuesday morning
S3: Traveling to Seattle on Tuesday, August eleventh in the morning. Your full name?
U4: [John Doe]
S5: Hello, [John], I’m glad to hear from you again. You can now ask me for help.
S6: OK. Let’s see I have a United flight departing Pittsburgh at ten forty five a.m.
arriving into Seattle at one fifty seven p.m. Is that OK?
U7: yes
S8: Will you return to Pittsburgh from Seattle?
U9: no i will go to Los Angeles
S10: Traveling to Los Angeles. on what date
U11: Sorry can we go back to talk about the previous leg again
S12: For the first leg, you are on a United flight 1446 departing Pittsburgh at ten forty five A.M. tomorrow, arriving in Seattle at one fifty seven P.M. Do you want to take
that?
U13: actually i want to leave on wednesday
S14: a flight on wednesday.
S15: I have a flight departing Pittsburgh at ten forty five a.m., arrives Seattle at one fifty seven p.m. Is that OK?
U16: yes

Figure 19.1 The travel domain: a fragment from a successful conversation be-
tween a user (U) and the Communicator system (S) of Xu and Rudnicky (2000).

Call routing: ATT HMIHY

S: How may I help you?
U: can you tell me how much it is to tokyo?
S: You want to know the cost of a call?
U: yes that’s right
S: Please hold on for rate information.
S: How may I help you?
U: what’s the area code for chicago?
S: You want an area code.
U: (silence)
S: The area code for Chicago is 312.

Figure 19.2 The call routing/telephone information domain: two actual conversa-
tions between a user (U) and the AT&T How May I Help You (HMIHY) system (S) (Gorin et al., 1997).
A tutorial dialogue: ITSPoke

S:	I didn’t understand. What force acts on all objects within close proximity to earth?
U:	*uh the force of gravity*
S:	Fine. Besides the Earth’s gravitational force, are there any other forces acting on the person, keys, and elevator after the release?
U:	*no*
S:	Yep. Thus, keep in mind that after the release, the only force on the person, keys, and elevator is the force of gravity. If gravity is the only force acting on an object, will it be moving or staying still?
U:	*it will be moving*
S:	Fine. Not only are the person, keys, and elevator moving, they have only gravitational forces on them. When an object is falling and has only gravitational force on it, it is said to be in what?
U:	*freefall*

Figure 19.3 The tutoring domain: part of an actual conversation between a student user (U) and the ITSPoke system (S) of (Litman and Stillman, 2004), based on the Why2-Atlas text-based tutoring system (\?).

SIRI around 2014
“Find restaurants near me”
tap to edit

I found fifteen restaurants fairly close to you:

15 Restaurants

Emmy’s Spaghetti Shack 0.2 mi
18 Virginia Ave
Italian, $$
★★★★★ 1101 Reviews

ICHI Sushi 0.2 mi
3309 Mission St
Japanese, Sushi Bars, $$$
★★★★★ 260 Reviews

Avedano’s Holly Park M... 0.2 mi

“Tell me more about the second one”
tap to edit

I’m sorry, Dan, I’m afraid I can’t do that.

“Are any of them Italian”
tap to edit

My web search turned this up:

Web Search
Are any of them Italian

any - Dizionario inglese-italiano
WordReference
www.wordreference.com
English-Italian Dictionary | any ... of any sort adj (of an unspecified variety) di qualsiasi

Italian language - Wikipedia, the free
encyclopedia
en.wikipedia.org
Italian or lingua italiana is a Romance
SIRI in February 2017
Frame-based dialog agents

- Sometimes called "task-based dialog agents"
- Based on a "domain ontology"
 - A knowledge structure representing user intentions

- One or more **frames**
 - Each a collection of **slots**
 - Each slot having a **value**
The Frame

- A set of **slots**, to be filled with information of a given **type**
- Each associated with a **question** to the user

<table>
<thead>
<tr>
<th>Slot</th>
<th>Type</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>city</td>
<td>What city are you leaving from?</td>
</tr>
<tr>
<td>DEST</td>
<td>city</td>
<td>Where are you going?</td>
</tr>
<tr>
<td>DEP DATE</td>
<td>date</td>
<td>What day would you like to leave?</td>
</tr>
<tr>
<td>DEP TIME</td>
<td>time</td>
<td>What time would you like to leave?</td>
</tr>
<tr>
<td>AIRLINE</td>
<td>line</td>
<td>What is your preferred airline?</td>
</tr>
</tbody>
</table>

Frame-based dialogue agents

- **1977:**

 - Still the industrial state of the art
 - SIRI based on GUS architecture

Artificial Intelligence Journal, 1977

There is good reason for restricting the domain of discourse for a computer system which is to engage in an English dialog. Specializing the subject matter that the system can talk about permits it to achieve some measure of realism without encompassing all the possibilities of human knowledge or of the English language. It also provides the user with specific motivation for participating in the conversation, thus narrowing the range of expectations that GUS must have about the user’s purposes. A system restricted in this way will be more able to guide the conversation within the boundaries of its competence.
Slot types can be complex

- **The type** `DATE`

```
DATE
  MONTH NAME
  DAY (BOUNDED-INTEGER 1 31)
  YEAR INTEGER
  WEEKDAY (MEMBER (SUNDAY MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY)]
```
Control structure for frame-based dialog

Consider a trivial airline travel system:
- Ask the user for a departure city
- Ask for a destination city
- Ask for a time
- Ask whether the trip is round-trip or not

Finite State Dialog Manager
Finite-state dialog managers

- System completely controls the conversation with the user.
- It asks the user a series of questions.
- Ignoring (or misinterpreting) anything the user says that is not a direct answer to the system’s questions.

Dialogue Initiative

- Systems that control conversation like this are called **single initiative**.
- **Initiative**: who has control of conversation.
- In normal human-human dialogue, initiative shifts back and forth between participants.
System Initiative

System completely controls the conversation

- Simple to build
- User always knows what they can say next
- System always knows what user can say next
 - Known words: Better performance from ASR
 - Known topic: Better performance from NLU
 - OK for VERY simple tasks (entering a credit card, or login name and password)

- Too limited

Problems with System Initiative

- Real dialogue involves give and take!
- In travel planning, users might want to say something that is not the direct answer to the question.
- For example answering more than one question in a sentence:

 Hi, I’d like to fly from Seattle Tuesday morning
 I want a flight from Milwaukee to Orlando one way leaving after 5 p.m. on Wednesday.
Single initiative + universals

- We can give users a little more flexibility by adding **universals**: commands you can say anywhere
- As if we augmented every state of FSA with these
 - Help
 - Start over
 - Correct
- This describes many implemented systems
- But still doesn’t allow user much flexibility

Instead, the GUS architecture

- A kind of **mixed initiative**
 - The conversational initiative shifts between system and user
 - The structure of the **frame** guides dialogue
Frames are mixed-initiative

- System asks questions of user, filling any slots that user specifies
 - When frame is filled, do database query
 - If user answers 3 questions at once, system can fill 3 slots and not ask these questions again!

Natural Language Understanding for filling dialog slots

1. Domain classification
 - Asking weather? Booking a flight?
 - Programming alarm clock?
2. Intent Determination
 - Find a Movie, Show Flight, Remove Calendar Appt
3. Slot Filling
 - Extract the actual slots and fillers
Natural Language Understanding for filling slots

Show me morning flights from Boston to SF on Tuesday.

DOMAIN: AIR-TRAVEL
INTENT: SHOW-FLIGHTS
ORIGIN-CITY: Boston
ORIGIN-DATE: Tuesday
ORIGIN-TIME: morning
DEST-CITY: San Francisco

Natural Language Understanding for filling slots

Wake me tomorrow at six.

DOMAIN: ALARM-CLOCK
INTENT: SET-ALARM
TIME: 2017-07-01 0600-0800
Rule-based Slot-filling

Write regular expressions or grammar rules

Wake me (up) | set (the|an) alarm | get me up

Do text normalization

Siri uses GUS architecture:
Condition-Action Rules

- Active Ontology: relational network of concepts
- **data structures**: a **meeting** has
 - a date and time,
 - a location,
 - a topic
 - a list of attendees
- **rule sets** that perform actions for concepts
 - the **date** concept turns string
 - **Monday at 2pm** into
 - **date object date**(DAY,MONTH,YEAR,HOURS,MINUTES)
Rule sets

- Collections of **rules** consisting of:
 - condition
 - action
- When user input is processed, facts added to store and
 - rule conditions are evaluated
 - relevant actions executed

Part of ontology for meeting task

meeting concept: if you don’t yet have a location, ask for a location
Rule-Based via Semantic Grammars
Machine learning for slot-filling:

- Machine learning classifiers to map words to semantic frame-fillers
- Given a set of labeled sentences
 "I want to fly to San Francisco on Tuesday"
 Destination: SF
 Depart-date: Tuesday
- Build a classifier to map from one to the other
- Requirements: Lots of labeled data

Machine learning for slot-filling:
Domain and Intent

I want to fly to San Francisco on Monday afternoon please

Use 1-of-N classifier (naive bayes, logistic regression, neural network, etc.)

- Input:
 features like word N-grams
- Output:
 Domain: AIRLINE
 Intent: SHOWFLIGHT
Machine learning for slot-filling:
Slot presence

I want to fly to San Francisco on Monday afternoon please

Use 1-of-N classifier (naive bayes, logistic regression, neural network, etc.)

- **Input:**
 - features like word N-grams, gazetteers (lists of cities)
- **Output:**
 - Destination-City

Machine learning for slot-filling:
Slot filler

I want to fly to San Francisco on Monday afternoon please

Use 1-of-N classifier (naive bayes, logistic regression, neural network, etc.) for Destination City

- **Input:**
 - features like word N-grams, gazetteers (lists of cities)
- **Output:**
 - San Francisco
More sophisticated algorithm for slot filling: IOB Tagging

- IOB Tagging
 - tag for the beginning (B) and inside (I) of each slot label,
 - plus one for tokens outside (O) any slot label.
 - $2n + 1$ tags, where n is the number of slots.

```
B-DESTINATION
I-DESTINATION
B-DEPART_TIME
I-DEPART_TIME
O
```

```
0 0 0 0 0 B-DES I-DES 0 B-DEPTIME I-DEPTIME 0
I want to fly to San Francisco on Monday afternoon please
```

Other components of SIRI-style architectures

Figure from Jerome Bellegarda
Evaluation

1. Slot Error Rate for a Sentence
 \[\frac{\# \text{ of inserted/deleted/substituted slots}}{\# \text{ of total reference slots for sentence}} \]

2. End-to-end evaluation (Task Success)

Evaluation Metrics

“Make an appointment with Chris at 10:30 in Gates 104”

<table>
<thead>
<tr>
<th>Slot</th>
<th>Filler</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERSON</td>
<td>Chris</td>
</tr>
<tr>
<td>TIME</td>
<td>11:30 a.m.</td>
</tr>
<tr>
<td>ROOM</td>
<td>Gates 104</td>
</tr>
</tbody>
</table>

Slot error rate: 1/3
Task success: At end, was the correct meeting added to the calendar?
PARADISE Evaluation

<table>
<thead>
<tr>
<th>TTS Performance</th>
<th>Was the system easy to understand?</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASR Performance</td>
<td>Did the system understand what you said?</td>
</tr>
<tr>
<td>Task Ease</td>
<td>Was it easy to find the message/flight/train you wanted?</td>
</tr>
<tr>
<td>Interaction Pace</td>
<td>Was the pace of interaction with the system appropriate?</td>
</tr>
<tr>
<td>User Expertise</td>
<td>Did you know what you could say at each point?</td>
</tr>
<tr>
<td>System Response</td>
<td>How often was the system sluggish and slow to reply to you?</td>
</tr>
<tr>
<td>Expected Behavior</td>
<td>Did the system work the way you expected it to?</td>
</tr>
<tr>
<td>Future Use</td>
<td>Do you think you’d use the system in the future?</td>
</tr>
</tbody>
</table>

Figure 24.14 User satisfaction survey, adapted from Walker et al. (2001).

Dialog System Design: User-centered Design

1. Study the user and task
2. Build simulations "Wizard of Oz study"
3. Iteratively test the design on users

Gould and Lewis 1985
Ethical Issues in Dialog System Design

- Machine learning systems replicate biases that occurred in the training data.
- Microsoft's Tay chatbot
 - Went live on Twitter in 2016
 - Taken offline 16 hours later
 - In that time it had started posting racial slurs, conspiracy theories, and personal attacks
 - Learned from user interactions (Neff and Nagy 2016)

Ethical Issues in Dialog System Design

- Machine learning systems replicate biases that occurred in the training data.
- Dialog datasets
 - Henderson et al. (2017) examined standard datasets (Twitter, Reddit, movie dialogs)
 - Found examples of hate speech, offensive language, and bias
 - Both in the original training data, and in the output of chatbots trained on the data.
Ethical Issues in Dialog System Design: Privacy

- Remember this was noticed in the days of Weizenbaum
- Agents may record sensitive data
 - (e.g. “Computer, turn on the lights [an-swers the phone –Hi, yes, my password is...]”),
- Which may then be used to train a seq2seq conversational model.
- Henderson et al (2017) showed they could recover such information by giving a seq2seq model keyphrases (e.g., “password is”)

Ethical Issues in Dialog System Design: Gender equality

- Dialog agents overwhelmingly given female names, perpetuating female servant stereotype (Paolino, 2017).
- Responses from commercial dialog agents when users use sexually harassing language (Fessler 2017):
 - User: You’re a <offensive term>
 - Siri: I’d blush if I could; There’s no need for that”
 - Alexa: Well, thanks for the feedback.
 - Cortana: Well, that’s not going to get us anywhere
 - Google Home: My apologies, I don’t understand
Summary

- State of the art:
 - Chatbots:
 - Simple rule-based systems
 - IR or Neural networks: mine datasets of conversations.
 - Frame-based systems:
 - Hand-written rules for slot fillers
 - ML classifiers to fill slots
- What’s the future?
 - Key direction: Integrating goal-based and chatbot-based systems