Text Normalization

Chapter 2
(2.1 – 2.4)

Basic Text Processing

Regular Expressions
Regular expressions

• A formal language for specifying text strings
• How can we search for any of these?
 • woodchuck
 • woodchucks
 • Woodchuck
 • Woodchucks
 • Ill vs. illness
 • color vs. colour

Example

• Does $grep "elect" news.txt$ return every line in a file called news.txt that contains the word “elect”
 elect
 Misses capitalized examples
 [eE]lect
 Incorrectly returns select or electives
 [^a-zA-Z][eE]lect[^a-zA-Z]
Errors

• The process we just went through was based on fixing two kinds of errors
 • Matching strings that we should not have matched (there, then, other)
 • False positives (Type I)
 • Not matching things that we should have matched (The)
 • False negatives (Type II)

Errors cont.

• In NLP we are always dealing with these kinds of errors.
• Reducing the error rate for an application often involves two antagonistic efforts:
 • Increasing accuracy or precision (minimizing false positives)
 • Increasing coverage or recall (minimizing false negatives).
Summary

• Regular expressions play a surprisingly large role
 • Sophisticated sequences of regular expressions are often the first model for any text processing text
 • I am assuming you know, or will learn, in a language of your choice
• For many hard tasks, we use machine learning classifiers
 • But regular expressions are used as features in the classifiers
 • Can be very useful in capturing generalizations

Basic Text Processing

Word tokenization
Text Normalization

- Every NLP task needs to do text normalization:
 1. Segmenting/tokenizing words in running text
 2. Normalizing word formats
 3. Segmenting sentences in running text

How many words?

- I do uh mainly business data processing
 - Fragments, filled pauses
- Terminology
 - **Lemma**: same stem, part of speech, rough word sense
 - *cat* and *cats* = same lemma
 - **Wordform**: the full inflected surface form
 - *cat* and *cats* = different wordforms
How many words?

they lay back on the San Francisco grass and looked at the stars and their

• **Type**: an element of the vocabulary.
• **Token**: an instance of that type in running text.
• How many?
 • 15 tokens (or 14)
 • 13 types (or 12) (or 11?)

How many words?

\[N = \text{number of tokens} \]
\[V = \text{vocabulary} = \text{set of types} \]

| | Tokens = \(N\) | Types = \(|V|\) |
|----------------------|----------------|----------------|
| Switchboard phone conversations | 2.4 million | 20 thousand |
| Shakespeare | 884,000 | 31 thousand |
| Google N-grams | 1 trillion | 13 million |
Issues in Tokenization

• Finland’s capital → Finland Finlands Finland’s ?
• what’re, I’m, isn’t → What are, I am, is not
• state-of-the-art → state of the art ?
• San Francisco → one token or two?
Tokenization: language issues

- Chinese and Japanese no spaces between words:
 - 莎拉波娃现在居住在美国东南部的佛罗里达。
 - Sharapova now lives in US southeastern Florida
Normalization

- Need to “normalize” terms
 - Information Retrieval: indexed text & query terms must have same form.
 - We want to match \textit{U.S.A.} and \textit{USA}
 - We implicitly define equivalence classes of terms
 - e.g., deleting periods in a term
 - Alternative: asymmetric expansion:
 - Enter: \textit{windows}
 Search: \textit{Windows, windows, window}
 - Potentially more powerful, but less efficient

Case folding

- Applications like IR: reduce all letters to lower case
 - Since users tend to use lower case
 - Possible exception: upper case in mid-sentence?
 - e.g., \textit{General Motors}
 - \textit{Fed} vs. \textit{fed}
 - \textit{SAIL} vs. \textit{sail}
 - For sentiment analysis, MT, Information extraction
 - Case is helpful (\textit{US} versus \textit{us} is important)
Lemmatization

• Reduce inflections or variant forms to base form
 • *am, are, is* → *be*
 • *car, cars, car's, cars'* → *car*
 • *the boy's cars are different colors* → *the boy car be different color*
 • Lemmatization: have to find correct dictionary headword form

Morphology

• **Morphemes:**
 • The small meaningful units that make up words
 • **Stems:** The core meaning-bearing units
 • **Affixes:** Bits and pieces that adhere to stems
 • Often with grammatical functions
Stemming

• Reduce terms to their stems in information retrieval
• *Stemming* is crude chopping of affixes
 • language dependent
 • e.g., *automate(s), automatic, automation* all reduced to *automat*.

```plaintext
for example compressed and compression are both accepted as equivalent to compress.
```

Sentence Segmentation

• !, ? are relatively unambiguous
• Period “.” is quite ambiguous
 • Sentence boundary
 • Abbreviations like Inc. or Dr.
 • Numbers like .02% or 4.3
• Build a binary classifier
 • Looks at a “.”
 • Decides EndOfSentence/NotEndOfSentence
 • Classifiers: hand-written rules, regular expressions, or machine-learning

```plaintext
for example compress and compress ar both accept as equivel to compress
```
Minimum Edit Distance

- Not assigned, but fyi, quantifies similarity of two strings
 - Word similarity is useful for spelling correction