CS 1571

Chapter 10 (Section 10.3)
Knowledge Representation

KR

- Last 3 chapters: syntax, semantics, and proof theory of propositional and first-order logic; associated knowledge-based systems
- Theorem provers
 - Prove sentences in FOL. Use inference rules, resolution rule, and resolution refutation
- Deductive retrieval systems
 - Systems based on rules (KBs in Horn form)
 - Prove theorems or infer new assertions (forward, backward chaining)
KR, continued

• Chapter 10: what content to put into an agent’s KB
• How to represent knowledge of the world
• 10.3: Actions, Situations and Events

Actions, Situations, and Events

• The world is dynamic
 - What is true now may not be true tomorrow
 - Changes in the world may be triggered by our activities
• Problems
 - FOL as we had it referred to a static world. How do we represent the change in FOL?
 - How do we represent the actions that change the world?
• Planning problem
 - Find a sequence of actions that achieves some goal
 - A very complex search problem
The Situation Calculus

- The robot is in the kitchen.
 - in(robot,kitchen)
- It walks into the living room.
 - in(robot,livingRoom)
- Oops...
 - in(robot,kitchen,2:02pm)
 - in(robot,livingRoom,2:17pm)
- But what if you are not sure when it was?
- We can do something simpler than rely on time stamps...

Situation Calculus

- Logic for reasoning about changes in the state of the world
- The world is described by
 - Sequences of situations of the current state
 - Changes from one situation to another are caused by actions
- The situation calculus allows us to
 - Describe the initial state and a goal state
 - Build the KB that describes the effect of actions (operators)
 - Prove that the KB and the initial state lead to a goal state
 - Extracts a plan as side-effect of the proof
Situation Calculus Ontology

- **Actions**: terms, such as “forward” and “turn(right))”
- **Situations**: terms; initial situation s_0 and all situations that are generated by applying an action to a situation.

 $\text{result}(a,s)$ names the situation resulting when action a is done in situation s.

Situation Calculus Ontology continued

- **Fluents**: functions and predicates that vary from one situation to the next. By convention, the situation is the last argument of the fluent.

 $\neg\text{holding}(\text{robot}, \text{gold}, s_0)$

- **Atemporal or eternal** predicates and functions do not change from situation to situation.

 $\text{gold}(g1)$

 $\text{lastName}(\text{wumpus}, \text{smith})$

 $\text{adjacent}(\text{livingRoom}, \text{kitchen})$
Sequences of Actions

- Also useful to reason about action sequences
- All \(S \) resultSeq([],S) = S
- All \(A,Se,S \) resultSeq([A|Se],S) = resultSeq(Se,result(A,S))

 resultSeq([a,b,a2,a3],s0) is result(a3,result(a2,result(b,result(a,s0))))

Modified Wumpus World

- Won’t worry about agent’s orientation
- Fluent predicates: \(at(O,X,S) \) and holding\((O,S) \)
- Initial situation: \(at(agent,[1,1],s0) \) \(^{\land} \) \(at(g1,[1,2],s0) \)
- But we want to exclude possibilities from the initial situation too…
Initial KB

- All O,X at(O,X,s0) \iff [O=agent ^
X = [1,1]] v (O=g1 ^ X = [1,2])]
- All O ~holding(O,s0)
- Eternals:
 - gold(g1) ^ adjacent([1,1],[1,2]) ^
 adjacent([1,2],[1,1]).

Goal: g1 is in [1,1]

At(g1,[1,1],resultSeq(
 [go([1,1],[1,2]),grab(g1),go([1,2],[1,1])],
s0)

Or, planning by answering the query:
 Exists S at(g1,[1,1],resultSeq(S,s0))

So, what has to go in the KB for such queries to be answered?...
Possibility and Effect Axioms

• Possibility axioms:
 - Preconditions \rightarrow poss(A, S)

• Effect axioms:
 - poss(A, S) \rightarrow changes that result from that action

Axioms for our Wumpus World

• For brevity: we will omit universal quantifiers that range over entire sentence. S ranges over situations, A ranges over actions, O over objects (including agents), G over gold, and X, Y, Z over locations.
Possibility Axioms

• The possibility axioms that an agent can
 - go between adjacent locations,
 - grab a piece of gold in the current location, and
 - release gold it is holding

Effect Axioms

• If an action is possible, then certain fluents will hold in the situation that results from executing the action
 - Going from X to Y results in being at Y
 - Grabbing the gold results in holding the gold
 - Releasing the gold results in not holding it
Frame Problem

• We run into the frame problem
• Effect axioms say what changes, but don’t say what stays the same
• A real problem, because (in a non-toy domain), each action affects only a tiny fraction of all fluents

Frame Problem (continued)

• One solution approach is writing explicit frame axioms, such as:
 \[\text{At}(O,X,S) \land \neg(O=\text{agent}) \land \neg\text{holding}(O,S) \rightarrow \text{at}(O,X,\text{result}(\text{Go}(Y,Z),S))\]
• With F fluent predicates and A actions, need \(O(AF)\) frame axioms
• But if an action has at most E effects, then need only \(O(AE)\).
Representational Frame Problem

- What stays the same?
- A actions, F fluents, and E effects/action (worst case).
 Typically, E << F
- Want $O(AE)$ versus $O(AF)$ solution

Solving the Representational Frame Problem

- Instead of writing the effects of each action, consider how each fluent predicate evolves over time
- Successor-state axioms:
 - Action is possible →
 (fluent is true in result state ↔
 action's effect made it true v
 it was true before and action left it alone)
Ramification Problem

• Implicit effects, such as: if an agent moves from X to Y, then any gold it is carrying will move too
• For our specific domain, we can solve this by writing a more general successor-state axiom for “at”

Qualification Problem

• Ensuring that all necessary conditions for an action’s success have been specified. No complete solution.
Blocks World Example

- In class