First-Order Logic

Chapter 8

Outline

• Why FOL?
• Syntax and semantics of FOL
• Knowledge engineering in FOL
Pros and cons of propositional logic

😊 Propositional logic is declarative
😊 Propositional logic allows partial/disjunctive/negated information
 – (unlike most data structures and databases)
😊 Propositional logic is compositional:
 – meaning of $B_{1,1} \land P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$
😊 Meaning in propositional logic is context-independent
 – (unlike natural language, where meaning depends on context)
😊 Propositional logic has very limited expressive power
 – (unlike natural language)
 – E.g., cannot say "pits cause breezes in adjacent squares"
 • except by writing one sentence for each square

First-order logic

• Whereas propositional logic assumes the world contains facts,
• first-order logic (like natural language) assumes the world contains
 – Objects: people, houses, numbers, colors, baseball games, wars, …
 – Relations: red, round, prime, brother of, bigger than, part of, comes between, …
 – Functions: father of, best friend, one more than, plus, …
FOL Syntax

• Add variables and quantifiers to
 propositional logic

Syntax of FOL: Basic elements

• Constants KingJohn, 2, Pitt,...
• Predicates Brother, >,...
• Functions Sqrt, LeftLegOf,...
• Variables x, y, a, b,...
• Connectives ¬, ⇒, ∧, ∨, ⇔
• Equality =
• Quantifiers ∀, ∃
Atomic sentences

Atomic sentence = \textit{predicate} (term_1,\ldots,term_n)
\text{ or } \text{term}_1 = \text{term}_2

Term = \textit{function} (term_1,\ldots,term_n)
\text{ or } \text{constant or variable}

\begin{itemize}
 \item E.g., \textit{Brother} (KingJohn, RichardTheLionheart)
 \item \texttt{ > (Length(LeftLegOf(Richard)),Length(LeftLegOf(KingJohn)))}
\end{itemize}

Complex sentences

\begin{itemize}
 \item Complex sentences are made from atomic sentences using connectives
 \begin{align*}
 \neg S, S_1 \land S_2, S_1 \lor S_2, S_1 \Rightarrow S_2, S_1 \Leftrightarrow S_2
 \end{align*}
 \end{itemize}

\begin{itemize}
 \item E.g. \textit{Sibling} (KingJohn, Richard) \Rightarrow \textit{Sibling} (Richard, KingJohn)
 \item \texttt{ > (1,2) \lor \leq (1,2)}
 \item \texttt{ > (1,2) \land \neg > (1,2)}
\end{itemize}
Knowledge engineering involves deciding what types of things Should be constants, predicates, and functions for your problem

Propositional Logic vs FOL

\[
\text{B23 } \rightarrow \ (P32 \lor P\ 23 \lor P34 \lor P\ 43) \ ...
\]

“Internal squares adjacent to pits are breezy”:

\[
\text{All } X \ Y \ (B(X,Y) \land (X > 1) \land (Y > 1) \land (Y < 4) \land (X < 4)) \iff
\]

\[
(P(X-1,Y) \lor P(X,Y-1) \lor P(X+1,Y) \lor (X,Y+1))
\]
FOL (FOPC) Worlds

- Rather than just T,F, now worlds contain:
- **Objects:** the gold, the wumpus, …
 "the domain"
- **Predicates:** holding, breezy
- **Functions:** sonOf

Ontological commitment

Truth in first-order logic

- Sentences are true with respect to a model and an interpretation
- Model contains objects (domain elements) and relations among them
- Interpretation specifies referents for
 - constant symbols \rightarrow objects
 - predicate symbols \rightarrow relations
 - function symbols \rightarrow functional relation

Interpretation: assignment of elements from the world to elements of the language

- An atomic sentence $\text{predicate(term}_1,\ldots,\text{term}_n)$ is true iff the objects referred to by $\text{term}_1,\ldots,\text{term}_n$ are in the relation referred to by predicate
Quantifiers

• All X p(X) means that p holds for all elements in the domain
•Exists X p(X) means that p holds for at least one element of the domain

Universal quantification

• ∀<variables> <sentence>

Everyone at Pitt is smart:
∀x At(x,Pitt) ⇒ Smart(x)

• ∀x P is true in a model m iff P is true with x being each possible object in the model

• Roughly speaking, equivalent to the conjunction of instantiations of P

 At(KingJohn,Pitt) ⇒ Smart(KingJohn)
 ∧ At(Richard,Pitt) ⇒ Smart(Richard)
 ∧ At(Pitt,Pitt) ⇒ Smart(Pitt)
 ∧ ...
A common mistake to avoid

- Typically, ⇒ is the main connective with ∀
- Common mistake: using ∧ as the main connective with ∀:
 \[\forall x \text{ At}(x, \text{Pitt}) \land \text{Smart}(x) \]
 means “Everyone is at Pitt and everyone is smart”

Existential quantification

- \[\exists<\text{variables}> <\text{sentence}> \]
- Someone at Pitt is smart:
 \[\exists x \text{ At}(x, \text{Pitt}) \land \text{Smart}(x) \]
- \[\exists x \ P \text{ is true in a model } m \text{ iff } P \text{ is true with } x \text{ being some possible object in the model} \]
- Roughly speaking, equivalent to the disjunction of instantiations of \(P \):
 \[\text{At}(\text{KingJohn}, \text{Pitt}) \land \text{Smart}(\text{KingJohn}) \lor \text{At}(\text{Richard}, \text{Pitt}) \land \text{Smart}(\text{Richard}) \lor \text{At}(\text{Pitt}, \text{Pitt}) \land \text{Smart}(\text{Pitt}) \lor \ldots \]
Another common mistake to avoid

• Typically, \land is the main connective with \exists

• Common mistake: using \Rightarrow as the main connective with \exists:
 $\exists x \text{ At}(x,\text{Pitt}) \Rightarrow \text{Smart}(x)$
 is true if there is anyone who is not at Pitt!

Examples

• Everyone likes chocolate
• Someone likes chocolate
• Everyone likes chocolate unless they are allergic to it
Examples

• Everyone likes chocolate
 – $\forall X \text{ person}(X) \rightarrow \text{likes}(X, \text{chocolate})$

• Someone likes chocolate
 – $\exists X \text{ person}(X) \land \text{likes}(X, \text{chocolate})$

• Everyone likes chocolate unless they are allergic to it
 – $\forall X (\text{person}(X) \land \neg \text{allergic}(X, \text{chocolate})) \rightarrow \text{likes}(X, \text{chocolate})$

Properties of quantifiers

• $\forall x \forall y$ is the same as $\forall y \forall x$

• $\exists x \exists y$ is the same as $\exists y \exists x$

• $\exists x \forall y$ is not the same as $\forall y \exists x$

• $\exists x \forall y \text{ Loves}(x,y)$
 – “There is a person who loves everyone in the world”

• $\forall y \exists x \text{ Loves}(x,y)$
 – “Everyone in the world is loved by at least one person”
Nesting of Variables

Put quantifiers in front of \(\text{likes}(P,F) \)
Assume the domain of discourse of \(P \) is the set of people
Assume the domain of discourse of \(F \) is the set of foods

1. Everyone likes some kind of food
 \(\forall P \exists F \text{likes}(P,F) \)
2. There is a kind of food that everyone likes
 \(\exists F \forall P \text{likes}(P,F) \)
3. Someone likes all kinds of food
 \(\exists P \forall F \text{likes}(P,F) \)
4. Every food has someone who likes it
 \(\forall F \exists P \text{likes}(P,F) \)

Answers

(DOD of \(P \) is people and \(F \) is food)

Everyone likes some kind of food
 \(\forall P \exists F \text{likes}(P,F) \)
There is a kind of food that everyone likes
 \(\exists F \forall P \text{likes}(P,F) \)
Someone likes all kinds of food
 \(\exists P \forall F \text{likes}(P,F) \)
Every food has someone who likes it
 \(\forall F \exists P \text{likes}(P,F) \)
Answers, without Domain of Discourse Assumptions

Everyone likes some kind of food
\[\text{All } P \ \text{person}(P) \rightarrow \text{Exists } F \ \text{food}(F) \text{ and } \text{likes}(P,F) \]

There is a kind of food that everyone likes
\[\text{Exists } F \ \text{food}(F) \text{ and } (\text{All } P \ \text{person}(P) \rightarrow \text{likes}(P,F)) \]

Someone likes all kinds of food
\[\text{Exists } P \ \text{person}(P) \text{ and } (\text{All } F \ \text{food}(F) \rightarrow \text{likes}(P,F)) \]

Every food has someone who likes it
\[\text{All } F \ \text{food}(F) \rightarrow \text{Exists } P \ \text{person}(P) \text{ and } \text{likes}(P,F) \]

Quantification and Negation

- \(\neg(\forall x \ p(x)) \equiv \exists x \ \neg p(x) \)
- \(\neg(\exists x \ p(x)) \equiv \forall x \ \neg p(x) \)

- **Quantifier duality**: each can be expressed using the other
 - \(\forall x \ \text{Likes}(x,\text{IceCream}) \rightarrow \neg \exists x \ \neg \text{Likes}(x,\text{IceCream}) \)
 - \(\exists x \ \text{Likes}(x,\text{Broccoli}) \rightarrow \neg \forall x \ \neg \text{Likes}(x,\text{Broccoli}) \)
Equality

• $term_1 = term_2$ is true under a given interpretation if and only if $term_1$ and $term_2$ refer to the same object.

• E.g., definition of $Sibling$ in terms of $Parent$:
 \[
 \forall x, y \ Sibling(x, y) \iff \neg(x = y) \land \exists m, f \neg(m = f) \land \\
 \quad Parent(m, x) \land Parent(f, x) \land Parent(m, y) \land Parent(f, y) \]

Representational Schemes

• What are the objects, predicates, and functions? Keep in mind that you need to encode knowledge of specific problem instances and general knowledge.

• In practice, consider interpretations just to understand what the choices are. The world and interpretation are defined, or at least constrained, through the logical sentences we write.
Example Choice: Predicates versus Constants

• Rep-Scheme 1: Let’s consider the world: \(D = \{a,b,c,d,e\} \). \(\text{green}: \{a,b,c\} \). \(\text{blue}: \{d,e\} \). Some sentences that are satisfied by the intended interpretation:

\[
\text{green}(a). \quad \text{green}(b). \quad \text{blue}(d). \\
\neg(\text{All } x \text{ green}(x)). \quad \text{All } x \text{ green}(x) \lor \text{blue}(x).
\]

But what if we want to say that blue is pretty?

Choice: Predicates versus Constants

• Rep-Scheme 2: The world: \(D = \{a,b,c,d,e,\text{green,blue}\} \)
 \(\text{colorof}: \{<a,\text{green}>,<b,\text{green}>,<c,\text{green}>,<d,\text{blue}>,<e,\text{blue}>\} \)
 \(\text{pretty}: \{\text{blue}\} \quad \text{notprimary}: \{\text{green}\} \)

• Some sentences that are satisfied by the intended interpretation:

\[
\text{colorOf}(a,\text{green}). \quad \text{colorOf}(b,\text{green}). \quad \text{colorOf}(d,\text{blue}). \\
\neg(\text{All } X \text{ colorOf}(X,\text{green})). \\
\text{All } X \text{ colorOf}(X,\text{green}) \lor \text{colorOf}(X,\text{blue}). \\
\text{pretty}(\text{blue}). \quad \text{notprimary}(\text{green}).
\]

We have reified predicates \text{blue} and \text{green}: made them into objects.
Knowledge engineering in FOL

1. Identify the task
2. Assemble the relevant knowledge
3. Decide on a vocabulary of predicates, functions, and constants
4. Encode general knowledge about the domain
5. Encode a description of the specific problem instance
6. Pose queries to the inference procedure and get answers
7. Debug the knowledge base

Summary

• First-order logic:
 – objects and relations are semantic primitives
 – syntax: constants, functions, predicates, equality, quantifiers

• Increased expressive power: e.g., better to define wumpus world