Adversarial Search

Chapter 6
Sections 1 – 3 (and a little of the rest)

Outline

• Games
• Optimal decisions
• α-β pruning
• Imperfect, real-time decisions (briefly)
Game Search

• Game-playing programs developed by AI researchers since the beginning of the modern AI era (chess, checkers in 1950s)

• **Game Search**
 – Sequences of player’s decisions *we control*
 – Decision of other player(s) *we do not control*

• **Contingency problem**: many possible opponent’s moves must be “covered” by the solution
 – Introduces uncertainty to the game since we do not know what the opponent will do

• **Rational opponent**: maximizes it’s own *utility* function

Types of Game Problems

• **Adversarial**
 – Win of one player is a loss of the other
 – Focus of this course

• Cooperative
 – Players have common interests and utility function

• A spectrum of others in between
Games vs. search problems

- Adversarial search or “games”
 - Multi-agent and competitive environment
 - "Unpredictable" opponent → specifying a move for every possible opponent reply
- Time limits → unlikely to find goal, must approximate

Typical AI “Games:

- Deterministic and Fully Observable Environment
- Two agents with turn-taking for actions
- Zero-sum (adverserial)
- Abstract (robotic soccer notable exception)
 - state easy to represent, few action choices, well-defined goals
 - hard to solve
Game Search

• Problem Formulation
 – **Initial state**: initial board position + information about whose move it is
 – **Successors**: legal moves a player can make
 – **Goal (terminal test)**: determines when the game is over
 – **Utility function**: measures the outcome of the game and its desirability

• Search objective
 – Find the sequence of player’s decisions (moves) maximizing its utility
 – Consider the opponent’s moves and their utility

Game Tree

• Initial State and Legal Moves for Each Side
Game Tree
(2-player, deterministic, turns)

- MAX and MIN are the 2 players
- MAX goes first
- Players then take turns
Game Tree
(2-player, deterministic, turns)

- MAX has 9 possible legal first moves (ignoring symmetry)

Utility of terminal states (when game is over) is from MAX’s point of view

Points are awarded to both players at the end of the game
- -1 is a loss
- 0 is a draw
- 1 is a win
Minimax Algorithm

- How do we deal with the contingency problem?

 - Assuming that the opponent is rational and always optimizes its behavior (opposite to us), we consider the opponent’s best response
 - Then the minimax algorithm determines the best move

Minimax

- Finds an optimal (contingent) strategy, assuming perfect play for deterministic games

- Idea: choose move to position with highest MINIMAX VALUE = best achievable payoff against best play

- MINIMAX-VALUE \((n) \)
 - UTILITY \((n) \) if \(n \) is a terminal state
 - \(\max_s \text{MINIMAX-VALUE} \ (s) \) if \(n \) is a MAX node
 - \(\min_s \text{MINIMAX-VALUE} \ (s) \) if \(n \) is a MIN node

 (where \(s \) is an element of the successors of \(n \))
Minimax Example

- E.g., 2-ply game (with utility values at the leaves)

Another Example

- In class
Minimax algorithm

function MINIMAX-DECISION(state) returns an action
 v ← MAX-VALUE(state)
 return the action in SUCCESSORS(state) with value v

function MAX-VALUE(state) returns a utility value
 if TERMINAL-TEST(state) then return UTILITY(state)
 v ← −∞
 for s in SUCCESSORS(state) do
 v ← MAX(v, MIN-VALUE(s))
 return v

function MIN-VALUE(state) returns a utility value
 if TERMINAL-TEST(state) then return UTILITY(state)
 v ← ∞
 for s in SUCCESSORS(state) do
 v ← MIN(v, MAX-VALUE(s))
 return v

Notes: recursive (backs up from leaves), depth-first

Properties of minimax

- **Complete?** Yes (if tree is finite)
- **Optimal?** Yes (against an optimal opponent)
- **Time complexity?** $O(b^m)$
- **Space complexity?** $O(bm)$ (depth-first exploration)

- For chess, $b \approx 35$, $m \approx 100$ for "reasonable" games → exact solution completely infeasible
- Do we really need to explore every path???
Solutions to the Complexity Problem

• Dynamic pruning of redundant branches of the search tree
 – Some branches will never be played by rational players since they include sub-optimal decisions (for either player)
 • Identify a provably suboptimal branch of the search tree before it is fully explored
 • Eliminate the suboptimal branch
 – Procedure: Alpha-Beta Pruning

• Early cutoff of the search tree
 – Use imperfect minimax value estimate of non-terminal states

α-β pruning example
α-β pruning example

MAX
MIN

α-β pruning example

MAX
MIN

MAX
MIN
α-β pruning example

MAX

MIN

α-β pruning example

MAX

MIN
\(\alpha - \beta \) pruning example

\[
\text{MINIMAX-VALUE(root)} \\
= \max(\min(3,12,8), \min(2,x,y), \min(14,5,2)) \\
= \max(3, \min(2,x,y), 2) \\
= \max(3, z, 2) \text{ for } z \leq 2 \\
= 3
\]

Properties of \(\alpha - \beta \)

- Pruning does not affect final result
- Good move ordering improves effectiveness of pruning
- With "perfect ordering," time complexity = \(O(b^{m/2}) \)
- A simple example of the value of reasoning about which computations are relevant (a form of metareasoning)
Why is it called α-β?

- α is the value of the best (i.e., highest-value) choice found so far at any choice point along the path for \max
- If v is worse than α, \max will avoid it \rightarrow prune that branch
- Similarly, β is the value of the best (i.e., lowest-value) choice found so far at any choice point along the path for \min

Another Example

- In class
The α-β algorithm

function Alpha-Beta-Search(state) returns an action
inputs: state, current state in game
\[v \leftarrow \text{Max-Value}(state, -\infty, +\infty) \]
return the action in Successors(state) with value \(v \)

function Max-Value(state, \(\alpha \), \(\beta \)) returns a utility value
inputs: state, current state in game
\[\alpha \text{, the value of the best alternative for } \text{Max along the path to state } \]
\[\beta \text{, the value of the best alternative for } \text{Min along the path to state } \]
if Terminal-Test(state) then return Utility(state)
\[v \leftarrow -\infty \]
for \(a, s \) in Successors(state) do
\[v \leftarrow \text{Max}(v, \text{Min-Value}(s, \alpha, \beta)) \]
if \(v \geq \beta \) then return \(v \)
\[\alpha \leftarrow \text{Max}(\alpha, v) \]
return \(v \)

function Min-Value(state, \(\alpha \), \(\beta \)) returns a utility value
inputs: state, current state in game
\[\alpha \text{, the value of the best alternative for } \text{Max along the path to state } \]
\[\beta \text{, the value of the best alternative for } \text{Min along the path to state } \]
if Terminal-Test(state) then return Utility(state)
\[v \leftarrow +\infty \]
for \(a, s \) in Successors(state) do
\[v \leftarrow \text{Min}(v, \text{Max-Value}(s, \alpha, \beta)) \]
if \(v \leq \alpha \) then return \(v \)
\[\beta \leftarrow \text{Min}(\beta, v) \]
return \(v \)
Resource limits (Section 6.4)

Recap
– Minimax explores the full search space
– Alpha Beta prunes, but still searches all the way to terminal states for a portion of the search space

Standard approaches to fix resource limits
– cutoff test:
 e.g., depth limit
– evaluation function
 = estimated desirability of position

Evaluation functions

• For chess, typically \textbf{linear} weighted sum of features
 \[\text{Eval}(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)\]

• e.g., \(w_1 = 9\) with
 \(f_1(s) = \text{(number of white queens)} - \text{(number of black queens)}, \text{etc.}\)
Cutting off search

MinimaxCutoff is identical to MinimaxValue except
1. Terminal? is replaced by Cutoff?
2. Utility is replaced by Eval

4-ply lookahead is a hopeless chess player!
- 4-ply ≈ human novice
- 8-ply ≈ typical PC, human master
- 12-ply ≈ Deep Blue, Kasparov

Deterministic games in practice

- Checkers: Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994. Used a precomputed endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of 444 billion positions.
- Othello: human champions refuse to compete against computers, who are too good.
- Go: human champions refuse to compete against computers, who are too bad. In go, $b > 300$, so most programs use pattern knowledge bases to suggest plausible moves.
- AAAI conferences now have general game-playing competitions, with a $10K$ prize!
Summary

• Games are fun to work on!
• They illustrate several important points about AI
• perfection is unattainable → must approximate
• good idea to think about what to think about