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ABSTRACT

We investigate the automatic classification of student emotional
states in a corpus of human-human spoken tutoring dialogues. We
first annotated student turns in this corpus for negative, neutral and
positive emotions. We then automatically extracted acoustic and
prosodic features from the student speech, and compared the re-
sults of a variety of machine learning algorithms that use 8 differ-
ent feature sets to predict the annotated emotions. Our best results
have an accuracy of 80.53% and show 26.28% relative improve-
ment over a baseline. These results suggest that the intelligent tu-
toring spoken dialogue system we are developing can be enhanced
to automatically predict and adapt to student emotional states.

1. INTRODUCTION

In this paper, we investigate the automatic classification of stu-
dent emotional states in human-human spoken tutoring dialogues.
Motivation for this investigation comes from the discrepancy be-
tween the performance of human tutors and current machine tutors.
While human tutors can respond both to the content of student
speech and to the emotions they perceive to be underlying it, most
intelligent tutoring dialogue systems cannot detect student emo-
tional states, and furthermore, are text-based [1], which may limit
their success at emotion prediction. Building intelligent tutoring
spoken dialogue systems thus has great potential benefit. Speech
is the most natural and easy to use form of natural language inter-
action, and studies have shown considerable benefits of spoken hu-
man tutoring [2]. Furthermore, connections between learning and
emotion are well-documented [3], and it has been suggested that
the success of computer tutors could be increased by recognizing
and responding to student emotion, e.g. reinforcing positive states,
while rectifying negative states [4, 5]. We are currently building
an intelligent tutoring spoken dialogue system with the goal of en-
hancing it to automatically predict and adapt to student emotional
states. The larger question motivating this paper is thus whether,
and how, student emotional states can be automatically predicted
by our intelligent spoken dialogue tutoring system.

Speech supplies a rich source of acoustic and prosodic infor-
mation about the speaker’s current emotional state. Research in
the area of spoken dialogue systems has already shown that acous-
tic and prosodic features can be extracted from the speech signal
and used to develop predictive models of user mental states (c.f.
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[6, 7, 8,9, 10, 11, 12]). Some work uses speech read by actors
or native speakers as training data (c.f. [6, 8, 12]), but such pro-
totypical emotional speech does not necessarily reflect naturally-
occurring speech [13], such as found in tutoring dialogues. Other
work uses naturally-occurring speech from a variety of corpora
(c.f. [7,9, 10, 11]), but little work to date addresses emotion de-
tection in computer-based educational settings such as tutoring.

Our methodology builds on and generalizes the results of this
prior work while applying them to the new domain of naturally oc-
curring tutoring dialogues. We first annotated student turns in our
human-human tutoring corpus for emotion. We then automatically
extracted acoustic and prosodic features from these turns, and per-
formed a variety of machine learning experiments using different
feature combinations to predict our emotion categorizations. Like
[6], we compare the performance of a variety of modern machine
learning algorithms using the Weka software package [14]; we also
present a variety of evaluation metrics for our results.

Although much of the past work in this area predicts only two
emotional classes (e.g. negative/non-negative) [7, 10, 11], our pre-
liminary experiments produced the best predictions using a three-
way distinction between negative, neutral, and positive emotional
classes. Like [11], we focus here on features that can be computed
fully automatically from the student speech and will be available to
our intelligent tutoring dialogue system in real-time. We show that
by using these features alone or in combination with features iden-
tifying specific subjects and tutoring sessions, we can significantly
improve a baseline performance for emotion prediction. Our best
results show an accuracy of 80.53% and a relative improvement of
26.28% over the baseline error rate. These results suggest that our
spoken dialogue tutoring system can be enhanced to automatically
predict and adapt to student emotional states.

Section 2 describes ITSPOKE, our intelligent tutoring spo-
ken dialogue system. Section 3 describes machine learning ex-
periments in automatic emotion recognition. We first discuss our
emotion annotation in a human-human spoken tutoring corpus that
is parallel to the corpus that will be produced by ITSPOKE. We
then discuss how acoustic and prosodic features available in real-
time to ITSPOKE are computed from these dialogues. We finally
compare the performance of various machine learning algorithms
using our annotations and different feature combinations. Section
4 discusses further directions we are pursuing.

2. THEITSPOKE SYSTEM AND CORPUS

We are developing a spoken dialogue system, called ITSPOKE
(Intelligent Tutoring SPOKEnN dialogue system), which uses as



its “back-end” the text-based Why2-Atlas dialogue tutoring sys-
tem [15]. In Why2-Atlas, a student types an essay answering a
qualitative physics problem and a computer tutor then engages
him/her in typed dialogue to provide feedback, correct miscon-
ceptions, and elicit more complete explanations, after which the
student revises his/her essay, thereby ending the tutoring or caus-
ing another round of tutoring/essay revision. In ITSPOKE, we
replace the typed dialogue with spoken input and output. We have
interfaced the Sphinx2 speech recognizer [16] with stochastic lan-
guage models trained from example user utterances, and the Festi-
val speech synthesizer [17] for text-to-speech, to the Why2-Atlas
back-end. The rest of the natural language processing compo-
nents, e.g. the sentence-level syntactic and semantic analysis mod-
ules [18], and a finite-state dialogue manager [19], are provided
by a toolkit that is part of the Why2-Atlas back-end. The stu-
dent speech is digitized from microphone input, while the tutor’s
synthesized speech is played to the student using a speaker and/or
headphone. We have adapted the knowledge sources needed by
the spoken language components; e.g. we have developed a set
of dialogue-dependent language models using 4551 student utter-
ances from a Why2-Atlas 2002 human-computer typed corpus and
continue to enhance them using student utterances from our paral-
lel human-human spoken corpus (described below). An evaluation
comparing ITSPOKE to human-human and Why2-Atlas (typed)
tutoring will begin in Fall, 2003.

Our human-human spoken corpus contains spoken dialogues
collected via a web interface supplemented with a high quality
audio link, where a human tutor performs the same task as IT-
SPOKE. Our subjects are University of Pittsburgh students who
have taken no college level physics and are native speakers of
American English. Our experimental procedure, taking roughly
7 hours/student over 1-2 sessions, is as follows: students 1) take a
pretest measuring their physics knowledge, 2) read a small docu-
ment of background material, 3) use the web and voice interface
to work through up to 10 training problems with the human tu-
tor (via essay revision as described above), and 4) take a post-test
similar to the pretest. We have to date collected 114 dialogues
(2187.17 minutes of speech from 5 females and 8 males) and tran-
scribed 90 of them. An average dialogue contains 47.49 student
turns (264.18 student words); a comparison of these and other di-
alogue features between our human-human spoken corpus and a
parallel typed corpus is found in [20]. A corpus example is shown
in Figure 1, containing the typed problem, the student’s original
typed essay, and an annotated (Section 3) excerpt from the subse-
quent spoken dialogue, beginning with the tutor’s sixth turn (some
punctuation is added for clarity).

3. PREDICTING EMOTIONAL SPEECH

3.1. Emotion Inter-Annotation

Human emotional states can only be identified indirectly, e.g. via
what is said and/or how it is said. However, such evidence is
not always obvious, unambiguous, or consistent across speakers.
Our objective is thus to manually annotate the student turns in
our human-human tutoring dialogues for perceived expressions of
emotion. In our annotation schema, expressions of emotion are
viewed along a linear scale, shown and defined as follows:

negative «— neutral — positive

PROBLEM: The sun pulls on the earth with the force of gravity
and causes the earth to move in orbit around the sun. Does the
earth pull equally on the sun? Defend your answer.

ESSAY: No. Both objects apply a force on the other. The sun
applies more force because it is causing the earth to have more
acceleration.

...dialogue excerpt at 4.3 minutes into session ...

TUTORg: The only thing asked is about the force, whether the
force of earth pulls equally on the sun or not. That’s the only
question.

STUDENT 7: Well I think it does but | don’t know why. | do-don’t
I- do they move in the same direction? | do-don’t

(EMOTION = NEGATIVE)

TUTOR7: You see, against- you see, they don’t have to move. If
a force acts on a body it does not mean that uh uh | mean it will -
STUDENT g: If two forces um apply- if two forces react on each
other then the force is equal. It’s the Newtons third law.
(EMOTION = POSITIVE)

TUTORs: Um you see the uh- actually in this case the motion

is there but it is a little more complicated motion. This is orbital
motion.

STUDENT: mm-hm (EMOTION = NEUTRAL)

Fig. 1. Annotated Excerpt from Human-Human Spoken Corpus

Negative: a strong expression of emotion that can be detri-
mental for learning, e.g. uncertain, confused, bored, frustrated.
Because a syntactic question by definition expresses uncertainty, a
student turn containing only a question is by default labeled nega-
tive. An example of a negative student turn is student~ in Figure 1.
Evidence! of a negative emotion in this case comes from the lexi-
cal expressions of uncertainty, e.g. the phrase “I don’t know why”,
the syntactic question, and the disfluencies, as well as acoustic and
prosodic features, including pausing and a wide variation in pitch.

Positive: a strong expression of emotion that can be benefi-
cial for learning, e.g. confident, interested, engaged, encouraged.
An example of a positive student turn is studentg in Figure 1. Evi-
dence of a positive emotion in this case comes from lexical expres-
sions of certainty, e.g. “It’s the...”, as well as acoustic and prosodic
features, including loud speech and a fast tempo.

Neutral: no strong expression of emotion, including weak (neg-
ative or positive) or contrasting (negative and positive) expres-
sions, as well as no expression. Because groundings serve mainly
to encourage another speaker to continue speaking, a student turn
containing only a grounding is by default labeled neutral. An ex-
ample of a neutral student turn is studento in Figure 1. Neutral-
ity is assigned by default in this case, but acoustic and prosodic
features, including moderate loudness, tempo, and inflection, give
further evidence for the neutral label (rather than over-riding it).

There are a number of differences between this annotation
schema and those in prior work. In contrast to [11], for example,
our classifications are context-relative (e.g. relative to the other
turns in the dialogue), and task-relative (e.g. relative to tutoring),
because like [7], we are interested in detecting emotional changes
across our tutoring dialogues. For example, if a student has been
answering a tutor’s questions with apparent ease, but then responds

1As determined by post-annotation discussion (see below).



to the next question slowly and says "Um, now I’m confused”, this
turn would likely be labeled “negative”. During a heated argument
between two speakers, however, this same turn would likely be la-
beled “neutral”. Although [10] also employs a relative classifica-
tion, their schema (see [13]) explicitly associates specific acoustic,
prosodic, lexical and dialogue features with emotional utterances.
To avoid restricting or otherwise influencing the annotator’s intu-
itive understanding of emotion expression, and because such fea-
tures are not used consistently or unambiguously across speakers,
we allowed annotators to be guided by their intuition rather than
a set of expected features. Post-annotation discussion was used to
elicit the particular features of each turn that led the annotator to
select the chosen label. Finally, as noted in Section 1, [11, 10] an-
notate only two emotion classes (e.g. emotional/non-emotional),
while [7] annotates 6 emotion classes but only uses negative/other
in their machine learning experiments. Our annotation and our
machine learning experiments employ a three-way distinction be-
tween negative, neutral, and positive classes.

For use in our machine learning experiments, we randomly
selected 5 transcribed dialogues from our human-human tutoring
corpus, totaling 263 student turns from 4 different students (2 male,
2 female). First, turn boundaries were manually annotated (based
on consensus labelings from two annotators) when: 1) the speaker
stopped speaking and the other party in the dialogue began to
speak, 2) the speaker asked a question and stopped speaking to
wait for an answer, 3) the other party in the dialogue interrupted
the speaker and the speaker paused to allow the other party to
speak. Each turn was then manually annotated by two annota-
tors as negative, neutral or positive, as described above. The two
annotators agreed on the annotations of 215/263 turns, achieving
81.75% agreement (Kappa = 0.624). This inter-annotator agree-
ment is expected given the difficulty of the task, and is on par with
prior studies. [7], for example, achieved inter-annotator agree-
ment of 71% (Kappa 0.47), while [11] averaged around 70% inter-
annotator agreement. Although when we conflated our positive
and neutral classes, our own inter-annotator agreement rose to
92.40% (Kappa = 0.761), preliminary machine learning experi-
ments gave better results when learning all three emotion classes.

As in [11], our machine learning experiments use only those
215 student turns where annotators agreed on an emotion label. Of
these turns, 158 were neutral, 42 were negative, and 15 were pos-
itive. 13 neutral turns were removed, however, as they contained
only non-speech noise, yielding 202 agreed student turns.

3.2. Extracting Featuresfrom the Speech Signal

Like [11], we focus in this paper on acoustic and prosodic features
of individual turns that can be computed automatically from the
speech signal and that will be available in real-time to ITSPOKE.
For each of the 202 agreed student turns, we automatically com-
puted the 33 acoustic and prosodic features itemized in Figure 2,
which prior studies cited above have shown to be useful for pre-
dicting emotions in other domains. Except for turn duration and
tempo, which were calculated via the hand-segmented turn bound-
aries (but will be computed automatically in ITSPOKE via the out-
put of the speech recognizer), the acoustic and prosodic features
were calculated automatically from each turn in isolation. fO and
RMS values, representing measures of pitch excursion and loud-
ness, respectively, were computed using Entropic Research Lab-
oratory’s pitch tracker, get_f0, with no post-correction. Speaking
rate was calculated using the Festival synthesizer OALD dictio-

nary as syllables per second in the turn, and amount of silence was
defined as the proportion of zero frames in the turn, e.g. the pro-
portion of time that the student was silent. We also recorded for
each turn the 3 “identifier” features shown last in Figure 2. Prior
studies have shown that “subject” and “gender” features can play
an important role in emotion recognition, because different gen-
ders and different speakers can convey emotions differently. “sub-
ject ID” and “problem ID” are uniquely important in our tutoring
domain, because in contrast to e.g. call centers, where every caller
is distinct, students will use our system repeatedly, and problems
are repeated across students. Thus such features can be used to
recognize individual speaker emotions and/or specific contexts.

e 4 raw fundamental frequency (f0) features: maximum, min-
imum, mean, standard deviation

e 4 raw energy (RMS) features: maximum, minimum, mean,
standard deviation

e 3 raw temporal features: total turn duration, speaking rate,
amount of silence in the turn

e The above 11 features normalized to the first turn (n1)
e The above 11 features normalized to the prior turn (n2)
e 3identifier features: subject ID, subject gender, problem ID

Fig. 2. 36 Features per Student Turn

We then created the 8 feature sets itemized in Figure 3 to study
the effects that various feature combinations had on predicting the
emotion labels in our data. As shown, we compare feature sets
containing only “raw” acoustic and prosodic features with feature
sets containing each of the “n1” and “n2” normalized acoustic and
prosodic features, and we also compare feature sets containing all
the acoustic and prosodic features (raw and normalized). Note
further that we compare “...speech” and “...subj” feature sets; these
compare how well our emotion data would be learned with only
acoustic, prosodic and temporal features (either raw or normalized
or both), versus adding in our individualized identifier features.

e rawspeech: 11 raw fO, RMS, and temporal features

e rawsubj: 11 raw f0, RMS, and temporal features + 3 identi-
fier features

e nlspeech: 11 n1 fO, RMS and temporal features

e nlsubj: 11 n1 f0, RMS and temporal features + 3 identifier
features

e n2speech: 11 n2 fO, RMS and temporal features

e n2subj: 11 n2 f0, RMS and temporal features + 3 identifier
features

e allspeech: 33 fO, RMS, and temporal features (raw, n1, n2)
e allsubj: all 36 features

Fig. 3. 8 Feature Sets for Machine Learning Experiments

3.3. Using MachineLearning to Predict Emotions

We next performed machine learning experiments with our fea-
ture sets and our emotion-annotated data, using the Weka machine
learning software [14] as in [6]. This software allows us to com-



pare the predictions of some of the most modern machine learning
algorithms with respect to a variety of evaluation metrics.

We selected four machine learning algorithms for comparison.
First, we chose a C4.5 decision tree learner, called “J48” in Weka;
by default this algorithm produces a pruned decision tree with a
0.25 confidence threshold, where leaves correspond to a predicted
emotion label if at least two instances of that path are found in
the training data. An advantage of decision tree algorithms is that
they allow automatic feature selection and their tree output pro-
vides an intuitive way to gain insight into the data. Second, we
chose a nearest-neighbor classifier, called “IB1” in Weka; this al-
gorithm uses a distance measure to predict as the class of a test
instance the class of the first closest training instance that is found.
Also available in Weka is the “IBK” classifier, where the num-
ber of nearest neighbors considered (k) can be specified manually
or determined automatically using leave-one-out cross-validation.
We experimented with alternative values of k but found k=1 to
achieve the best results. Third, we chose a “boosting” algorithm,
called “AdaBoostM1” in Weka. Boosting algorithms generally en-
able the accuracy of a “weak” learning algorithm to be improved
by repeatedly applying that algorithm to different distributions or
weightings of training examples, each time generating a new weak
prediction rule, and eventually combining all weak prediction rules
into a single prediction [21]. Following [6], we selected “J48” as
AdaBoost’s weak learning algorithm. Finally, we chose a standard
baseline algorithm, called “ZeroR” in Weka; this algorithm simply
predicts the majority class (“neutral”) in the training data, and thus
is used as a performance benchmark for the other algorithms.

Table 1 shows the accuracy (percent correct) of these algo-
rithms on each of our 8 feature sets, as compared to the accuracy of
AdaBoost. Significances of accuracy differences are automatically
computed in Weka using a two-tailed t-test and a 0.05 confidence
threshold across 10 runs of 10-fold cross-validation. “*” indicates
that the algorithm performed statistically worse than AdaBoost on
that feature set. “v” indicates that an algorithm performed statis-
tically better than AdaBoost on that feature set. Lack of either
symbol indicates that there was no statistical difference between
the performance of the algorithm as compared to AdaBoost.

Feature Set || AdaBoost || J48 1B1 ZeroR

rawspeech 74.85 71.43* | 75.98 71.80 *
rawsubj 77.62 75.49 80.53v | 71.80*
nlspeech 79.21 75.94* | 70.61* | 71.80 *
nlsubj 78.61 74.01* | 72.84* | 71.80 *
n2speech 70.88 72.09 64.99* | 71.80v
n2subj 72.36 71.11 68.01* | 71.80

allspeech 77.44 75.00 * | 74.57 71.80 *
allsubj 77.96 75.01* | 79.21 71.80 *

Table 1. Percent Correct, 0.05 Confidence (two-tailed)

As shown, the single best accuracy of 80.53% is achieved
by the nearest-neighbor (IB1) algorithm on the “rawsubj” feature
set. We see that this is significantly better than the 77.62% cor-
rect achieved by the boosted algorithm (AdaBoost), and a sep-
arate comparison showed that it is also significantly better than
the 75.49% correct achieved by the decision tree algorithm (J48).
However, we also see that AdaBoost still performed significantly
better than the baseline (ZeroR) on the “rawsubj” feature set, and
a separate comparison showed that the performance of J48 was
statistically the same as AdaBoost on this feature set.

We also see that overall, AdaBoost produces the most robust
performance; on every other feature set AdaBoost performed as
well as or better than both J48 and IB1. In particular, AdaBoost
significantly outperforms IB1 on the four normalized feature sets,
and AdaBoost significantly outperforms J48 on five feature sets:
“rawspeech”, the “n1” sets, and the “all” sets. AdaBoost’s best
performance is achieved on the “n1” feature sets; in fact AdaBoost
significantly outperforms all the other algorithms on these two fea-
ture sets. Moreover, AdaBoost significantly outperforms the base-
line on all feature sets other than the “n2” feature sets. Only on
the “n2speech” feature set does AdaBoost perform significantly
worse than the baseline; however, no algorithm outperformed the
baseline on this feature set. In fact, we see that IB1 performed
significantly worse than even AdaBoost on this feature set, while
a separate comparison showed that J48 performed statistically the
same as the baseline on this feature set.

AdaBoost’s improvement for each feature set, relative to the
baseline error of 28.2%, is shown in Table 2. Except for the “n2”
feature sets, where improvement is not statistically significant, Ad-
aBoost’s relative improvement averages near 20%.

Feature Set || %Error | Rel.Imp.
rawspeech 25.15% | 10.82%
rawsubj 22.38% | 20.64%
nlspeech 20.79% | 26.28%
nlsubj 21.39% | 24.15%
n2speech 29.12% -

n2subj 27.64% -

allspeech 22.56% | 20.00%
allsubj 22.04% | 21.84%

Table 2. Relative Improvement of AdaBoost over Baseline

Other important evaluation metrics to consider include recall,
precision, and F-Measure ((2*recall*precision)/(recall+precision)).
Table 3 shows AdaBoost’s performance on each feature set with
respect to these metrics; in Weka, baseline (ZeroR) precision, re-
call and F-measure are all 0%. Though not shown, for recall and
precision, AdaBoost performs statistically better than or equal to
both I1B1 and J48 on every feature set. For F-measure, AdaBoost
performs statistically better than or equal to J48 on every feature
set, and there is only one feature set (“nlsubj”) where IB1 per-
forms significantly better. Overall, AdaBoost produces better pre-
cision than recall, but of the three metrics, precision is the most im-
portant in the intelligent tutoring domain, because it is better if IT-
SPOKE predicts that a turn is “neutral” than if ITSPOKE wrongly
predicts a turn is positive or negative and reacts accordingly.

Feature Set || Precision | Recall | F-Measure
rawspeech 0.44 0.41 0.40
rawsubj 0.52 0.44 0.45
nlspeech 0.54 0.45 0.48
nlsubj 0.56 0.45 0.48
n2speech 0.40 0.31 0.33
n2subj 0.39 0.28 0.31
allspeech 0.49 0.43 0.44
allsubj 0.53 0.42 0.44

Table 3. Precision, Recall and F-Measure of AdaBoost

As discussed above, we use AdaBoost to “boost” the J48 de-



cision tree algorithm. Although the output of AdaBoost does not
include a decision tree, to get an intuition about how our features
are used to predict emotion classes in our domain, we ran the J48
algorithm on the “nlspeech” feature set, using leave-one-out cross
validation (LOO). We chose “nlspeech” because it yields J48’s
best performance using 10x10 cross-validation, and contains only
acoustic and prosodic features, thereby allowing the results to gen-
eralize to different speakers and problems. Although J48’s accu-
racy on “nlspeech” using 10x10 cross-validation was statistically
worse than AdaBoost, a separate comparison showed it was sig-
nificantly better than both IB1 and the baseline. In Figure 4 we
present the final decision tree for J48 (LOO) and “nlspeech”. In
this structure, a colon introduces the emotion label assigned to
a leaf. The structure is read by following the (indented) paths
through the feature nodes until reaching a leaf.

nlturnDur < 2.476193
nltempo < 0.648936
| nlturnDur < 1.15: negative
| nlturnDur > 1.15
| | nlmaxf0 < 0.904914: neutral
| | nlmaxfO > 0.904914: negative
nltempo > 0.648936
nltempo < 2.558065: neutral
nltempo > 2.558065
| nlturnDur < 0.360655
| | nltempo < 111.176611: neutral
| | nltempo > 111.176611
| | | nlturnDur < 0.020106: neutral
| | | nlturnDur > 0.020106: negative
| nlturnDur > 0.360655: negative
1turnDur > 2.476193
1tempo < 0.954545
nimeanRMS < 0.221876: neutral
nlmeanRMS > 0.221876
| nlstdRMS < 6.223242: negative
n1stdRMS > 6.223242
| nlminf0 < 0.286531
| nlmeanfO < 0.686056: neutral
| nlmeanfO > 0.686056: negative
niminf0 > 0.286531
nlturnDur < 3.952382
| nltempo < 0.600001: positive
| nltempo > 0.600001: neutral
nlturnDur > 3.952382
| nlminf0 < 0.38471: positive
| nlminf0 > 0.38471
| | nltempo < 0.350877: positive
| | niltempo > 0.350877
| | | nlmaxfo < 0.734688: positive
| | | nlmaxf0 > 0.734688: negative
1tempo > 0.954545
n1%Silence < 2.026144: neutral
n1%Silence > 2.026144
| nlmeanf0 < 0.885155: negative
| nlmeanfO > 0.885155: neutral
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Fig. 4. Decision Tree for J48 (LOO) on “nlspeech”

We see that the tree uses all 3 of our normalized temporal fea-
tures: turn duration (nlturnDur), speaking rate (nltempo), and
amount of silence (n1%Silence), to predict our emotion classes;

temporal features are also found to be predictive of user mental
states in [7, 9, 10]. Of our 4 normalized pitch features, however,
only minimum, maximum and mean f0 values (n1minf0, n1maxf0,
nlmeanf0) are used to predict our emotion classes; as in [10, 11],
fO standard deviation is not used to predict our classes. Of our 4
normalized energy features, only RMS mean and standard devi-
ation (n1meanRMS, n1stdRMS) are used to predict our emotion
classes; unlike in [9, 10, 11], RMS maximums and minimums are
not used. Based on this tree, longer turns with slower tempos,
higher RMS mean and standard deviation, median fO minimums,
and lower fO maximums will be predicted positive. The tree will
predict negative for shorter turns (but not the shortest turns, e.g.
groundings) with either slower tempos and higher f0 maximums
or with faster tempos. For longer turns with slower tempos and
higher RMS means, negative emotions are predicted when RMS
standard deviation is lower or when it is higher and the turn has
either a lower f0 minimum and higher f0O mean or a higher fO min-
imum and maximum. In longer turns with fast tempos and high %
silence, a low f0 mean also predicts negative.

The accuracy (percent correct) of this decision tree is 77.23%.
Table 4 shows its performance with respect to precision, recall and
F-measure on each of the three emotion classes.

Precision | Recall | F-Measure | Class
0.535 0.548 | 0.541 negative
0.878 0.897 | 0.887 neutral
0.273 0.200 | 0.231 positive

Table4. J48’s (LOO) Precision, Recall and F-Measure

A confusion matrix summarizing J48’s (LOO) performance on
“nlspeech” is shown in Table 5. The matrix shows how many in-
stances of each class have been assigned to each class, where rows
correspond to annotator-assigned labels and columns correspond
to predicted labels. For example, 23 negatives were correctly pre-
dicted, while 13 negatives were incorrectly predicted to be neutral
and 6 negatives were incorrectly predicted to be positive.

negative | neutral | positive
negative 23 13 6
neutral 13 130 2
positive 7 5 3

Table5. Confusion Matrix for J48 (LOO) on “nlspeech”

4. CONCLUSIONSAND CURRENT DIRECTIONS

We have addressed the use of machine learning techniques for au-
tomatically predicting student emotional states in intelligent tu-
toring spoken dialogues. Our methodology extends the results of
prior research into spoken dialogue systems by applying them to a
new domain. Our emotion annotation schema distinguishes nega-
tive, neutral and positive emotions, and our inter-annotator agree-
ment is on par with prior emotion annotation in other types of cor-
pora. From our annotated student turns we automatically extracted
33 acoustic and prosodic features that will be available in real-time
to ITSPOKE, and added 3 identifier features for student, gender,
and problem. We compared the results of a variety of machine
learning algorithms in terms of a variety of evaluation metrics; our
best results suggest that ITSPOKE can be enhanced to automati-
cally predict student emotional states.



We are exploring the use of other emotion annotation schemas.
[22, 23, 8] for example, address how more complex emotional
categorizations encompassing multiple emotional dimensions (e.g.
“valence” and “activation”) can be incorporated into frameworks
for automatic prediction. One limiting factor of more complex
schemas, however, is the difficulty of keeping inter-annotator agree-
ment high; another is the difficulty of making good predictions
about fine-grained emotion categorizations. We are also exper-
imenting with annotating orthogonal tutoring sub-domains. For
example, although we’ve found that most expressions of emotion
pertain to the physics material being learned, they can also pertain
to the tutoring process itself (e.g. attitudes toward the tutor/being
tutored). We are also addressing the incorporation of “borderline”
cases in our own schema. For example, we have already found
that incorporating “weak” negative and positive labels into the cor-
responding “strong” category increases inter-annotator agreement
but decreases machine learning performance.

We are also expanding our machine-learning investigations.
We are extending our set of features to incorporate lexical and
dialogue features. [24, 7, 9, 10] have shown that such features
can contribute to emotion recognition, and in a pilot study [25] we
showed that these features alone predicted emotional states signifi-
cantly better than the baseline. In addition, we are pursuing further
comparisons of alternative machine-learning techniques. Finally,
we are in the process of increasing our data set. With more data
we can try methods such as down-sampling to better balance the
data in each emotion class. When ITSPOKE begins testing in Fall,
2003, we will address the same questions for our human-computer
tutoring dialogues that we’ve addressed here for our parallel cor-
pus of human-human tutoring dialogues.
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