Learning attributes from human gaze

Nils Murrugarra-Llerena
Adriana Kovashka

Department of Computer Science
University of Pittsburgh
Background

Introduction
Many **attributes** possess different **interpretations** as opposed to **objects**.
- *boot*: most of the drawings will be **similar**
- *formal* or *open shoe*: many drawings will be **different**

Motivation
- Why not integrate humans **more closely** in attribute learning?
 - using **human gaze maps**.
Background/Approach

Uniqueness
- Fast
- Orthogonal to DNN approaches
- Subconscious + Humans’ intuition

Data Collection
- GazePoint GP3 eye-tracker.
- 4 sub-sessions.
- Datasets: shoes, faces and scenes.
- Screening phase.
- Validation images.

Generate gaze templates
- ST: Merge gaze maps from positive annotations – normalize [0, 1] – threshold with 0.1 – mask selected cell from a 15x15 grid.
- MT: It captures different attribute meanings using clustering.
Approach

Attribute learning using fixed gaze templates
- **ST**: Mask train/test images – extract features – evaluate a classifier.
- **MT**: Similar to ST.
 - Train an individual classifier per cluster.
 - Predict a novel image as positive if at least one of the classifiers forecasts it contains the attribute.

Attribute learning using gaze prediction
- Instead of using a fixed template - Learn a gaze predictor – predict gaze maps for novel images – **STP/MTP**
Evaluation

Baselines

• **Whole Image (WI)**, which extracts features from the whole image without a mask.
• **Data-Driven (DD)**, which uses a binary mask created from an L1-regularizer over features extracted on a grid.
• **Unsupervised Saliency (US)**, which uses a binary mask from a state-of-the-art saliency predictor (Huang et al, ICCV 2015).
• **Random grid (R)**, which employs a random binary mask from a 15x15 grid.
• **Random Ensemble grid (RE)**, which creates an ensemble of R.

![F-measure evaluation](image-url)
Evaluation

Comparison with Spatial Extent (SE) method (Xiao and Lee, ICCV 2015)

Adaptation to scenes attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Objects</th>
<th>Attribute</th>
<th>Objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>climbing</td>
<td>mountain, sky, tree, trees, building</td>
<td>sunny</td>
<td>sky, tree, building, grass, trees</td>
</tr>
<tr>
<td>open area</td>
<td>sky, trees, grass, road, tree</td>
<td>driving</td>
<td>sky, road, tree, trees, building</td>
</tr>
</tbody>
</table>
Applications

Visualizing attribute models

Finding schools of thought

We improve schools of thought using gaze.

<table>
<thead>
<tr>
<th>Original</th>
<th>Gaze-based</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.37</td>
<td>0.40</td>
</tr>
</tbody>
</table>

F-measure
Further discussion

See you at poster #6

References