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Abstract

While semantic visual attributes have been shown useful
for a variety of tasks, many attributes are difficult to model
computationally. One of the reasons for this difficulty is
that it is not clear where in an image the attribute lives. We
propose to tackle this problem by involving humans more
directly in the process of learning an attribute model. We
ask humans to examine a set of images to determine if a
given attribute is present in them, and we record where
they looked. We create gaze maps for each attribute, and
use these gaze maps to improve attribute prediction mod-
els. For test images we do not have gaze maps available,
so we predict them based on models learned from collected
gaze maps for each attribute of interest. Compared to six
baselines, we improve prediction accuracies on attributes
of faces and shoes, and we show how our method might
be adapted for scene images. We demonstrate additional
uses of our gaze maps for visualization of attribute models
and learning “schools of thought” between users in terms
of their understanding of the attribute.

1. Introduction

Semantic visual attributes (such as “metallic” or “smil-
ing”) have been used for a variety of tasks: as a low-
dimensional representation for object recognition [7, 26, 33,
53, 16], as a textual representation used to recognize previ-
ously unseen categories [7, 26, 31, 16, 27], as a supervision
modality for active learning [24, 32], etc.

However, unlike object categories, attributes are not
well-defined. To see why, consider the following thought
experiment. If a person is asked to draw a “boot”, the draw-
ings of different people will likely not differ very much. But
if a person is asked to draw what the attributes “formal” or
“feminine” mean, drawings will vary. Drawings of a “for-
est” will likely all include a number of trees, but drawings
of a “natural”, “open-area”, or “cluttered” scene will differ
greatly among artists. Finally, if humans are asked to draw
or even pick from a set of male actors an “attractive” or

Q: Is it formal? Q: Is it pointy?

Q: Is she attractive?  Q: Is she chubby?
A: Yes. A: No. A: Yes. A: Yes.

Figure 1: We learn the spatial support of attributes by asking
humans to judge if an attribute is present in training images.
We use this support to improve attribute prediction.

“masculine” person, responses will differ more than if they
were asked to draw or select a “man”.

Since attributes are less well-defined, capturing them
with computational models poses a different set of chal-
lenges than capturing object categories does. There is a
disconnect between how humans and machines perceive at-
tributes, and it negatively impacts tasks that involve com-
munication between a human and a machine, since the ma-
chine may not understand what a human user has in mind
when referring to a particular attribute. Since attributes are
human-defined, the best way to deal with their ambiguity is
by learning from humans what these attributes really mean.

We propose to learn attribute models using human gaze
maps that show which part of an image contains the at-
tribute. To obtain gaze maps for each attribute, we con-
duct human subject experiments where we ask viewers to
examine images of faces, shoes, and scenes, and determine
if a given attribute is present in the image or not. We use
an inexpensive GazePoint eyetracking device which is sim-
ply placed in front of a monitor to track viewers’ gaze, and
record the locations in the image that had some number of
fixations. We aggregate the gaze collected from multiple
people on training images, to obtain an averaged gaze map
per attribute that we use to extract features from both train-
ing and test images. We also experiment with learning a
saliency model that predicts which pixels will be fixated. To
capture the potential ambiguity and visual variation within
each attribute, we cluster the positive images per attribute
and their corresponding gaze locations, and obtain multiple
gaze maps per attribute. We create one classifier per gaze



map which only uses features from the region under non-
zero gaze map values, for both training and testing.

The gaze maps that we learn from humans indicate the
spatial support for an attribute in an image and allow us
to better understand what the attribute means. We use gaze
maps to identify regions that should be used to train attribute
models. We show this achieves competitive attribute predic-
tion accuracy compared to six methods, five of which are
alternative ways to select relevant features. We also demon-
strate additional applications showing how our method can
be used to visualize attribute models, and how it can be em-
ployed to discover groups among users in terms of their un-
derstanding of attribute presence.

The main contribution of our work is a new method for
learning attribute models, using inexpensive but rich data in
the form of gaze. We show that our method successfully
discovers the spatial support of attributes. Despite the close
connection between attributes and human communication,
gaze has never been used to learn attribute models before.

2. Related Work

Attributes. Semantic visual attributes are properties of
the visual world, akin to adjectives [26, 7, 1, 33]. In this
work, we focus on modeling attributes as binary categories
[26, 7, 1, 33]. Attributes bring recognition closer to human-
like intelligence, since they allow generalization in the form
of zero-shot learning, i.e. learning to recognize previously
unseen categories using a textual attribute-based descrip-
tion and prediction models for these attributes learned on
other categories [26, 7, 31, 16]. Attributes have also been
shown useful for actively learning object categories [32],
scene recognition [33], and action recognition [27].
Attribute naming and ambiguity. [30, 33] propose how
to develop an attribute vocabulary. [20, 21] show attributes
can be subjective and there exist “schools of thought” in
terms of how users use an attribute word. In other words,
users can be grouped in terms of how they respond to ques-
tions about the presence or absence of attributes, and how
they use the attribute name. Some work discovers non-
semantic nameless attributes [53, 35, 38], but for tasks in-
volving search and zero-shot learning we require attributes
that have human-given names.

Learning and localizing attribute models. Some work
studies specifically how to learn accurate attribute models.
For example, [2, 47, 8, 39, 12, 52] model attributes jointly.
[16] improve attribute predictions by decorrelating the use
of features by different attribute models, and [9] improve
attribute prediction accuracy by finding a feature represen-
tation that is invariant across categories. In the domain of
relative attributes [31], which we do not study, [37] discover
parts that improve relative attribute prediction accuracy. Itis
unclear whether the discovered parts capture the true mean-
ing of attributes as humans perceive them, or simply exploit

image features which are correlated [16] with the attribute
of interest, but are not part of the human perception of the
attribute.! Further, [37]’s method is not applicable to bi-
nary attributes and requires pre-trained facial landmark de-
tectors. In recent work, [48] propose to discover the spatial
extent of relative attributes, and apply their method to im-
ages of shoes and faces as we do. They find spatial extent by
building “visual chains” that capture the commonalities be-
tween images which flow from ones having the attribute to
a strong degree, to those that have it less. While we model
attributes as binary properties (in contrast to [48]), and use
human insight to learn where an attribute lives, [48] is the
most related work to ours so we compare to it in Sec. 4.

Other recent work applies deep neural networks to pre-

dict attributes [39, 40, 6, 46, 8]. While deep nets can im-
prove the discriminativity of attribute models, they do not
exploit human supervision on the meaning or spatial sup-
port of attributes. Thus, progress in deep nets is orthogonal
to the objective of our study. We show that even when deep
features are employed, using gaze maps to determine the
spatial support of attributes improves performance.
Using humans to select relevant regions. [44] pair two
humans in an image-based guessing game, where the goal
is for the first person to reveal such image regions that al-
low the second person to most quickly guess the category
of the image. The revealed regions are then assumed to be
the most relevant for the category of interest. [3, 4] propose
a single-player guessing game called “Bubbles,” where the
player must reveal as few circular regions of an image as
possible, in order to match that image to one of two cate-
gories with several examples shown. There are three im-
portant differences between our work and [44, 3, 4]: (1)
These approaches are used to learn objects, not attributes,
and attributes have much more ambiguous spatial support;
(2) They require that a human should click on a relevant im-
age region, which means that the user is consciously aware
of what the relevant regions are, whereas in our approach
a human uses her potentially subconscious intuition about
what makes an image “natural”, “formal”, or “chubby”; and
(3) Clicking or drawing requires a bit more effort (looking
is easier than moving one’s hand to use the mouse).

Our method can be seen as a form of annotator ratio-
nales [55, 5], which are annotations that humans provide to
teach the classifier why a category is present. For example,
the user can mark which regions of the face make a person
“attractive”. However, providing gaze maps by looking is
much faster than drawing rationales (see Sec. 3.2).

Gaze and saliency. [29] use human gaze to reduce the
effort required in obtaining data for object detectors. They
build bounding boxes from locations in a photo where a user
fixates when judging which of two categories is portrayed

I'This is also true for attention networks [42, 15] as they are data-driven,
not based on human intuition.



in the image. [54] argue that using gaze can improve object
detection—bounding box predictions that do not align with
fixations can be pruned. They also use a gaze-based feature
to classify detections into true and false positives, but only
show small gains in detection accuracy.

In addition to gaze, saliency examines where a viewer
will fixate in an image [14, 34, 28, 11, 19, 10, 18, 13]. We
use [19]’s method to predict gaze maps for novel images.
No prior work uses gaze to learn attribute models.

3. Approach

We first describe our datasets (Sec. 3.1) and how we col-
lect gaze data from human subjects (Sec. 3.2). In Sec. 3.3,
we discuss how we compute one or multiple gaze templates
per attribute, and in Sec. 3.4, we describe how we use the
templates to restrict the range of an image from which an at-
tribute model is learned. Finally, in Sec. 3.5, we show how
we predict an individual gaze template for each test image.

Like [48], our method is designed for images which
contain a single object, specifically faces and shoes. See
Sec. 4.2 for a preliminary adaptation of our work for scenes.

3.1. Datasets

We use two attribute datasets: the Faces dataset of [25]
(also known as PubFig), and the Shoes dataset of [22].
All images are of the same square size (200x200 pixels
for faces and 280x280 for shoes). The attributes we use
are: for Shoes, “feminine”, “formal”, “open”, “pointy”,
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and “sporty”’; and for Faces, “Asian”, “attractive”, “baby-
faced”, “big-nosed”, “chubby”, “Indian”, “masculine”, and
“youthful”. Like [48], we consider a subset of all attributes,
in order to focus the analysis towards attributes whose spa-
tial support does not seem obvious, i.e. it could not be pre-
dicted from the attribute name alone. This allows insight
into the meaning of some particularly ambiguous attributes
(e.g. “formal”, “feminine” and “attractive”). We also se-
lected some attributes (“pointy” and “big-nosed”) where
we had a fairly confident estimate of where gaze locations
would be. This allows us to qualitatively evaluate the col-
lected gaze maps via their alignment with the expected gaze
locations. The annotation cost per attribute is small, about
1 minute per image-attribute pair (see below).

We select 60 images total per attribute. In order to get
representative examples of each attribute, we sample: (a)
30 instances where the attribute is definitely present, (b) 18
instances where it is definitely not present, and (c) 12 in-
stances where it may or may not be present. For Faces, we
use the provided SVM decision values to select images in
these three categories. For Shoes, we use the ordering of
ten shoe categories from most to least having each attribute,
which we map to individual images using their class labels.

3.2. Gaze data collection

We employ a $495 GazePoint GP3 eye-tracker device? to
collect gaze data from 14 participants. The 320x45x40mm
eye-tracker is placed in front of a monitor, and the partic-
ipants do not have to wear it, in contrast to older devices.
Gaze data can also be collected via a webcam; see [50].

Our experiment begins with a screening phase in which
we show ten images to each participant and ask him/her to
look at a fixed region in the image that is marked by a red
square, or to look at e.g. the nose or right eye for faces. If
the fixated pixel locations lie within the marked region, the
participant moves on to the data collection session. The lat-
ter consists of 200 images organized in four sub-sessions. In
order to increase the participants’ performance, we allow a
five-minute break between sub-sessions. We ask the viewer
whether a particular attribute is present in a particular im-
age which we then show him/her. The participant has two
seconds to look at the image and answer. His/her gaze lo-
cations and answers are recorded. We obtain 2.5 gaze maps
on average, for each image-attribute question.

Of the 200 images, 20 are used for validation. If the
gaze fixations on some validation image are not where they
should be, we discard data from the annotator that follows
that validation image and precedes the next one.

Each experiment took one hour, for a total of 14 hours
of human time. Thus, obtaining the gaze maps for each of
our 13 attributes took a short amount of time, about one
hour per attribute or one minute per image-attribute pair.
Our collected gaze data is available on our website®. Note
that viewing an image is faster than drawing a rationale (45
seconds), so we save time and money compared to [5].

In contrast to our approach, some saliency work [18, 13]
approximates gaze with mouse clicks, but as argued in re-
lation to region selection methods (Sec. 2), clicks require
conscious awareness of what makes an image “formal” or
“baby-faced”, which need not be true for attributes.

3.3. Generating gaze map templates

The gaze data and labels are collected jointly but aggre-
gated separately for each attribute. The format of a recorded
gaze map is an array of coordinates (X, y) of the image being
viewed. We convert this to a map with the same size as the
image, with a value of 1 or O per pixel denoting whether the
pixel was fixated or not. First, the gaze maps across all im-
ages that correspond to positive attribute labels are OR-ed
(the maximum value is taken per pixel) and divided by the
maximum value in the map. Thus we arrive at a gaze map
gm.y, for the attribute m with values in the range [0, 1]. Sec-
ond, a binary template bt,,, is created using a threshold of
t = 0.1 on gm,,. All locations greater than ¢ are marked as

Zhttp://www.gazept.com/product/gazepoint-gp3-eye-tracker/
3http://www.cs.pitt.edu/~nineil/gaze_proj/



(a) Asian (b) Attractive (c) Baby-faced (d) Big-nosed

(e) Chubby (f) Indian (g) Masculine  (h) Youthful

(k) Open (1) Pointy

(i) Feminine (j) Formal (m) Sporty

Figure 2: Grid templates for the face (top two rows) and
shoe attributes. Best viewed in color.

1 in bt,, and the rest as 0. Third, we apply a 15x15 grid over
the binary template to get a grid template gt,,,. The process
starts with a grid template filled with all O values. Then if a
pixel with value 1 of bt,,, falls inside some grid cell of gt,,,
this cell is turned on (all pixels in that cell are replaced with
1). Some examples of the generated templates are shown
in Fig. 2. Red regions are cells with value 1, while blue
regions are cells with value 0.

To get templates that capture the subtle variations of how
an attribute might appear [21] and also separate different
types of objects, a clustering is performed over the images
labeled as positive by our human participants. For exam-
ple, boots can be in one group and high-heels in another.
We use K-means with k = 5.* After the clustering proce-
dure, we repeat the grid template generation, but now sep-
arately for each of the five clusters. Thus, we obtain five
grid templates per attribute. Each attribute classifier can
then specialize to a very concrete appearance, which might
make learning a reliable model easier than learning an over-
all single-template model.

Examples of the five templates for the attribute “open”
are shown in Fig. 3. We observe that each template captures
a different meaning of “openness”, e.g. open at the back
(first, second and third image), front (fifth), or throughout
(fourth). We also show multiple templates for the attribute
“chubby” on the same image, for easier comparison. We
quantitatively compare using one versus five grid templates
in Tab. 1 and 3, and show additional qualitative results in
our supplemental material.

4We did not tune this parameter but also found the performance of our
algorithm not to be sensitive to its choice. One can pick K using the sil-
houette coefficient [36] or a validation set.

Figure 3: Grid templates for each positive cluster for the
attributes “open” (top) and “chubby” (bottom). At the top,
we show multiple templates capturing the nuances of “open-
ness”. At the bottom, we show how multiple templates for
“chubby” look on the same image. Best viewed in color.

3.4. Learning attribute models using gaze templates

We consider two approaches: SINGLE TEMPLATE (ST)
and MULTIPLE TEMPLATES (MT). For SINGLE TEM-
PLATE, the parts of images involved in training and test-
ing are multiplied by the grid template values, which results
in image pixels under a O value being removed and keep-
ing other pixels the same. We then extract both local and
global features from the remaining part of the image, and
train a classifier corresponding to the template using these
features. At test time, we apply the template to each image,
extract features from the 1-valued part, and apply the clas-
sifier. For MULTIPLE TEMPLATES, we train five different
classifiers (one per cluster), each corresponding to one grid
template. We classify a new image as positive if at least one
of the five classifiers predicts it contains the attribute.

Comparison to rationales. To test the effectiveness of
our gaze template construction, we also tried implementing
our gaze templates as rationales [55, 5]. In this work, the
authors seek not only labels from their annotators (e.g. this
person is attractive, and that person is not), but also ask an-
notators to mark with a polygon the region in the image that
determined their positive/negative response. Our gaze tem-
plates resemble attributes since they indicate which region a
human looked at to determine if an attribute is present. We
implement gaze as a form of rationales as follows. If we
have a positive image z; and a template region within it r;,
we construct an artificial training example z; — r; that ex-
cludes r;, and then generate an additional constraint in the
SVM formulation that enforces that ; examples should re-
ceive a higher score than (x; — r;) examples. This resulted
in inferior results, thus confirming our choice of how to in-
corporate the gaze templates into attribute learning.

3.5. Learning attribute models with gaze prediction

So far we have used a single gaze template (or five tem-
plates) for each attribute, and applied it to all images. Rather
than using a fixed template, one can also learn what a gaze



map would look like for a novel test image. We construct
a model following Judd’s simple method [19], by inputting
(1) our training gaze templates, from which 0/1 gaze labels
are extracted per pixel, and (2) per-pixel image features (the
same feature set as in [19] including color, intensity, orien-
tation, etc; but excluding person and car detections). This
saliency model learns an SVM which predicts whether each
pixel will be fixated or not, using the per-pixel features. We
learn a separate saliency model for each attribute.

Data: Training grid templates templatestrqin,m for
attribute m; test image ¢

Result: Template for the test image template;, to be

used for feature extraction

1 Train a saliency model using templatesiyqin,m;

2 Apply saliency model to i to predict gaze map gm?;

3 for v € {0.1,0.2,...,0.9} do

4 r < Threshold gm?, at u;

5 score,, < similarity of r and templates,qin,m

6 end

7 fu < Set the final threshold to arg max,, (score,,);

8 template; < Apply threshold fu to gaze map gm,

Algorithm 1: Predicting a gaze template using saliency.

For each attribute, as outlined in Alg. 1, we first learn
a saliency model. Then we predict a real-valued saliency
score for each pixel in each test image. Finally, we convert
this real-valued saliency map to a binary template. To gen-
erate the latter, we consider thresholds u between 0.1 and
0.9. To score each u, we apply it to the predicted gaze tem-
plate for our test image to obtain a binary test template. We
compute the similarity between that test template and the
training binary templates (Sec. 3.3), as the intersection over
union of the 1-valued regions. Finally, we fix our choice of
the threshold u to the one with the highest similarity score.

Once we have the binary grid template for the test image,
we can extract features from it as in Sec. 3.4, only from the
area predicted to have fixations on it. However, the size of
the gaze template on test images is no longer guaranteed
to be the same as the size of the template on training im-
ages, so we have a feature dimensionality mismatch. Thus,
we opt for a bag-of-visual-words representation over dense
SIFT features (from the part of the image under positive
template values in the train/test images) and a vocabulary
of 1000 visual words. Then, we build a new classifier us-
ing the templates on the training data as discussed above,
and apply this model to the features extracted from our
new predicted grid template. We call this approach SINGLE
TEMPLATE PREDICTED (STP) or MULTIPLE TEMPLATES
PREDICTED (MTP), depending on whether a single or mul-
tiple templates were used per attribute at training time. The
names denote that at test time, we use a predicted template.

4. Results

In this section, we present a comparison (Sec. 4.1) of
our approach against six different baselines on the task of
attribute prediction, five of which are alternative methods
to select relevant regions in the image from which to extract
features. We also include two additional applications: using
gaze templates to visualize attribute models (Sec. 4.3), and
discovering “schools of thought” among annotators which
denote how they perceive attribute presence (Sec. 4.4). We
primarily test our approach on the Faces and Shoes datasets,
but in Sec. 4.2, we show an adaptation of our approach for
scene attributes.

4.1. Attribute prediction

We build attribute prediction models using both stan-
dard vision features and features extracted from convolu-
tional neural networks (CNNs). We use HOG+GIST con-
catenated, the fc6 layer of CaffeNet [17], and dense SIFT
bag-of-words extracted in stride of 10 pixels at a single scale
of 8 pixels. Following [41], we use CaffeNet’s fc6 since fc7
and fc8 may be capturing full objects and not be very useful
for learning attributes.

Our training data consists of the images chosen for the
gaze data collection experiments (Sec. 3.1), for a total of
300 for shoes and 480 for faces. The training labels are
those provided by our human subject annotators. We per-
form a majority vote over the labels in case the annotators
who labeled an image disagree over its label. We might have
more positive images for an attribute than we have nega-
tives, so we set the SVM classifier penalty on the negative
class to the ratio of positive images to negative images. We
use a linear SVM, and employ a validation set to determine
the best value of the SVM cost C in the range [0.1, 1, 10,
100], separately for each attribute.

The test data consists of 341 images from Shoes and 660
from Faces. The test labels are those that came with the
dataset. We pool together positive and negative test data for
different attributes, so we often have significantly more neg-
atives than positives for any given attribute. Thus, we use
the F-measure because it more precisely captures accuracy
when the data distribution is imbalanced.

Our proposed techniques for computing the spatial sup-
port of an attribute and extracting features accordingly,
MULTIPLE TEMPLATES and MULTIPLE TEMPLATES PRE-
DICTED, as well as their simplified versions SINGLE TEM-
PLATE and SINGLE TEMPLATE PREDICTED, were com-
pared with the following baselines:

e using the whole image for both training and testing
(WHOLE IMAGE);

e DATA-DRIVEN, a baseline which selects features us-
ing an Ll-regularizer over features extracted on a



grid, then sets grid template cells on/off depending on
whether at least one feature in that grid cell received a
non-zero weight from the regularizer (note we do this
only for localizable features);

e UNSUPERVISED SALIENCY, a baseline which predicts
standard saliency using a state-of-the-art method [18]°
but without training on our attribute-specific gaze data,
and the resulting saliency map is then used to compute
a template mask;

e RANDOM, a baseline which generates a random tem-
plate over a 15x15 grid, where the number of 1-valued
cells is equal to the number of 1-valued cells in the
corresponding SINGLE TEMPLATE template; and

e an ensemble of random template classifiers (RANDOM
ENSEMBLE), which is the random counterpart to the
ensemble used by MULTIPLE TEMPLATES.

Finally, we compare our method to the SPATIAL EX-
TENT (SE) method of Xiao and Lee [48] which discovers
the spatial extent of relative attributes. While we do not
study relative attributes, this is the work that is most rele-
vant to our approach, thus prompting the comparison. [48]
form “visual chains” from which they then build heatmaps
showing which regions in an image are most responsible for
attribute strength. We are only able to perform a comparison
for attributes that have relative annotations on our datasets,
which we take from [23, 31]. We use these heatmaps as
saliency predictions, which in turn are used to mask the
image and perform feature selection and attribute predic-
tion (with the SVM cost C chosen on a validation set). We
use dense SIFT and bag-of-words as for our SINGLE TEM-
PLATE PREDICTED.

In Tables 1 and 2, we show results for SINGLE TEM-
PLATE and MULTIPLE TEMPLATES, for HOG+GIST and
fcb, respectively. In all tables, “total avg” is the mean over
the two per-attribute “avg” values above (for shoe and face
attributes, respectively). Our MT performs better than the
other approaches. In Tab. 1, MT improves the performance
on shoes by 6 points or 10% (=0.66/0.60-1) relative to the
second-best method, and on faces, it improves performance
by 3 points or 7%. In Tab. 2, our method improves perfor-
mance by 2% on shoes and 7% on faces. Our MT ap-
proach captures the different meanings that an attribute can
have and its possible locations. In contrast, ST imposes a
fixed template and ignores possible shades of meaning and
distinctions between the images viewed.

In Tab. 3, we examine the performance of SINGLE
TEMPLATE PREDICTED and MULTIPLE TEMPLATES PRE-
DICTED. We observe that predicting the gaze map, as op-

SWe used the authors’ online demo to compute saliency on our images,
as code was not available.

WI | ST MT | DD | US R RE
(ours)
feminine | 0.80 | 0.78 | 0.71 | 0.74 | 0.79 | 0.74 | 0.75
formal 0.78 | 0.81 | 0.80 | 0.79 | 0.77 | 0.77 | 0.77
open 0.52 | 0.53 | 0.57 | 0.45 | 0.55 | 0.51 | 0.51
pointy 0.17 | 0.17 | 0.46 | 0.00 | 0.10 | 0.14 | 0.10
sporty 0.74 1 070 | 0.76 | 0.72 | 0.71 | 0.72 | 0.72
avg 0.60 | 0.60 | 0.66 | 0.54 | 0.58 | 0.58 | 0.57
Asian 0.24 | 033 | 030 | 0.22 | 0.25 ] 0.21 | 0.21
attractive | 0.71 | 0.74 | 0.81 | 0.71 | 0.73 | 0.75 | 0.75
baby-faced | 0.03 | 0.06 | 0.04 | 0.06 | 0.06 | 0.06 | 0.06
big-nosed | 0.47 | 0.35 | 0.52 | 041 | 0.39 | 0.40 | 0.31
chubby 046 | 046 | 043 | 038 1039|043 | 044
Indian 024 | 021 | 022 | 0.18 | 0.24 | 0.25 | 0.27
masculine | 0.69 | 0.71 | 0.77 | 0.69 | 0.71 | 0.73 | 0.75
youthful 0.69 | 0.65 0.7 0.68 | 0.67 | 0.68 | 0.68
avg 044 | 044 | 047 | 042 | 043 | 044 | 043
totalavg | 0.52 | 0.52 | 0.57 | 0.48 | 0.51 | 0.51 | 0.50

Table 1: F-measure using HOG+GIST features. WI =
WHOLE IMAGE, ST = SINGLE TEMPLATE, MT = MUL-
TIPLE TEMPLATES, DD = DATA-DRIVEN, US = UNSU-
PERVISED SALIENCY, R = RANDOM, RE = RANDOM EN-
SEMBLE. Bold indicates best performer excluding ties.

WI | ST MT US R RE
(ours)
feminine | 0.77 | 0.73 | 0.66 | 0.70 | 0.69 | 0.74
formal 0.63 | 0.57 | 0.61 | 0.58 | 0.59 | 0.58
open 0.51 | 0.51 | 0.51 | 049 | 0.47 | 0.53
pointy 0.19 |1 0.18 | 0.38 | 0.17 | 0.18 | 0.13
sporty 082 | 0.78 | 0.79 | 0.77 | 0.67 | 0.69
avg 0.58 | 0.55| 0.59 | 0.54 | 0.52 | 0.53
Asian 0.25 ] 030 | 0.22 | 0.26 | 0.21 | 0.24
attractive | 0.72 | 0.73 | 0.81 | 0.77 | 0.71 | 0.73
baby-faced | 0.08 | 0.12 | 0.09 | 0.10 | 0.09 | 0.09
big-nosed | 0.46 | 0.44 | 0.67 | 0.44 | 0.40 | 0.31
chubby 042 | 0.37 | 041 | 035|034 | 0.32
Indian 0.28 | 0.13 | 0.27 | 0.22 | 0.16 | 0.13
masculine | 0.7 | 0.67 | 0.71 | 0.66 | 0.69 | 0.73
youthful 0.65 | 0.60 | 0.68 | 0.58 | 0.61 | 0.64
avg 045|042 | 048 | 042 | 0.40 | 0.40
totalavg | 0.51 | 0.49 | 0.54 | 0.48 | 0.46 | 0.47

Table 2: F-measure using fc6. See legend in Tab. 1.

posed to using a fixed map, only helps to improve the per-
formance of the proposed feature selection approach on a
few attributes (“formal”, “Asian” and “masculine” for STP
vs ST, and “feminine” and “baby-faced” for MTP vs MT).
This may be because for our face and shoe data, the ob-
ject of interest is fairly well-centered (although faces can be
rotated to some degree). We show some unthresholded pre-
dicted gaze maps in Fig. 4. Note how our raw gaze maps
correctly detect cheeks as salient for “chubbiness”, and shoe



WI | ST | MT | STP | MTP | DD | US | SE | R | RE
(ours) (ours)
feminine | 0.83 | 0.80 | 0.60 | 0.78 | 0.62 | 0.68 | 0.63 | 0.79 | 0.78 | 0.82
formal | 0.75 | 075 | 0.81 | 0.76 | 0.76 | 0.55 | 0.66 | 0.78 | 0.75 | 0.74
open | 053|058 | 0.57 | 053 | 0.56 | 030|043 | 0.59 | 0.50 | 0.57
pointy | 0.16 | 0.30 | 053 | 0.10 | 048 | 055 | 0.00 | 0.56 | 0.23 | 0.20
sporty | 0.74 | 0.81 | 0.82 | 0.80 | 0.77 | 0.54 | 0.66 | 0.72 | 0.70 | 0.72
avg 0.60 | 0.65 | 0.67 | 059 | 0.64 | 0.52 | 0.43 | 0.69 | 0.59 | 0.61
Asian | 022 | 028 | 0.32 | 0.30 | 0.26 | 0.24 | 0.29 | N/A | 0.23 | 0.24
attractive | 0.61 | 0.80 | 0.84 | 0.80 | 0.82 | 0.69 | 0.84 | N/A | 0.76 | 0.77
baby-faced | 0.06 | 0.11 | 0.07 | 0.06 | 0.10 | 0.09 | 0.06 | N/A | 0.08 | 0.22
big-nosed | 0.64 | 0.33 | 043 | 027 | 040 | 041 | 032 | N/A | 027 | 0.15
chubby | 0.36 | 0.34 | 0.40 | 030 | 036 | 024 | 024 | 0.32 | 027 | 0.29
Indian | 025 | 0.15 | 024 | 0.2 | 0.18 | 0.12 | 0.20 | N/A | 0.16 | 0.08
masculine | 0.68 | 0.68 | 078 | 0.71 | 0.70 | 0.63 | 0.80 | 0.71 | 0.69 | 0.72
youthful | 0.65 | 0.62 | 0.66 | 0.58 | 0.63 | 0.53 | 0.60 | 0.69 | 0.61 | 0.60
avg 043 | 041 | 047 | 039 | 043 | 037 | 0.42 | N/A | 0.38 | 0.38
totalavg | 0.52 | 0.53 | 0.57 | 0.49 | 053 | 045 | 0.45 | N/A | 0.49 | 0.50
Table 3: F-measure using gaze maps predicted using the

saliency method of [19]. STP = SINGLE TEMPLATE PRE-
DICTED, MTP = MULTIPLE TEMPLATES PREDICTED, SE
= SPATIAL EXTENT. Other abbreviations are as before.

saliencyMap saliencyMap

'b EJ.\?/ - -

Figure 4: Representative predicted templates for “chubby”
and “pointy”. Red = most, blue = least salient.

toes and heels as salient for “pointiness”.

As before, our best results are achieved by using multiple
templates. The MT method outperforms the standard way
of learning attributes, namely WI, by 10% on average.

In terms of region selection baselines, the RANDOM and
RANDOM ENSEMBLE baselines perform somewhat worse
than WHOLE IMAGE. The SINGLE TEMPLATE method per-
forms similar to WHOLE IMAGE (slightly better or worse,
depending on the feature type). In contrast, our MULTI-
PLE TEMPLATES perform much better. This indicates that
capturing the meaning of an attribute does indeed lie in de-
termining where the attribute lives, by also accounting for
different participants’ interpretations. The DATA-DRIVEN
baseline performs weaker than the random baselines and
our method, indicating the need for rich human supervision.
The UNSUPERVISED SALIENCY baseline outperforms our
method in a few cases (e.g. “feminine”), but overall per-
forms similarly to RANDOM ENSEMBLE and weaker than
our multiple template methods. Thus, attribute information
is required to learn accurate gaze templates.

The results of [48] (SPATIAL EXTENT) are better than
MT for four of the eight attributes available to test for SE,

MT 7 13
0.65 [-% g
yg\/ITP %
06 un. ours |
runi *— SE

0.55 1

F-measure

Time (in hours)

Figure 5: Time comparison of our MT and MTP with SE.
On the y-axis is the average F-measure over the attributes
tested. Runl, run2, and run3 use different parameter config-
urations for SE (each one requiring more processing time).
Our MT is more accurate than the cheaper SE versions and
as accurate as the most expensive one.

but the average over the eight attributes is almost the same
(ours is slightly higher). However, for each attribute, SE
required 38 hours to run on average, on 2.6GHz Xeon pro-
cessor with 256GB RAM. In contrast, our method only re-
quires the time to capture the gaze maps, i.e. about one
hour. In Fig. 6 (a), we compare MT with different con-
figurations of SE that take a different amount of time to
compute. (The results in Tab. 3 used the original most ex-
pensive setting.) Overall our method has similar or better
performance than the different runs of SE, but it requires
much less time.

4.2. Adaptation for scene attributes

Similar to [48], the method most relevant to our work, we
have so far only attempted our method on faces and shoes.
Given our encouraging performance, we also tested it on
ten scene attributes [33] (see Tab. 4 for the list), using 60
images per attribute for training and 700 for testing.

A direct application of our MT and MTP performed
weaker or similar to WI, likely because scene images con-
tain more than one object. Thus, we adapted our method
for this dataset, using five seconds of gaze data. The in-
tuition for our adapted method is as follows: For the at-
tributes “natural” and “sailing”, people might look at e.g.
trees and water, respectively. Thus, we can use objects as
cues for where people will look. Such an approach com-
putes location-invariant masks that depend on what is por-
trayed, not where it is portrayed.

Our approach consist of three steps: learning an object
detector, modeling attributes via objects, and predicting at-
tributes on test images. We fine-tuned the VGG16 network
[43] with object annotations from SUN [49] on images not
contained in our gaze experiments or test set. We trained
three CNNs grouping the objects with similar bounding box
size. To learn attributes, we first ran the object detector on
our training images. For a given attribute, we counted how
many objects intersect with its gaze fixations. Next, we nor-
malized these values and compiled a list of the five most
frequently fixated, hence most relevant categories for each



Attribute Relevant objects
climbing | mountain, sky, tree, trees, building
open area sky, trees, grass, road, tree
cold tree, building, mountain, sky, trees
soothing trees, sky, wall, floor, tree
competing wall, floor, grass, trees, tree
sunny sky, tree, building, grass, trees
driving sky, road, tree, trees, building
swimming tree, trees, water, sky, building
natural trees, tree, grass, sky, mountain
vegetation tree, trees, sky, grass, road

Table 4: The objects most often fixated per scene attribute.

(b)

Figure 6: Model visualizations for (a) the attribute “baby-
faced”, using whole image features (left) and our template
masks (right), and (b) the attribute “big-nosed”.

attribute. At test time, if at least one of these is present, we
predict the attribute is present as well.

This simple approach achieves an average F-measure
of 0.37, compared to 0.33, 0.34 and 0.45 for WI with
HOG+GIST, dense SIFT, and fc6, respectively. It outper-
forms fc6 on the attributes “driving” and “open area”. A
more elaborate approach which extracts fc6 features on a
grid and masks out cells of the grid based on overlap with
relevant objects, achieves 0.40.

The objects selected per attribute are shown in Tab. 4.
We observe that for “natural”, the fixated objects are trees,
grass, sky and mountains; for “driving”, one of the objects is
road, for “swimming” water, and for “climbing” mountains
and buildings. This result confirms our intuition that scene
attributes can be recognized by detecting relevant objects
associated with the attributes through gaze. In our future
work, we will formulate this intuition such that it allows us
to outperform whole-image fc6 features on more attributes.

4.3. Visualizing attribute models

We conclude with two applications of our method. First,
our gaze templates can be employed to visualize attribute
classifiers. We use Vondrick et al.’s Hoggles [45], a method
used for object model visualization, and apply it to attribute
visualization, on (1) models learned from the whole im-
age, and (2) models learned from the regions chosen by
our templates. We show examples in Fig. 6. Using the
templates produces more meaningful visualizations than us-
ing the whole image. For example, for the attribute “baby-
faced”, our visualization shows a smooth face-like image
that highlights the form of the nose and the cheeks, and for
“big-nosed”, we see a focus on the nose.

4.4. Using gaze to find schools of thought

Kovashka and Grauman [21] show there exist “schools
of thought” (groupings) of users in terms of their judgments
about attribute presence. They discover these groupings and
use them to build accurate attribute sub-models, each of
which captures an attribute variation (e.g. open at the toe
as opposed to at the heel). The goal is to disambiguate at-
tributes and create clean attribute models. First, they build
a “generic” model (by pooling labels from many annota-
tors). They discover schools using the users’ labels, by clus-
tering in a latent space representation for each user, com-
puted using matrix factorization on the annotators’ sparse
labels. Then they use domain adaptation techniques to adapt
this “generic” model towards sparse labeled data from each
school. At test time, they apply the user’s group’s model to
predict the labels on a sample from that user. We follow the
same approach, but employ gaze to discover the schools.

We factorize an (annotator, image) table where the en-
try for annotator ¢+ and image j is the cluster membership
of image j, computed by clustering images using their gaze
maps on positive and negative annotations separately. Thus,
for each user, we capture what type of gaze maps they pro-
vide, using the intuition that how a user perceives an at-
tribute affects where he/she looks. On our data, the original
method of [21] achieves 0.37, and our gaze-based discov-
ery achieves 0.40. Our method is particularly useful for the
attributes “big-nosed” (0.41 vs 0.29 for [21]), “masculine”
(0.40 vs 0.35), “feminine” (0.43 vs 0.36), “open” (0.58 vs
0.52), and “pointy” (0.43 vs 0.36), most of which are fairly
subjective.® This indicates using gaze is very informative
for disambiguating attributes, the original goal of [21].

5. Conclusion and Future Work

We showed an approach for learning more accurate at-
tribute prediction models by using supervision from hu-
mans in the form of gaze locations. These locations indi-
cate where in the image space a given attribute “lives”. We
demonstrate that on a set of face and shoe attributes, our
method improves performance compared to six baselines
including alternative methods for selecting relevant image
regions. This indicates that human gaze is an effective cue
for learning attribute models. We also show applications of
gaze for attribute visualization and finding users who per-
ceive an attribute in similar fashion.

In future work, we will explore learning from sequences
of gaze locations, as in work on scanpaths [51]. Modeling
how human gaze moves over the image might provide more
information than modeling gaze statically. We will also ex-
plore modeling the commonalities between gaze maps for
the same attribute, and the distinctions between maps for
different attributes, using convolutional neural networks.

6See our supplemental file for the full results.
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