Peekaboom: A game for locating objects in images

Luis von Ahn, Ruoran Liu and Manuel Blum

Computer Science Department, Carnegie Mellon University

Presented by: Nils Murrugarra
University of Pittsburgh
Object Location in Images

Given an image, determine what **objects** are present in the image and **locate** them:

- Woman
- Man
- Umbrella
- Tree
- Sailboat
- Dog
Let’s use Human Power

- “Math is hard. Let’s go shopping!” –Barbie
- On similar line of thinking:
 - Programming computers to locate objects in images is hard, so…
 - Let’s not think about that.
 - Instead, humans can do the work for us?
Problems

- **Wait!** Human probably wants:
 - **Enjoyment** – they want to have a good time
 - **Incentives** – they want something in return

- How to address them?
A Game

- People can do the work for us by playing a game.
- Many questions appear:
 - What will be the core idea of the game?
 - How do we collect data?
 - How do we ensure the quality of the data?
An Earlier Idea:
Luis von Ahn’s ESP Game – *Core Idea*

- Two players without communication watch a particular image, each one *tries to guess what the other is thinking* about the image.
- If they agree on a word, the game moves on and increases both players’ scores.
A Sample Run

Player 1 Guesses
- Pants
- Model
- Lady

Player 2 Guesses
- Woman
- Shirt
- Girl
- Model

Server: Agreed, “Model”
Why ESP Works – *Data Collection and Quality*

- When two players agree:
 - Say *what it is* – In other words this is a “*label*” to the shown image.
 - The fact that two players agree on a label means that this label has a *high quality*.
Limitations of ESP

- The ESP Game can label images (what’s in them), but it cannot:
 - *Where* the objects are.
 - Determine the *way* in which the object appears – does the label “car” refer to the text “car” or an actual car in the image?
Completing the Image Cycle

unlabeled images → ESP game server → labeled images

located images → Peekaboom game server
A New Idea: Peekaboom – Core Idea

- Two players are assigned the roles of “revealer” (BOOM) and “guesser” (PEEK).
- The revealer sees an image with a label. The guesser sees nothing.
- The revealer shows the guesser parts of the image. If the guesser guesses correctly, the game continues with new images.
Peekaboom - Interface

Peek: Guess what your partner is revealing

- **Peek**
 - Hint
 - Guesses
 - Cari
 - Dog
 - Sheep
 - Horse
 - Guess here
 - Pass
 - Hints help you guess
 - Pass for difficult images

Boom: Reveal parts of the image to your partner

- **Boom**
 - Click to reveal areas to your partner
 - Give hints if necessary
 - Tell your partner if a guess is hot or cold

Peek - Guesser

Boom - Revealer
Statement of Purpose

- The authors would like to collect data of a lot images automatically.
- The authors hope that these data can be used to train computer vision algorithms.
Let’s do an example …
The **Revealer** clicks on parts of the image and shows them to the **Guesser**.

The **Guesser** guesses:
- Flower
- Petal
- Butterfly

Server: Correct, Butterfly
Let’s Play …

https://www.youtube.com/watch?v=tx082gDwGcM&feature=youtu.be&t=1683
Why Peekaboom Works

- To help as much as possible the guesser to guess correctly, the revealer locates relevant parts of the object in the image:
But Wait, There’s More

- Peekaboom *not only locates objects*:
 - It gives the *context* necessary to identify them.
 - It Classifies the image as “Text”, “Noun”, or “Verb” using the *hints* option.

- Let’s learn more about these functionalities
Object Context

Pings help separate the context of object with the object itself.

They help the guesser distinguish nose from other possibly correct labels like “elephant” and “ear”.
Hints
The Role of Hints

The label "car" is ambiguous -- this is "car" this is also "car"

The hints help distinguish the manner in which the label "car" appears:
- this is "car"
- this is the object "car"
- this is also "car"
- this is the text "car"

How to involve more participants in the game?
Game Points

Game Points
- Peek guesses the correct word (+50)
- Points are not subtracted for passing (+0)
- Peek guesses the correct word and Boom had used a hint (+25 extra)
- Points are not given for usage of the hot/cold buttons (+0)

Bonus Points
- Obtain up to get +150 points
- Points depend on how far one participant’s click is from his/her partner’s corresponding click (+0 ~ 10)
- If the object are not in the image, players can pass (+25)
Collecting Image Metadata – \textit{Data Collection}

- Data from \textbf{Area Revealed}: Which \textit{pixels} are necessary to guess the word?
- Data from \textbf{hints}: what is the \textit{relation} between word and image?
- Data from \textbf{pings}: which \textit{pixels} are \textit{inside} the object?
- Data from \textbf{sequence of Boom’s clicks}: What are the most \textit{relevant} aspects of the object?
- Data from \textbf{Pass Button}: Elimination of \textit{poor/difficult} image-word pairs
Cheating – *Data Quality*

- **Why to worried?** If the two players cheat on the game, the data is not reliable.

Multiple anti-cheating mechanisms

- To avoid match participants that start at the “same time“: The player queue
- To avoid *geographically proximity*: IP address checks
- To avoid *bots*: Blacklists after consistent failure on “seed” images
- To avoid ”*cheating communication”*: Limited freedom to enter guesses
Applications

- Improving Image-Search Results
- Object Bounding-Boxes
 1. Given an image, create a matrix of 0’s
 2. For each click in its surrounding area (radius 20 pixels). Add +1 to the matrix position
 3. Combine different games for the same image-word pair.
 4. Apply a threshold of 2 (at least 2 players agree)
 5. Cluster the pixels to get bounding boxes
- Using Ping Data for Pointing
 • Select a random ping
Evaluation

Is this an effective way to collect data?
Yes!

Game is enjoyable
- Each person played average of 158.7 images
- That’s 72 96 minutes per person in one month!
- User reviews

Usage Statistics
- August 1, 2005 ~ September 1, 2005
- 14153 people and 1122998 pieces of data
Evaluation: Accuracy of Collected Data

Accuracy of Bounding Boxes

Are they good compared to bounding boxes collected in a non-game setup?

- It was performed in 50 image-word (nouns) pairs
- Given a word, four volunteers were asked to draw a bounding box around the object that the word refers to.
- Average overlap: 0.754
- Standard deviation: 0.109

\[\text{OVERLAP}(A,B) = \frac{\text{AREA}(A \cap B)}{\text{AREA}(A \cup B)} \]

Accuracy of Pings

- It was verified if the Peekaboom object pointers are indeed inside the objects
- Given a pointer, three volunteers determine if it is inside the object or not.
- 100% of the pointers were inside the object referred to by the word
Discussion

- What are some disadvantages/weaknesses of Peekaboom?
- Can you think of any other applications of Peekaboom?
Conclusion

- **Peekaboom** is an enjoyable game to collect image data achieving:
 - **Low costs** – One game server.
 - **Data with Good Quality** – Accurately locate objects in images.
 - **Large Quantity of data** – Locate objects in millions of images.
Questions
References

[5]. Slides version of "Peekaboom: A game for locating objects in images." Source: http://www.eecs.harvard.edu/cs286r/courses/fall08/files/AngelaCS286r.pdf

[6]. Video: Human Computation. Source: https://www.youtube.com/watch?v=tx082gDwGcM
Crowdsourcing Annotations for Visual Object Detection

Hao Su, Jia Deng, Li Fei-Fei
Computer Science Department, Stanford University

Presented by: Nils Murrugarra
University of Pittsburgh
Motivation

Motivation:
- A large quantity of precise bounding boxes are required to learn good object detectors.

Goal:
- Crowd-source bounding boxes annotations

Challenges:
- Control the data quality with minimal cost.
Method Overview

1. Qualification Test
2. Qualification Control
 • Good Bounding Boxes
 • Bad Bounding Boxes
Method – Drawing Task

- Correct: must be as tight as possible!
- Wrong: must include all visible parts!
- Wrong: occluded parts do not matter as long as all visible parts are included.

Rule 2: If there are multiple instances, include only ONE (any one).
Method – Drawing Task

Rule 3: DO NOT draw on an instance that already has a bounding box, as shown below in yellow. Draw on a new instance.

Draw a box around **kit fox, prairie fox, Vulpes velox** small grey fox of the plains of western North America.

Instructions:
- Include all visible parts and draw as tightly as possible.
- If there are multiple instances, pick only ONE (any one).

See instructions with examples.

Check here if there's NO kit fox, prairie fox, Vulpes velox in this image.

(Optional) Enter any comment you have.
Method – Drawing Task

Instructions:

- Include all visible parts and draw as tightly as possible.
- If there are multiple instances, pick only ONE (any one).
- Do NOT draw on the instances that already have bounding boxes.

INSTRUCTIONS WITH EXAMPLES

Check here if there's NO lion cub in this image or if every instance already has a bounding box.

(Optional) Enter any comment you have:

5 images in total. 4 left. This is a qualification test.
Method – Quality Verification Task

Good Annotation

Bad Annotation
Method – Coverage Verification Task

![Image showing a task interface with a question about bounding boxes for birds.](image-url)
Evaluation

Dataset
• 200 images were selected over 10 categories on the Imagenet database.

Overall Quality
• It was manually inspected
• 97.9% of images are completely covered with bounding boxes. The remaining 2.1% are difficult cases.
• 99.2% are accurate (tight as possible)

Overall Cost
• The proposed method is cheaper
• Consensus is 32.80% more expensive

<table>
<thead>
<tr>
<th>Task Name</th>
<th>Time per b.box</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Median</td>
</tr>
<tr>
<td>Drawing</td>
<td>25.5s</td>
</tr>
<tr>
<td>Quality Verification</td>
<td>9.0s</td>
</tr>
<tr>
<td>Coverage Verification</td>
<td>7.8s</td>
</tr>
<tr>
<td>Total</td>
<td>42.4s</td>
</tr>
</tbody>
</table>
Evaluation – Quality Control

Drawing Task
- Acceptance ratio: 62.2%

Quality Verification Task
- It was employed a “gold standard” (validation images)
- Acceptance ratio: 89.9%

Coverage Verification Task
- It was employed a “gold standard” (validation images)
- Acceptance ratio: 95.0%

Effectiveness of Worker Training

<table>
<thead>
<tr>
<th>Acceptance Ratio</th>
<th>Without Training</th>
<th>With Training</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>58.0%</td>
<td>62.2%</td>
</tr>
</tbody>
</table>
Conclusion

- It was presented a method that collects **bounding boxes** annotation using **Crowdsourcing**.
- It is composed by 3 tasks:
 - Drawing Task
 - Quality Verification Task
 - Coverage Verification Task
- It achieves **high quality** data with **low-cost**.
Questions
References
