CS 2770: Computer Vision
Classification and Tools
(CNN, SVM)

Prof. Adriana Kovashka
University of Pittsburgh
February 7, 2019
Plan for this lecture

• What is classification?

• Support vector machines
 – Separable case / non-separable case
 – Linear / non-linear (kernels)
 – The importance of generalization

• Convolutional neural networks
Classification

- Given a feature representation for images, how do we learn a model for distinguishing features from different classes?
Classification

- Assign input vector to one of two or more classes
- Input space divided into *decision regions* separated by *decision boundaries*
Examples of image classification

• Two-class (binary): Cat vs Dog
Examples of image classification

- Multi-class (often): Object recognition

Caltech 101 Average Object Images

Adapted from D. Hoiem
Examples of image classification

• Place recognition

Places Database [Zhou et al. NIPS 2014]
Examples of image classification

• Material recognition

[Bell et al. CVPR 2015]
Examples of image classification

- Image style recognition

[HDR] [Macro] [Baroque] [Roccoco]
[Vintage] [Noir] [Northern Renaissance] [Cubism]
[Minimal] [Hazy] [Impressionism] [Post-Impressionism]
[Long Exposure] [Romantic] [Abs. Expressionism] [Color Field Painting]

Flickr Style: 80K images covering 20 styles.
Wikipaintings: 85K images for 25 art genres.

[Karayev et al. BMVC 2014]
Recognition: A machine learning approach
The machine learning framework

• Apply a prediction function to a feature representation of the image to get the desired output:

\[
f(\text{apple}) = \text{“apple”}
\]

\[
f(\text{tomato}) = \text{“tomato”}
\]

\[
f(\text{cow}) = \text{“cow”}
\]
The machine learning framework

\[y = f(x) \]

- **Training:** given a *training set* of labeled examples \(\{(x_1, y_1), \ldots, (x_N, y_N)\} \), estimate the prediction function \(f \) by minimizing the prediction error on the training set

- **Testing:** apply \(f \) to a never before seen *test example* \(x \) and output the predicted value \(y = f(x) \)

Slide credit: L. Lazebnik
The old-school way

Training

- Training Images
- Training Labels
- Training Features
- Learned model

Testing

- Test Image
- Image Features
- Learned model
- Prediction

Slide credit: D. Hoiem and L. Lazebnik
The simplest classifier

\[f(x) = \text{label of the training example nearest to } x \]

- All we need is a distance function for our inputs
- No training required!
K-Nearest Neighbors classification

- For a new point, find the \(k \) closest points from training data.
- Labels of the \(k \) points “vote” to classify.

If query lands here, the 5 NN consist of 3 negatives and 2 positives, so we classify it as negative.

Black = negative
Red = positive

Slide credit: D. Lowe
im2gps: Estimating Geographic Information from a Single Image
James Hays and Alexei Efros, CVPR 2008

Where was this image taken?

Nearest Neighbors according to bag of SIFT + color histogram + a few others

Slide credit: James Hays
Linear classifier

- Find a linear function to separate the classes

\[f(x) = \text{sgn}(w_1 x_1 + w_2 x_2 + \ldots + w_D x_D) = \text{sgn}(w \cdot x) \]
Linear classifier

- Decision = \(\text{sign}(w^T x) = \text{sign}(w_1 x_1 + w_2 x_2) \)

- What should the weights be?
Lines in \mathbb{R}^2

Let $w = \begin{bmatrix} a \\ c \end{bmatrix}$, $x = \begin{bmatrix} x \\ y \end{bmatrix}$

$$ax + cy + b = 0$$

$$w \cdot x + b = 0$$

$$D = \frac{|ax_0 + cy_0 + b|}{\sqrt{a^2 + c^2}} = \frac{|w^T x + b|}{\|w\|}$$

(distance from point to line)

Kristen Grauman
Linear classifiers

- Find linear function to separate positive and negative examples

\[\mathbf{x}_i \text{ positive: } \mathbf{x}_i \cdot \mathbf{w} + b \geq 0 \]
\[\mathbf{x}_i \text{ negative: } \mathbf{x}_i \cdot \mathbf{w} + b < 0 \]

Which line is best?

Support vector machines

- Discriminative classifier based on optimal separating line (for 2d case)
- Maximize the margin between the positive and negative training examples

Support vector machines

- Want line that maximizes the margin.

\[\begin{align*}
\text{x}_i \text{ positive (} y_i = 1 \text{)}: & \quad \text{x}_i \cdot \text{w} + b \geq 1 \\
\text{x}_i \text{ negative (} y_i = -1 \text{)}: & \quad \text{x}_i \cdot \text{w} + b \leq -1 \\
\text{For support, vectors,} & \quad \text{x}_i \cdot \text{w} + b = \pm 1
\end{align*} \]

Support vector machines

- Want line that maximizes the margin.

\[w^T x + b = \pm 1 \]

\[M = \left| \frac{1}{\|w\|} - \frac{1}{\|w\|} \right| = \frac{2}{\|w\|} \]

\[x_i \text{ positive (} y_i = 1\text{)}: \quad x_i \cdot w + b \geq 1 \]

\[x_i \text{ negative (} y_i = -1\text{)}: \quad x_i \cdot w + b \leq -1 \]

For support vectors, \(x_i \cdot w + b = \pm 1 \)

Distance between point and line:

\[\frac{|x_i \cdot w + b|}{\|w\|} \]

Support vector machines

- Want line that maximizes the margin.

\[\mathbf{x}_i \text{ positive } (y_i = 1): \quad \mathbf{x}_i \cdot \mathbf{w} + b \geq 1 \]

\[\mathbf{x}_i \text{ negative } (y_i = -1): \quad \mathbf{x}_i \cdot \mathbf{w} + b \leq -1 \]

For support vectors, \(\mathbf{x}_i \cdot \mathbf{w} + b = \pm 1 \)

Distance between point and line: \(\frac{|\mathbf{x}_i \cdot \mathbf{w} + b|}{\| \mathbf{w} \|} \)

Therefore, the margin is \(2 / \| \mathbf{w} \| \)

Finding the maximum margin line

1. Maximize margin $2/\|\mathbf{w}\|$
2. Correctly classify all training data points:
 \[
 \begin{align*}
 \mathbf{x}_i \text{ positive } (y_i = 1) & : \quad \mathbf{x}_i \cdot \mathbf{w} + b \geq 1 \\
 \mathbf{x}_i \text{ negative } (y_i = -1) & : \quad \mathbf{x}_i \cdot \mathbf{w} + b \leq -1
 \end{align*}
 \]

Quadratic optimization problem:

Minimize $\frac{1}{2} \mathbf{w}^T \mathbf{w}$

Subject to $y_i (\mathbf{w} \cdot \mathbf{x}_i + b) \geq 1$

One constraint for each training point.

Note sign trick.

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998
Finding the maximum margin line

• Solution: \(\mathbf{w} = \sum_{i} \alpha_i y_i \mathbf{x}_i \)

Finding the maximum margin line

- Solution: \[w = \sum_i \alpha_i y_i x_i \]

\[b = y_i - w \cdot x_i \quad \text{(for any support vector)} \]

- Classification function:

\[f(x) = \text{sign} \left(w \cdot x + b \right) \]

\[= \text{sign} \left(\sum_i \alpha_i y_i x_i \cdot x + b \right) \]

If \(f(x) < 0 \), classify as negative, otherwise classify as positive.

- Notice that it relies on an *inner product* between the test point \(x \) and the support vectors \(x_i \)

- (Solving the optimization problem also involves computing the inner products \(x_i \cdot x_j \) between all pairs of training points)

Inner product

- The decision boundary for the SVM and its optimization depend on the inner product of two data points (vectors):
 \[f(x) = \text{sign} \ (w \cdot x + b) = \text{sign} \left(\sum_i \alpha_i y_i x_i \cdot x + b \right) \]

- The inner product is equal
 \[(x_i^T x) = \|x_i\| \cdot \|x_i\| \cdot \cos \theta \]

If the angle in between them is 0 then: \[(x_i^T x) = \|x_i\| \cdot \|x_i\| \]
If the angle between them is 90 then: \[(x_i^T x) = 0 \]

The inner product measures how similar the two vectors are

Adapted from Milos Hauskrecht
Datasets that are linearly separable work out great:

But what if the dataset is just too hard?

We can map it to a higher-dimensional space:
Nonlinear SVMs

- General idea: the original input space can always be mapped to some higher-dimensional feature space where the training set is separable:
Nonlinear kernel: Example

- Consider the mapping $\varphi(x) = (x, x^2)$

\[
\varphi(x) \cdot \varphi(y) = (x, x^2) \cdot (y, y^2) = xy + x^2 y^2
\]

\[
K(x, y) = xy + x^2 y^2
\]
The “Kernel Trick”

• The linear classifier relies on dot product between vectors $K(x_i, x_j) = x_i \cdot x_j$

• If every data point is mapped into high-dimensional space via some transformation Φ: $x_i \rightarrow \phi(x_i)$, the dot product becomes: $K(x_i, x_j) = \phi(x_i) \cdot \phi(x_j)$

• A kernel function is similarity function that corresponds to an inner product in some expanded feature space

• The kernel trick: instead of explicitly computing the lifting transformation $\phi(x)$, define a kernel function K such that: $K(x_i, x_j) = \phi(x_i) \cdot \phi(x_j)$
Examples of kernel functions

- **Linear:** \(K(x_i, x_j) = x_i^T x_j \)

- **Polynomials of degree up to** \(d \): \n \[K(x_i, x_j) = (x_i^T x_j + 1)^d \]

- **Gaussian RBF:** \n \[K(x_i, x_j) = \exp\left(-\frac{||x_i - x_j||^2}{2\sigma^2}\right) \]

- **Histogram intersection:** \n \[K(x_i, x_j) = \sum_k \min(x_i(k), x_j(k)) \]
Hard-margin SVMs

\[
\min_{\mathbf{w}} \quad \frac{1}{2} \| \mathbf{w} \|^2
\]

The \(\mathbf{w} \) that minimizes...

Maximize margin

subject to \[y_i \mathbf{w}^T \mathbf{x}_i \geq 1 , \quad \forall i = 1, \ldots, N \]
Soft-margin SVMs

\[\min_w \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{N} \xi_i \]

The \(w \) that minimizes...

Maximize margin

Minimize misclassification

subject to

\[y_i w^T x_i \geq 1 - \xi_i, \]

\[\xi_i \geq 0, \quad \forall i = 1, \ldots, N \]
What about multi-class SVMs?

- Unfortunately, there is no “definitive” multi-class SVM formulation
- In practice, we have to obtain a multi-class SVM by combining multiple two-class SVMs

One vs. others
- Training: learn an SVM for each class vs. the others
- Testing: apply each SVM to the test example, and assign it to the class of the SVM that returns the highest decision value

One vs. one
- Training: learn an SVM for each pair of classes
- Testing: each learned SVM “votes” for a class to assign to the test example
Multi-class problems

One-vs-all (a.k.a. one-vs-others)

• Train K classifiers
• In each, pos = data from class i, neg = data from classes other than i
• The class with the most confident prediction wins
• Example:
 – You have 4 classes, train 4 classifiers
 – 1 vs others: score 3.5
 – 2 vs others: score 6.2
 – 3 vs others: score 1.4
 – 4 vs other: score 5.5
 – Final prediction: class 2
Multi-class problems

One-vs-one (a.k.a. all-vs-all)

- Train $K(K-1)/2$ binary classifiers (all pairs of classes)
- They all vote for the label
- Example:
 - You have 4 classes, then train 6 classifiers
 - 1 vs 2, 1 vs 3, 1 vs 4, 2 vs 3, 2 vs 4, 3 vs 4
 - Votes: 1, 1, 4, 2, 4, 4
 - Final prediction is class 4
Example: Learning gender w/ SVMs

Moghaddam and Yang, Learning Gender with Support Faces, TPAMI 2002
Moghaddam and Yang, Face & Gesture 2000
Example: Learning gender w/ SVMs

Support faces

FEMALE

MALE
Some SVM packages

- LIBLINEAR https://www.csie.ntu.edu.tw/~cjlin/liblinear/
Linear classifiers vs nearest neighbors

• **Linear pros:**
 + Low-dimensional *parametric* representation
 + Very fast at test time

• **Linear cons:**
 – Can be tricky to select best kernel function for a problem
 – Learning can take a very long time for large-scale problem

• **NN pros:**
 + Works for any number of classes
 + Decision boundaries not necessarily linear
 + *Nonparametric* method
 + Simple to implement

• **NN cons:**
 – Slow at test time (large search problem to find neighbors)
 – Storage of data
 – Especially need good distance function (but true for all classifiers)

Adapted from L. Lazebnik
Training vs Testing

• What do we want?
 – High accuracy on training data?
 – No, high accuracy on *unseen/new/test data*!
 – Why is this tricky?

• Training data
 – Features (x) and labels (y) used to learn mapping f

• Test data
 – Features (x) used to make a prediction
 – Labels (y) only used to see how well we’ve learned f!!!

• Validation data
 – Held-out set of the *training data*
 – Can use both features (x) and labels (y) to tune parameters of the model we’re learning
Generalization

- How well does a learned model generalize from the data it was trained on to a new test set?
Generalization

- **Underfitting**: Models with too few parameters are inaccurate because of a large bias (not enough flexibility).

- **Overfitting**: Models with too many parameters are inaccurate because of a large variance (too much sensitivity to the sample).

Red dots = training data (all that we see before we ship off our model!)

Green curve = true underlying model

Blue curve = our predicted model/fit

Purple dots = possible test points

Adapted from D. Hoiem
Generalization

- Components of generalization error
 - **Noise** in our observations: unavoidable
 - **Bias**: how much the average model over all training sets differs from the true model
 - Inaccurate assumptions/simplifications made by the model
 - **Variance**: how much models estimated from different training sets differ from each other
- **Underfitting**: model is too “simple” to represent all the relevant class characteristics
 - High bias and low variance
 - High training error and high test error
- **Overfitting**: model is too “complex” and fits irrelevant characteristics (noise) in the data
 - Low bias and high variance
 - Low training error and high test error
Polynomial Curve Fitting

\[y(x, w) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j \]
Sum-of-Squares Error Function

\[E(w) = \frac{1}{2} \sum_{n=1}^{N} \{ y(x_n, w) - t_n \}^2 \]
0th Order Polynomial

\[M = 0 \]

Slide credit: Chris Bishop
1st Order Polynomial

$M = 1$

Slide credit: Chris Bishop
3rd Order Polynomial

Slide credit: Chris Bishop
9th Order Polynomial

\[M = 9 \]
Over-fitting

Root-Mean-Square (RMS) Error: \(E_{\text{RMS}} = \sqrt{2E(w^*)/N} \)

Slide credit: Chris Bishop
Data Set Size: $N \thinspace = \thinspace 15$

9th Order Polynomial
Data Set Size: $N = 100$

9th Order Polynomial

Slide credit: Chris Bishop
Regularization

Penalize large coefficient values

\[E(w) = \frac{1}{2} \sum_{n=1}^{N} \left\{ y(x_n, w) - t_n \right\}^2 \]

(Remember: We want to minimize this expression.)

Adapted from Chris Bishop
Regularization: $\ln \lambda = -18$
Regularization: $\ln \lambda = 0$
Polynomial Coefficients

<table>
<thead>
<tr>
<th></th>
<th>$M = 0$</th>
<th>$M = 1$</th>
<th>$M = 3$</th>
<th>$M = 9$</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_0^*</td>
<td>0.19</td>
<td>0.82</td>
<td>0.31</td>
<td>0.35</td>
</tr>
<tr>
<td>w_1^*</td>
<td></td>
<td>-1.27</td>
<td>7.99</td>
<td>232.37</td>
</tr>
<tr>
<td>w_2^*</td>
<td></td>
<td></td>
<td>-25.43</td>
<td>-5321.83</td>
</tr>
<tr>
<td>w_3^*</td>
<td></td>
<td></td>
<td>17.37</td>
<td>48568.31</td>
</tr>
<tr>
<td>w_4^*</td>
<td></td>
<td></td>
<td></td>
<td>-231639.30</td>
</tr>
<tr>
<td>w_5^*</td>
<td></td>
<td></td>
<td></td>
<td>640042.26</td>
</tr>
<tr>
<td>w_6^*</td>
<td></td>
<td></td>
<td></td>
<td>-1061800.52</td>
</tr>
<tr>
<td>w_7^*</td>
<td></td>
<td></td>
<td></td>
<td>1042400.18</td>
</tr>
<tr>
<td>w_8^*</td>
<td></td>
<td></td>
<td></td>
<td>-557682.99</td>
</tr>
<tr>
<td>w_9^*</td>
<td></td>
<td></td>
<td></td>
<td>125201.43</td>
</tr>
</tbody>
</table>
Polynomial Coefficients

<table>
<thead>
<tr>
<th></th>
<th>No regularization</th>
<th>Huge regularization</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\ln \lambda = -\infty$</td>
<td>w_0^* = 0.35</td>
<td>w_0^* = 0.35</td>
</tr>
<tr>
<td>$\ln \lambda = -18$</td>
<td>w_1^* = 232.37</td>
<td>w_1^* = 4.74</td>
</tr>
<tr>
<td>$\ln \lambda = 0$</td>
<td>w_2^* = -5321.83</td>
<td>w_2^* = -0.77</td>
</tr>
<tr>
<td></td>
<td>w_3^* = 48568.31</td>
<td>w_3^* = -31.97</td>
</tr>
<tr>
<td></td>
<td>w_4^* = -231639.30</td>
<td>w_4^* = -3.89</td>
</tr>
<tr>
<td></td>
<td>w_5^* = 640042.26</td>
<td>w_5^* = 55.28</td>
</tr>
<tr>
<td></td>
<td>w_6^* = -1061800.52</td>
<td>w_6^* = 41.32</td>
</tr>
<tr>
<td></td>
<td>w_7^* = 1042400.18</td>
<td>w_7^* = -45.95</td>
</tr>
<tr>
<td></td>
<td>w_8^* = -557682.99</td>
<td>w_8^* = -91.53</td>
</tr>
<tr>
<td></td>
<td>w_9^* = 125201.43</td>
<td>w_9^* = 72.68</td>
</tr>
</tbody>
</table>

Adapted from Chris Bishop
Regularization: E_{RMS} vs. $\ln \lambda$
Training vs test error

- Underfitting
- Overfitting

- High Bias
- Low Variance

- Low Bias
- High Variance

Error vs Complexity

Slide credit: D. Hoiem
The effect of training set size

- Many training examples: High Bias, Low Variance
- Few training examples: Low Bias, High Variance

Test Error vs. Complexity

Slide credit: D. Hoiem
Choosing the trade-off between bias and variance

- Need validation set (separate from the test set)
Summary of generalization

- Try simple classifiers first
- Better to have **smart features and simple classifiers** than **simple features and smart classifiers**
- Use increasingly powerful classifiers with more training data
- As an additional technique for reducing variance, try regularizing the parameters
Plan for the rest of the lecture

Neural network basics
- Definition
- Loss functions
- Optimization w/ gradient descent and backpropagation

Convolutional neural networks (CNNs)
- Special operations
- Common architectures

Practical matters
- Getting started: Preprocessing, initialization, optimization, normalization
- Improving performance: regularization, augmentation, transfer
- Hardware and software

Understanding CNNs
- Visualization
- Breaking CNNs
Neural network basics
ImageNet Challenge 2012

~14 million labeled images, 20k classes

Images gathered from Internet

Human labels via Amazon Turk

Challenge: 1.2 million training images, 1000 classes

AlexNet: Similar framework to LeCun’98 but:
- Bigger model (7 hidden layers, 650,000 units, 60,000,000 params)
- More data (10^6 vs. 10^3 images)
- GPU implementation (50x speedup over CPU)
 - Trained on two GPUs for a week
- Better regularization for training (DropOut)

Adapted from Lana Lazebnik
ImageNet Challenge 2012

Krizhevsky et al. -- 16.4% error (top-5)
Next best (non-convnet) – 26.2% error
What are CNNs?

- Convolutional neural networks are a type of neural network with layers that perform special operations.
- Used in vision but also in NLP, biomedical etc.
- Often they are deep.

Figure from http://neuralnetworksanddeeplearning.com/chap5.html
Features are key to recent progress in recognition, but research shows they’re flawed…

Where next?
What about learning the features?

• Learn a feature hierarchy all the way from pixels to classifier

• Each layer extracts features from the output of previous layer

• Train all layers jointly
“Shallow” vs. “deep” architectures

Traditional recognition: “Shallow” architecture

Image/Video Pixels → Hand-designed feature extraction → Trainable classifier → Object Class

Deep learning: “Deep” architecture

Image/Video Pixels → Layer 1 → ... → Layer N → Simple classifier → Object Class

Lana Lazebnik
Neural network definition

Figure 5.1 Network diagram for the two-layer neural network corresponding to (5.7). The input, hidden, and output variables are represented by nodes, and the weight parameters are represented by links between the nodes, in which the bias parameters are denoted by links coming from additional input and hidden variables x_0 and z_0. Arrows denote the direction of information flow through the network during forward propagation.

- Activations:
 \[a_j = \sum_{i=1}^{D} w_{ji}^{(1)} x_i + w_{j0}^{(1)} \]

- Nonlinear activation function h (e.g. sigmoid, RELU):
 \[z_j = h(a_j) \]
Neural network definition

- Layer 2

\[a_j = \sum_{i=1}^{D} w_{ji}^{(1)} x_i + w_{j0}^{(1)} \]

- Layer 3 (final)

- Outputs (e.g. sigmoid/softmax)

\[y_k = \sigma(a_k) = \frac{1}{1 + \exp(-a_k)} \quad (\text{binary}) \]

\[y_k = \frac{\exp(a_k)}{\sum_j \exp(a_j)} \quad (\text{multiclass}) \]

- Finally:

\[y_k(x, w) = \sigma \left(\sum_{j=1}^{M} w_{kj}^{(2)} h \left(\sum_{i=1}^{D} w_{ji}^{(1)} x_i + w_{j0}^{(1)} \right) + w_{k0}^{(2)} \right) \quad (\text{binary}) \]
Activation functions

Sigmoid
\[\sigma(x) = \frac{1}{1 + e^{-x}} \]

Leaky ReLU
\[\max(0.1x, x) \]

tanh
\[\tanh(x) \]

Maxout
\[\max(w_1^T x + b_1, w_2^T x + b_2) \]

ReLU
\[\max(0, x) \]

ELU
\[\begin{cases}
 x & x \geq 0 \\
 \alpha(e^x - 1) & x < 0
\end{cases} \]
Inspiration: Neuron cells

• Neurons
 • accept information from multiple inputs,
 • transmit information to other neurons.

• Multiply inputs by weights along edges
• Apply some function to the set of inputs at each node
• If output of function over threshold, neuron “fires”
Deep neural networks

- Lots of hidden layers
- Depth = power (usually)

Figure from http://neuralnetworksanddeeplearning.com/chap5.html
How do we train them?

- The goal is to iteratively find such a set of weights that allow the activations/outputs to match the desired output.
- We want to minimize a *loss function*.
- The loss function is a function of the weights in the network.
- For now let’s simplify and assume there’s a single layer of weights in the network.
Classification goal

Example dataset: CIFAR-10
10 labels
50,000 training images
each image is 32x32x3
10,000 test images.

airplane
automobile
bird
cat
deer
dog
frog
horse
ship
truck
Classification scores

\[f(x, W) = Wx \]

A \([32 \times 32 \times 3] \) array of numbers 0...1 (3072 numbers total)

\(f(x, W) \) gives 10 numbers, indicating class scores.
Linear classifier

\[f(x, W) = W x \]

\([32 \times 32 \times 3]\) array of numbers 0...1

parameters, or “weights”

10 numbers, indicating class scores

Andrej Karpathy
Linear classifier

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

input image

stretch pixels into single column

\[
\begin{array}{cccc}
0.2 & -0.5 & 0.1 & 2.0 \\
1.5 & 1.3 & 2.1 & 0.0 \\
0 & 0.25 & 0.2 & -0.3 \\
\end{array}
\]

\[
\begin{array}{cccc}
56 \\
231 \\
24 \\
\end{array}
\]

\[
\begin{array}{cccc}
1.1 \\
3.2 \\
-1.2 \\
\end{array}
\]

\[
\begin{array}{cccc}
-96.8 \\
437.9 \\
61.95 \\
\end{array}
\]

\[
f(x_i; W, b)
\]
Linear classifier

Going forward: Loss function/Optimization

<table>
<thead>
<tr>
<th></th>
<th>cat</th>
<th>car</th>
<th>frog</th>
</tr>
</thead>
<tbody>
<tr>
<td>score</td>
<td>3.2</td>
<td>5.1</td>
<td>-1.7</td>
</tr>
<tr>
<td>score</td>
<td>1.3</td>
<td>4.9</td>
<td>2.0</td>
</tr>
<tr>
<td>score</td>
<td>2.2</td>
<td>2.5</td>
<td>-3.1</td>
</tr>
</tbody>
</table>

TODO:

1. Define a **loss function** that quantifies our unhappiness with the scores across the training data.

2. Come up with a way of efficiently finding the parameters that minimize the loss function. **(optimization)**
Linear classifier

Suppose: 3 training examples, 3 classes.

With some W the scores $f(x, W) = Wx$ are:

<table>
<thead>
<tr>
<th>cat</th>
<th>3.2</th>
<th>1.3</th>
<th>2.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>car</td>
<td>5.1</td>
<td>4.9</td>
<td>2.5</td>
</tr>
<tr>
<td>frog</td>
<td>-1.7</td>
<td>2.0</td>
<td>-3.1</td>
</tr>
</tbody>
</table>

Adapted from Andrej Karpathy
Linear classifier: Hinge loss

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W) = Wx$ are:

<table>
<thead>
<tr>
<th></th>
<th>cat</th>
<th>car</th>
<th>frog</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.2</td>
<td>1.3</td>
<td>2.2</td>
</tr>
<tr>
<td>2</td>
<td>5.1</td>
<td>4.9</td>
<td>2.5</td>
</tr>
<tr>
<td>3</td>
<td>-1.7</td>
<td>2.0</td>
<td>-3.1</td>
</tr>
</tbody>
</table>

Hinge loss:

Given an example (x_i, y_i) where x_i is the image and y_i is the (integer) label, and using the shorthand for the scores vector: $s = f(x_i, W)$

the loss has the form:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Want: $s_{y_i} \geq s_j + 1$

i.e. $s_j - s_{y_i} + 1 \leq 0$

If true, loss is 0
If false, loss is magnitude of violation

Adapted from Andrej Karpathy
Linear classifier: Hinge loss

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W) = Wx$ are:

<table>
<thead>
<tr>
<th></th>
<th>cat</th>
<th>car</th>
<th>frog</th>
</tr>
</thead>
<tbody>
<tr>
<td>score</td>
<td>3.2</td>
<td>1.3</td>
<td>2.2</td>
</tr>
<tr>
<td>score</td>
<td>5.1</td>
<td>4.9</td>
<td>2.5</td>
</tr>
<tr>
<td>score</td>
<td>-1.7</td>
<td>2.0</td>
<td>-3.1</td>
</tr>
</tbody>
</table>

Hinge loss:

Given an example $\left(x_i, y_i\right)$ where x_i is the image and y_i is the (integer) label, and using the shorthand for the scores vector: $s = f(x_i, W)$

the loss has the form:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$= \max(0, 5.1 - 3.2 + 1) + \max(0, -1.7 - 3.2 + 1)$$

$$= \max(0, 2.9) + \max(0, -3.9)$$

$$= 2.9 + 0$$

$$= 2.9$$

Adapted from Andrej Karpathy
Linear classifier: Hinge loss

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W) = Wx$ are:

<table>
<thead>
<tr>
<th>Class</th>
<th>Score</th>
<th>Score</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>cat</td>
<td>3.2</td>
<td>1.3</td>
<td>2.2</td>
</tr>
<tr>
<td>car</td>
<td>5.1</td>
<td>4.9</td>
<td>2.5</td>
</tr>
<tr>
<td>frog</td>
<td>-1.7</td>
<td>2.0</td>
<td>-3.1</td>
</tr>
</tbody>
</table>

| Losses | 2.9 | 0 | 0 |

Hinge loss:

Given an example (x_i, y_i) where x_i is the image and y_i is the (integer) label, and using the shorthand for the scores vector: $s = f(x_i, W)$

the loss has the form:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$= \max(0, 1.3 - 4.9 + 1) + \max(0, 2.0 - 4.9 + 1)$$

$$= \max(0, -2.6) + \max(0, -1.9)$$

$$= 0 + 0$$

$$= 0$$

Adapted from Andrej Karpathy
Linear classifier: Hinge loss

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W) = Wx$ are:

<table>
<thead>
<tr>
<th></th>
<th>cat</th>
<th>car</th>
<th>frog</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>1.3</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>4.9</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>-1.7</td>
<td>2.0</td>
<td>-3.1</td>
<td></td>
</tr>
</tbody>
</table>

Losses: 2.9 0 12.9

Hinge loss:

Given an example (x_i, y_i) where x_i is the image and y_i is the (integer) label, and using the shorthand for the scores vector: $s = f(x_i, W)$

the loss has the form:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$= \max(0, 2.2 - (-3.1) + 1) + \max(0, 2.5 - (-3.1) + 1)$$

$$= \max(0, 5.3 + 1) + \max(0, 5.6 + 1)$$

$$= 6.3 + 6.6$$

$$= 12.9$$

Adapted from Andrej Karpathy
Linear classifier: Hinge loss

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W) = Wx$ are:

<table>
<thead>
<tr>
<th></th>
<th>cat</th>
<th>car</th>
<th>frog</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.2</td>
<td>1.3</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>5.1</td>
<td>4.9</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>-1.7</td>
<td>2.0</td>
<td>-3.1</td>
</tr>
<tr>
<td>Losses</td>
<td>2.9</td>
<td>0</td>
<td>12.9</td>
</tr>
</tbody>
</table>

Hinge loss:

Given an example (x_i, y_i) where x_i is the image and y_i is the (integer) label, and using the shorthand for the scores vector: $s = f(x_i, W)$

the loss has the form:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

and the full training loss is the mean over all examples in the training data:

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i$$

$$L = \frac{(2.9 + 0 + 12.9)}{3} = \frac{15.8}{3} = 5.3$$

Adapted from Andrej Karpathy
Linear classifier: Hinge loss

\[f(x, W) = W x \]

\[L = \frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1) \]

Adapted from Andrej Karpathy
Linear classifier: Hinge loss

Weight Regularization

\[L = \frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1) + \lambda R(W) \]

\(\lambda = \text{regularization strength (hyperparameter)} \)

In common use:

L2 regularization

\[R(W) = \sum_k \sum_l W_{k,l}^2 \]

L1 regularization

\[R(W) = \sum_k \sum_l |W_{k,l}| \]

Dropout (will see later)

Adapted from Andrej Karpathy
Another loss: Softmax (cross-entropy)

scores = unnormalized log probabilities of the classes.

\[P(Y = k | X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}} \]

where \(s = f(x_i; W) \)

Want to maximize the log likelihood, or (for a loss function)
to minimize the negative log likelihood of the correct class:

\[L_i = -\log P(Y = y_i | X = x_i) \]
Another loss: Softmax (cross-entropy)

\[L_i = - \log \left(\frac{e^{s_{y_i}}}{\sum_j e^{s_j}} \right) \]

<table>
<thead>
<tr>
<th>cat</th>
<th>car</th>
<th>frog</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>5.1</td>
<td>-1.7</td>
</tr>
</tbody>
</table>

unnormalized log probabilities

\[\exp \rightarrow \begin{array}{c}
3.2 \\
5.1 \\
-1.7
\end{array} \rightarrow \begin{array}{c}
24.5 \\
164.0 \\
0.18
\end{array} \rightarrow \begin{array}{c}
0.13 \\
0.87 \\
0.00
\end{array} \rightarrow L_i = -\log(0.13) = 0.89 \]

unnormalized probabilities

Adapted from Andrej Karpathy
Other losses

- **Triplet loss (Schroff, FaceNet)**

\[
\sum_{i}^{N} \left[\| f(x_{i}^{a}) - f(x_{i}^{p}) \|_2^2 - \| f(x_{i}^{a}) - f(x_{i}^{n}) \|_2^2 + \alpha \right]_{+}
\]

Figure 3. The **Triplet Loss** minimizes the distance between an anchor and a positive, both of which have the same identity, and maximizes the distance between the anchor and a negative of a different identity.

- **Anything you want!**
How to minimize the loss function?
How to minimize the loss function?

In 1-dimensional, the derivative of a function:

\[
\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}
\]

In multiple dimensions, the gradient is the vector of (partial derivatives).
current W:

\[
[0.34, \\
-1.11, \\
0.78, \\
0.12, \\
0.55, \\
2.81, \\
-3.1, \\
-1.5, \\
0.33, \ldots]
\]

loss 1.25347

gradient dW:

\[
[-2.5, \\
0.6, \\
0, \\
0.2, \\
0.7, \\
-0.5, \\
1.1, \\
1.3, \\
-2.1, \ldots]
\]

\[dW = \ldots\]

(some function data and W)
Loss gradients

- Denoted as (diff notations): \[\frac{\partial E}{\partial w_{ji}^{(1)}} \] \(\nabla_W L \)
- i.e. how does the loss change as a function of the weights
- We want to change the weights in such a way that makes the loss decrease as fast as possible
Gradient descent

- We’ll update weights
- Move in direction opposite to gradient:

\[w^{(\tau+1)} = w^{(\tau)} - \eta \nabla E(w^{(\tau)}) \]

Figure from Andrej Karpathy
Gradient descent

• Iteratively *subtract* the gradient with respect to the model parameters \(w \)
• I.e. we’re moving in a direction opposite to the gradient of the loss
• I.e. we’re moving towards *smaller* loss
Mini-batch gradient descent

• In classic gradient descent, we compute the gradient from the loss for all training examples
• Could also only use *some* of the data for each gradient update
• We cycle through all the training examples multiple times
• Each time we’ve cycled through all of them once is called an ‘epoch’
• Allows faster training (e.g. on GPUs), parallelization
Learning rate selection

The effects of step size (or “learning rate”)

- **Loss**
 - very high learning rate
 - low learning rate
 - high learning rate
 - good learning rate

Andrej Karpathy
Gradient descent in multi-layer nets

• We’ll update weights
• Move in direction opposite to gradient:

\[w^{(\tau+1)} = w^{(\tau)} - \eta \nabla E(w^{(\tau)}) \]

• How to update the weights at all layers?
• Answer: backpropagation of error from higher layers to lower layers
Backpropagation: Graphic example

First calculate error of output units and use this to change the top layer of weights.

Adapted from Ray Mooney, equations from Chris Bishop
Backpropagation: Graphic example

Next calculate error for hidden units based on errors on the output units it feeds into.

Adapted from Ray Mooney, equations from Chris Bishop
Finally update bottom layer of weights based on errors calculated for hidden units.

Adapted from Ray Mooney, equations from Chris Bishop
Computing gradient for each weight

• We need to move weights in direction opposite to gradient of loss wrt that weight:
 \[w_{ji} = w_{ji} - \eta \frac{dE}{dw_{ji}} \]
 \[w_{kj} = w_{kj} - \eta \frac{dE}{dw_{kj}} \]

• Loss depends on weights in an indirect way, so we’ll use the chain rule and compute:
 \[\frac{dE}{dw_{ji}} = \frac{dE}{dz_j} \frac{dz_j}{da_j} \frac{da_j}{dw_{ji}} \]
 (and similarly for \(\frac{dE}{dw_{kj}} \))

• The error (\(\frac{dE}{dz_j} \)) is hard to compute (indirect, need chain rule again)

• We’ll simplify the computation by doing it step by step via backpropagation of error
activations

\(f \)

\(x \)

\(y \)

\(z \)
activations

\(f \)

\(\frac{\partial z}{\partial x} \)

\(\frac{\partial z}{\partial y} \)

\(z \)

gradients

“local gradient”
Activations:

\[x \]

\[f \]

\[\frac{\partial z}{\partial x} \]

\[\frac{\partial z}{\partial y} \]

"local gradient"

Gradients:

\[\frac{\partial L}{\partial z} \]

\[z \]
activations

\[
\frac{\partial L}{\partial x} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial x}
\]

"local gradient"

\[
\frac{\partial z}{\partial x}
\]

\[
\frac{\partial z}{\partial y}
\]

f

\[
\frac{\partial L}{\partial z}
\]

gradients

Andrej Karpathy
activations

\[
\frac{\partial L}{\partial x} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial x}
\]

\[
\frac{\partial L}{\partial y} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial y}
\]

“local gradient”

\[
\frac{\partial L}{\partial z}
\]

gradients
Example: algorithm for **sigmoid, sqerror**

- Initialize all weights to small random values
- Until convergence (e.g. all training examples’ error small, or error stops decreasing) repeat:
 - For each \((x, \ t=\text{class}(x))\) in training set:
 - Calculate network outputs: \(y_k\)
 - Compute errors (gradients wrt activations) for each unit:
 - \(\delta_k = y_k (1-y_k) (y_k - t_k)\) for output units
 - \(\delta_j = z_j (1-z_j) \sum_k w_{kj} \delta_k\) for hidden units
 - Update weights:
 - \(w_{kj} = w_{kj} - \eta \delta_k z_j\) for output units
 - \(w_{ji} = w_{ji} - \eta \delta_j x_i\) for hidden units

Recall: \(w_{ji} = w_{ji} - \eta \frac{dE}{dz_j} \frac{dz_j}{da_j} \frac{da_j}{dw_{ji}}\)

Adapted from R. Hwa, R. Mooney
Over-training prevention

- Running too many epochs can result in over-fitting.

- Keep a hold-out validation set and test accuracy on it after every epoch. Stop training when additional epochs actually increase validation error.

Adapted from Ray Mooney
Comments on training algorithm

- Not guaranteed to converge to zero training error, may converge to local optima or oscillate indefinitely.
- However, in practice, does converge to low error for many large networks on real data, with good choice of hyperparameters (e.g. learning rate).
- Thousands of epochs (epoch = network sees all training data once) may be required, hours or days to train.
- To avoid local-minima problems, run several trials starting with different random weights (random restarts), and take results of trial with lowest training set error.
- May be hard to set learning rate and to select number of hidden units and layers.
- Neural networks had fallen out of fashion in 90s, early 2000s; back with a new name and improved performance (deep networks trained with dropout and lots of data).
Plan for the rest of the lecture

Neural network basics
 • Definition
 • Loss functions
 • Optimization w/ gradient descent and backpropagation

Convolutional neural networks (CNNs)
 • Special operations
 • Common architectures

Practical matters
 • Getting started: Preprocessing, initialization, optimization, normalization
 • Improving performance: regularization, augmentation, transfer
 • Hardware and software

Understanding CNNs
 • Visualization
 • Breaking CNNs
Convolutional neural networks
Convolutional Neural Networks (CNN)

- Neural network with specialized connectivity structure
- Stack multiple stages of feature extractors
- Higher stages compute more global, more invariant, *more abstract* features
- Classification layer at the end

Adapted from Rob Fergus
Convolutional Neural Networks (CNN)

- Feed-forward feature extraction:
 1. Convolve input with learned filters
 2. Apply non-linearity
 3. **Spatial pooling (downsample)**

- Recent architectures have additional operations (to be discussed)

- Trained with some loss, backprop

Adapted from Lana Lazebnik
1. Convolution

- Apply learned filter weights
- One feature map per filter
- Stride can be greater than 1 (faster, less memory)

Adapted from Rob Fergus
2. Non-Linearity

- Per-element (independent)
- Some options:
 - Tanh
 - Sigmoid: $1/(1+\exp(-x))$
 - Rectified linear unit (ReLU)
 - Avoids saturation issues

Adapted from Rob Fergus
3. Spatial Pooling

- Sum or max over non-overlapping / overlapping regions

Rob Fergus, figure from Andrej Karpathy
3. Spatial Pooling

- Sum or max over non-overlapping / overlapping regions
- Role of pooling:
 - Invariance to small transformations
 - Larger receptive fields (neurons see more of input)

Adapted from Rob Fergus
Convolutions: More detail

32x32x3 image

Andrej Karpathy
Convolutions: More detail

Convolve the filter with the image i.e. “slide over the image spatially, computing dot products”
Convolutions: More detail

Convolution Layer

32x32x3 image
5x5x3 filter w

1 number:
the result of taking a dot product between the filter and a small 5x5x3 chunk of the image (i.e. $5 \times 5 \times 3 = 75$-dimensional dot product + bias)

$w^T x + b$
Convolutions: More detail

Convolution Layer

32x32x3 image
5x5x3 filter

convolve (slide) over all spatial locations

activation map
Convolutions: More detail

Convolution Layer

32x32x3 image
5x5x3 filter

convolve (slide) over all spatial locations

consider a second, green filter

activation maps
Convolutions: More detail

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!
Convolutions: More detail

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions.
Preview: ConvNet is a sequence of Convolutional Layers, interspersed with activation functions.
Convolutions: More detail

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
We call the layer convolutional because it is related to convolution of two signals:

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v] \]

Element-wise multiplication and sum of a filter and the signal (image)

Adapted from Andrej Karpathy, Kristen Grauman
Convolutions: More detail

A closer look at spatial dimensions:

32x32x3 image
5x5x3 filter

convolve (slide) over all spatial locations

activation map
Convolutions: More detail

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter
Convolutions: More detail

A closer look at spatial dimensions:

7x7 input (spatially)
assume 3x3 filter
Convolutions: More detail

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter
Convolutions: More detail

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter
Convolutions: More detail

A closer look at spatial dimensions:

7x7 input (spatially)
assume 3x3 filter
=> 5x5 output
Convolutions: More detail

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter applied with stride 2
Convolutions: More detail

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter applied \textbf{with stride 2}
Convolutions: More detail

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter applied with stride 2 => 3x3 output!
Convolutions: More detail

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter applied with stride 3?
Convolutions: More detail

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter applied with stride 3?

doesn’t fit!
cannot apply 3x3 filter on 7x7 input with stride 3.
Convolutions: More detail

Output size:
\[(N - F) / \text{stride} + 1\]

e.g. \(N = 7, F = 3\):
- stride 1 \(\Rightarrow (7 - 3)/1 + 1 = 5\)
- stride 2 \(\Rightarrow (7 - 3)/2 + 1 = 3\)
- stride 3 \(\Rightarrow (7 - 3)/3 + 1 = 2.33 \)
Convolutions: More detail

In practice: Common to zero pad the border

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

e.g. input 7x7
3x3 filter, applied with **stride 1**
pad with 1 pixel border => what is the output?

(recall:)
(N - F) / stride + 1
In practice: Common to zero pad the border

Convolutions: More detail

Andrej Karpathy
In practice: Common to zero pad the border

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!
in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with (F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1
 F = 5 => zero pad with 2
 F = 7 => zero pad with 3

\[(N + 2*\text{padding} - F) / \text{stride} + 1\]
Convolutions: More detail

Examples time:

Input volume: \textbf{32x32x3}
10 5x5 filters with stride 1, pad 2

Output volume size: ?
Convolutions: More detail

Examples time:

Input volume: $32 \times 32 \times 3$
10 5x5 filters with stride 1, pad 2

Output volume size:
$(32 + 2 \times 2 - 5)/1 + 1 = 32$ spatially, so
$32 \times 32 \times 10$
Convolutions: More detail

Examples time:

Input volume: $32 \times 32 \times 3$
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?
Convolutions: More detail

Examples time:

Input volume: \textbf{32x32x3}
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer? each filter has \(5\times5\times3 + 1 = 76\) params (+1 for bias)
\(\Rightarrow 76\times10 = 760\)
Putting it all together
Case Study: AlexNet

[Krizhevsky et al. 2012]

Architecture:
- CONV1
- MAX POOL1
- NORM1
- CONV2
- MAX POOL2
- NORM2
- CONV3
- CONV4
- CONV5
- Max POOL3
- FC6
- FC7
- FC8
Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Output volume **[55x55x96]**

Parameters: \((11 \times 11 \times 3) \times 96 = 35K\)
Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2
Output volume: 27x27x96

Q: what is the number of parameters in this layer?
Case Study: AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
- [227x227x3] INPUT
- [55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
- [27x27x96] MAX POOL1: 3x3 filters at stride 2
- [27x27x96] NORM1: Normalization layer
- [27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
- [13x13x256] MAX POOL2: 3x3 filters at stride 2
- [13x13x256] NORM2: Normalization layer
- [13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
- [13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
- [13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
- [6x6x256] MAX POOL3: 3x3 filters at stride 2
- [4096] FC6: 4096 neurons
- [4096] FC7: 4096 neurons
- [1000] FC8: 1000 neurons (class scores)

Details/Retrospectives:
- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10 manually when val accuracy plateaus
- L2 weight decay 5e-4

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

<table>
<thead>
<tr>
<th>Year</th>
<th>Winner</th>
<th>Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Lin et al</td>
<td>shallow</td>
</tr>
<tr>
<td>2011</td>
<td>Sanchez & Perronnin</td>
<td>8 layers</td>
</tr>
<tr>
<td>2012</td>
<td>Krizhevsky et al (AlexNet)</td>
<td>8 layers</td>
</tr>
<tr>
<td>2013</td>
<td>Zeiler & Fergus</td>
<td>19 layers</td>
</tr>
<tr>
<td>2014</td>
<td>Simonyan & Zisserman (VGG)</td>
<td>22 layers</td>
</tr>
<tr>
<td>2014</td>
<td>Szegedy et al (GoogLeNet)</td>
<td>152 layers</td>
</tr>
<tr>
<td>2015</td>
<td>He et al (ResNet)</td>
<td>152 layers</td>
</tr>
<tr>
<td>2016</td>
<td>Shao et al</td>
<td>152 layers</td>
</tr>
<tr>
<td>2017</td>
<td>Hu et al (SENet)</td>
<td>152 layers</td>
</tr>
<tr>
<td>Human</td>
<td>Russakovsky et al</td>
<td>5.1</td>
</tr>
</tbody>
</table>

Deeper Networks:
Case Study: VGGNet

[Simonyan and Zisserman, 2014]

Small filters, Deeper networks

8 layers (AlexNet)
-> 16 - 19 layers (VGG16Net)

Only 3x3 CONV stride 1, pad 1
and 2x2 MAX POOL stride 2

11.7% top 5 error in ILSVRC’13
(ZFNet)
-> 7.3% top 5 error in ILSVRC’14

<table>
<thead>
<tr>
<th>Layer Type</th>
<th>AlexNet</th>
<th>VGG16</th>
<th>VGG19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11x11 conv 96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5x5 conv 256</td>
<td></td>
<td>Pool</td>
<td></td>
</tr>
<tr>
<td>3x3 conv 128</td>
<td></td>
<td>Pool</td>
<td></td>
</tr>
<tr>
<td>3x3 conv 256</td>
<td></td>
<td>Pool</td>
<td></td>
</tr>
<tr>
<td>3x3 conv 128</td>
<td></td>
<td>Pool</td>
<td></td>
</tr>
<tr>
<td>3x3 conv 256</td>
<td></td>
<td>Pool</td>
<td></td>
</tr>
<tr>
<td>3x3 conv 512</td>
<td></td>
<td>Pool</td>
<td></td>
</tr>
<tr>
<td>FC 4096</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FC 1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Softmax</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung
Q: Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers has same **effective receptive field** as one 7x7 conv layer

But deeper, more non-linearities

And fewer parameters: \(3 \times (3^2C^2) \) vs. \(7^2C^2 \) for \(C \) channels per layer
Case Study: VGGNet

INPUT: [224x224x3] memory: 224*224*3=150K params: 0

CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728

CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864

POOL2: [112x112x64] memory: 112*112*64=800K params: 0

CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728

CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456

POOL2: [56x56x128] memory: 56*56*128=400K params: 0

CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912

CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824

CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824

POOL2: [28x28x256] memory: 28*28*256=200K params: 0

CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648

CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296

CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296

POOL2: [14x14x512] memory: 14*14*512=100K params: 0

CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296

CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296

CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296

POOL2: [7x7x512] memory: 7*7*512=25K params: 0

FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448

FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216

FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

TOTAL memory: 24M * 4 bytes ~= 96MB / image (for a forward pass)
TOTAL params: 138M parameters
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Deeper Networks

- 2010: Lin et al
- 2011: Sanchez & Perronnin
- 2012: Krizhevsky et al (AlexNet)
- 2013: Zeiler & Fergus
- 2014: Simonyan & Zisserman (VGG), Szegedy et al (GoogLeNet)
- 2015: He et al (ResNet)
- 2016: Shao et al
- 2017: Hu et al (SENet)
- Human

Layers:
- Shallow: 8 layers
- Depth: 19, 22, 152 layers
Case Study: GoogLeNet
[Szegedy et al., 2014]

Deeper networks, with computational efficiency

- 22 layers
- Efficient “Inception” module
- No FC layers
- Only 5 million parameters!
 12x less than AlexNet
- ILSVRC’14 classification winner
 (6.7% top 5 error)
Case Study: GoogLeNet

[Szegedy et al., 2014]

“Inception module”: design a good local network topology (network within a network) and then stack these modules on top of each other.
Case Study: GoogLeNet
[Szegedy et al., 2014]

Apply parallel filter operations on the input from previous layer:
- Multiple receptive field sizes for convolution (1x1, 3x3, 5x5)
- Pooling operation (3x3)

Concatenate all filter outputs together depth-wise

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung
Case Study: GoogLeNet
[Szegedy et al., 2014]

Example:
Q3: What is output size after filter concatenation?

\[
28 \times 28 \times (128 + 192 + 96 + 256) = 28 \times 28 \times 672
\]

Conv Ops:
- [1x1 conv, 128] 28x28x128x1x1x256
- [3x3 conv, 192] 28x28x192x3x3x256
- [5x5 conv, 96] 28x28x96x5x5x256

Total: 854M ops

Very expensive compute

Pooling layer also preserves feature depth, which means total depth after concatenation can only grow at every layer!
Case Study: GoogLeNet

[Szegedy et al., 2014]

Example:

Q3: What is output size after filter concatenation?

28x28x(128+192+96+256) = \text{529k}

Solution: “bottleneck” layers that use 1x1 convolutions to reduce feature depth

Q: What is the problem with this?

[Hint: Computational complexity]
Reminder: 1x1 convolutions

1x1 CONV with 32 filters

(each filter has size 1x1x64, and performs a 64-dimensional dot product)
Reminder: 1x1 convolutions

1x1 CONV with 32 filters preserves spatial dimensions, reduces depth!

Projects depth to lower dimension (combination of feature maps)
Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Inception module with dimension reduction

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung
Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

1x1 convolution -> 3x3 convolution -> 5x5 convolution -> 3x3 max pooling

Previous Layer

Filter concatenation

Total: 854M ops

Inception module with dimension reduction

1x1 conv “bottleneck” layers

Filter concatenation

1x1 convolution -> 3x3 convolution -> 5x5 convolution

1x1 convolution -> 1x1 convolution

3x3 max pooling

Previous Layer

Total: 358M ops

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung
Case Study: GoogLeNet

[Szegedy et al., 2014]

Full GoogLeNet architecture
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

“Revolution of Depth”

- 2010: 28.2 - Lin et al
- 2011: 25.8 - Sanchez & Perronnin
- 2012: 16.4 - Krizhevsky et al (AlexNet)
- 2013: 11.7 - Zeiler & Fergus
- 2014: 7.3 - Simonyan & Zisserman (VGG)
- 2014: 6.7 - Szegedy et al (GoogLeNet)
- 2015: 3.6 - He et al (ResNet)
- 2016: 3.0 - Shao et al
- 2017: 2.3 - Hu et al (SENet)
- Human: 5.1

Layers:
- Shallow: 8 layers
- 8 layers
- 19 layers
- 22 layers
- 152 layers
- 152 layers
- 152 layers
Case Study: ResNet

[He et al., 2016]

Very deep networks using residual connections

- 152-layer model for ImageNet
- ILSVRC’15 classification winner (3.57% top 5 error)
- Swept all classification and detection competitions in ILSVRC’15 and COCO’15!
Case Study: ResNet

[He et al., 2016]

What happens when we continue stacking deeper layers on a “plain” convolutional neural network?

Q: What’s strange about these training and test curves? [Hint: look at the order of the curves]
Case Study: ResNet

[He et al., 2016]

What happens when we continue stacking deeper layers on a “plain” convolutional neural network?

56-layer model performs worse on both training and test error

-> The deeper model performs worse, but it’s not caused by overfitting!
Case Study: ResNet

[He et al., 2016]

Hypothesis: the problem is an optimization problem, deeper models are harder to optimize

The deeper model should be able to perform at least as well as the shallower model.

A solution by construction is copying the learned layers from the shallower model and setting additional layers to identity mapping.
Case Study: ResNet

[He et al., 2016]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a desired underlying mapping.

\[H(x) = F(x) + x \]

Use layers to fit residual
\[F(x) = H(x) - x \]

instead of \[H(x) \] directly.
Case Study: ResNet

[He et al., 2016]

Full ResNet architecture:
- Stack residual blocks
- Every residual block has two 3x3 conv layers
Comparing complexity...

Improving ResNets...

Wide Residual Networks

[Zagoruyko et al. 2016]

- Argues that residuals are the important factor, not depth
- User wider residual blocks (F x k filters instead of F filters in each layer)
- 50-layer wide ResNet outperforms 152-layer original ResNet
- Increasing width instead of depth more computationally efficient (parallelizable)
Improving ResNets...

Aggregated Residual Transformations for Deep Neural Networks (ResNeXt)

[Xie et al. 2016]

- Also from creators of ResNet
- Increases width of residual block through multiple parallel pathways ("cardinality")
- Parallel pathways similar in spirit to Inception module
Improving ResNets...

Deep Networks with Stochastic Depth

[Huang et al. 2016]

- Motivation: reduce vanishing gradients and training time through short networks during training
- Randomly drop a subset of layers during each training pass
- Bypass with identity function
- Use full deep network at test time
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Network ensembling

- 152 layers
- 152 layers
- 152 layers

- Shallow
- 8 layers
- 8 layers
- 19 layers
- 22 layers

<table>
<thead>
<tr>
<th>Year</th>
<th>Network</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Lin et al</td>
<td>Sanchez & Perronnin</td>
</tr>
<tr>
<td>2011</td>
<td>25.8</td>
<td>Krizhevsky et al (AlexNet)</td>
</tr>
<tr>
<td>2012</td>
<td>16.4</td>
<td>Zeiler & Fergus</td>
</tr>
<tr>
<td>2013</td>
<td>11.7</td>
<td>Simonyan & Zisserman (VGG)</td>
</tr>
<tr>
<td>2014</td>
<td>7.3</td>
<td>Szegedy et al (GoogLeNet)</td>
</tr>
<tr>
<td>2014</td>
<td>6.7</td>
<td>He et al (ResNet)</td>
</tr>
<tr>
<td>2015</td>
<td>3.6</td>
<td>Shao et al</td>
</tr>
<tr>
<td>2016</td>
<td>3</td>
<td>Hu et al (SENet)</td>
</tr>
<tr>
<td>2017</td>
<td>2.3</td>
<td>Russakovsky et al</td>
</tr>
<tr>
<td>Human</td>
<td>5.1</td>
<td>Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung</td>
</tr>
</tbody>
</table>

Lecture 9 - May 1, 2018
Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

- **2010**: 28.2%
 - Lin et al.
 - Shallow

- **2011**: 25.8%
 - Sanchez & Perronnin
 - 8 layers

- **2012**: 16.4%
 - Krizhevsky et al. (AlexNet)
 - Krizhevsky & Fergus

- **2013**: 11.7%
 - Zeiler & Fergus
 - 19 layers

- **2014**: 7.3%
 - Simonyan & Zisserman (VGG)
 - 8 layers

- **2014**: 6.7%
 - Szegedy et al. (GoogLeNet)
 - 22 layers

- **2015**: 3.6%
 - He et al. (ResNet)

- **2016**: 3%
 - Hu et al. (SENNet)

- **2017**: 2.3%
 - Shao et al.

- **Human**: 5.1%

Adaptive feature map reweighting

- **2017**: 152 layers
- **2017**: 152 layers
- **2017**: 152 layers
Improving ResNets...

Squeeze-and-Excitation Networks (SENet)

[Hu et al. 2017]

- Add a “feature recalibration” module that learns to adaptively reweight feature maps
- Global information (global avg. pooling layer) + 2 FC layers used to determine feature map weights
- ILSVRC’17 classification winner (using ResNeXt-152 as a base architecture)
Beyond ResNets...
Densely Connected Convolutional Networks
[Huang et al. 2017]

- Dense blocks where each layer is connected to every other layer in feedforward fashion
- Alleviates vanishing gradient, strengthens feature propagation, encourages feature reuse
Efficient networks...

SqueezeNet: AlexNet-level Accuracy With 50x Fewer Parameters and <0.5Mb Model Size

[Iandola et al. 2017]

- Fire modules consisting of a ‘squeeze’ layer with 1x1 filters feeding an ‘expand’ layer with 1x1 and 3x3 filters
- AlexNet level accuracy on ImageNet with 50x fewer parameters
- Can compress to 510x smaller than AlexNet (0.5Mb)

Figure copyright Iandola, Han, Moskewicz, Ashraf, Dally, Keutzer, 2017. Reproduced with permission.
Meta-learning: Learning to learn network architectures...

Neural Architecture Search with Reinforcement Learning (NAS)

[Zoph et al. 2016]

- “Controller” network that learns to design a good network architecture (output a string corresponding to network design)

- Iterate:
 1) Sample an architecture from search space
 2) Train the architecture to get a “reward” R corresponding to accuracy
 3) Compute gradient of sample probability, and scale by R to perform controller parameter update (i.e. increase likelihood of good architecture being sampled, decrease likelihood of bad architecture)
Summary: CNN Architectures

Case Studies
- AlexNet
- VGG
- GoogLeNet
- ResNet

Also....
- Wide ResNet
- ResNeXT
- DenseNet
- Squeeze-and-Excitation Network
Summary: CNN Architectures

- VGG, GoogLeNet, ResNet all in wide use, available in model zoos
- ResNet current best default, also consider SENet when available
- Trend towards extremely deep networks
- Significant research centers around design of layer / skip connections and improving gradient flow
- Efforts to investigate necessity of depth vs. width and residual connections
- Even more recent trend towards meta-learning
Practical matters
Plan for the rest of the lecture

Neural network basics
• Definition
• Loss functions
• Optimization w/ gradient descent and backpropagation

Convolutional neural networks (CNNs)
• Special operations
• Common architectures

Practical matters
• Getting started: Preprocessing, initialization, optimization, normalization
• Improving performance: regularization, augmentation, transfer
• Hardware and software

Understanding CNNs
• Visualization
• Breaking CNNs
Preprocessing the Data

(Assume X [NxD] is data matrix, each example in a row)
Preprocessing the Data

In practice, you may also see **PCA** and **Whitening** of the data.

<data>original data</data>
<data>decorrelated data</data>
<data>whitened data</data>

(data has diagonal covariance matrix)
(covariance matrix is the identity matrix)
Weight Initialization

• Q: what happens when $W=\text{constant init}$ is used?
Weight Initialization

- Another idea: **Small random numbers**
 (gaussian with zero mean and $1e^{-2}$ standard deviation)

\[
W = 0.01 \times \text{np.random.randn}(D,H)
\]

Works ~okay for small networks, but problems with deeper networks.
Reasonable initialization.
(Mathematical derivation assumes linear activations)

```
W = np.random.randn(fan_in, fan_out) / np.sqrt(fan_in) # layer initialization
```

"Xavier initialization"
[Glorot et al., 2010]
Batch Normalization

[loffe and Szegedy, 2015]

“you want zero-mean unit-variance activations? just make them so.”

consider a batch of activations at some layer. To make each dimension zero-mean unit-variance, apply:

\[
\hat{x}^{(k)} = \frac{x^{(k)} - \text{E}[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}
\]
Batch Normalization

1. compute the empirical mean and variance independently for each dimension.

2. Normalize

\[\hat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}} \]

“Ioffe and Szegedy, 2015”

“you want zero-mean unit-variance activations? just make them so.”
Batch Normalization

[ioffe and Szegedy, 2015]

Normalize:

\[
\hat{x}(k) = \frac{x^{(k)} - \mathbb{E}[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}
\]

And then allow the network to squash the range if it wants to:

\[
y^{(k)} = \gamma^{(k)} \hat{x}^{(k)} + \beta^{(k)}
\]

Note, the network can learn:

\[
\gamma^{(k)} = \sqrt{\text{Var}[x^{(k)}]}
\]

\[
\beta^{(k)} = \mathbb{E}[x^{(k)}]
\]

to recover the identity mapping.
Batch Normalization

[ioffe and Szegedy, 2015]

- Improves gradient flow through the network
- Allows higher learning rates
- Reduces the strong dependence on initialization
- Acts as a form of regularization

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_1...m\}$; Parameters to be learned: γ, β

Output: $\{y_i = \text{BN}_{\gamma,\beta}(x_i)\}$

\[
\mu_B \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i \quad \text{// mini-batch mean}
\]

\[
\sigma_B^2 \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_B)^2 \quad \text{// mini-batch variance}
\]

\[
\hat{x}_i \leftarrow \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}} \quad \text{// normalize}
\]

\[
y_i \leftarrow \gamma \hat{x}_i + \beta \equiv \text{BN}_{\gamma,\beta}(x_i) \quad \text{// scale and shift}
\]
Batch Normalization

[Ioffe and Szegedy, 2015]

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_1...x_m\}$

Parameters to be learned: γ, β

Output: $\{y_i = \text{BN}_\gamma,\beta(x_i)\}$

\[
\begin{align*}
\mu_B & \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i \quad \text{// mini-batch mean} \\
\sigma_B^2 & \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_B)^2 \quad \text{// mini-batch variance} \\
\hat{x}_i & \leftarrow \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}} \quad \text{// normalize} \\
y_i & \leftarrow \gamma \hat{x}_i + \beta \equiv \text{BN}_\gamma,\beta(x_i) \quad \text{// scale and shift}
\end{align*}
\]

Note: at test time BatchNorm layer functions differently:

The mean/std are not computed based on the batch. Instead, a single fixed empirical mean of activations during training is used.

(e.g. can be estimated during training with running averages)
Babysitting the Learning Process

- Preprocess data
- Choose architecture
- Initialize and check initial loss with no regularization
- Increase regularization, loss should increase
- Then train – try small portion of data, check you can overfit
- Add regularization, and find learning rate that can make the loss go down
- Check learning rates in range [1e-3 ... 1e-5]
- Coarse-to-fine search for hyperparameters (e.g. learning rate, regularization)

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung
Monitor and visualize accuracy

big gap = overfitting
=> increase regularization strength?

no gap
=> increase model capacity?
Optimization

Vanilla Gradient Descent

```python
while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad  # perform parameter update
```
Optimization: Problems with SGD

What if loss changes quickly in one direction and slowly in another? What does gradient descent do?

Loss function has high condition number: ratio of largest to smallest singular value of the Hessian matrix is large
Optimization: Problems with SGD

What if loss changes quickly in one direction and slowly in another? What does gradient descent do?

Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest singular value of the Hessian matrix is large
What if the loss function has a local minima or saddle point?

Zero gradient, gradient descent gets stuck
Our gradients come from minibatches so they can be noisy!

\[
L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W)
\]

\[
\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W)
\]
SGD + Momentum

SGD

\[x_{t+1} = x_t - \alpha \nabla f(x_t) \]

while True:
 dx = compute_gradient(x)
 x -= learning_rate * dx

SGD+Momentum

\[v_{t+1} = \rho v_t + \nabla f(x_t) \]

\[x_{t+1} = x_t - \alpha v_{t+1} \]

vx = 0

while True:
 dx = compute_gradient(x)
 vx = rho * vx + dx
 x -= learning_rate * vx

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013
AdaGrad

```python
grad_squared = 0
while True:
    dx = compute_gradient(x)
    grad_squared += dx * dx
    x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```

Added element-wise scaling of the gradient based on the historical sum of squares in each dimension

“Per-parameter learning rates” or “adaptive learning rates”

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung
AdaGrad

grad_squared = 0
while True:
 dx = compute_gradient(x)
 grad_squared += dx * dx
 x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)

Q: What happens with AdaGrad?

Progress along “steep” directions is damped; progress along “flat” directions is accelerated
Q2: What happens to the step size over long time?

```python
grad_squared = 0
while True:
    dx = compute_gradient(x)
    grad_squared += dx * dx
    x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```
AdaGrad

```
grad_squared = 0
while True:
    dx = compute_gradient(x)
    grad_squared += dx * dx
    x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```

RMSProp

```
grad_squared = 0
while True:
    dx = compute_gradient(x)
    grad_squared = decay_rate * grad_squared + (1 - decay_rate) * dx * dx
    x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```
Adam

```python
firstMoment = 0
secondMoment = 0
for t in range(1, num_iterations):
    dx = computeGradient(x)
    firstMoment = beta1 * firstMoment + (1 - beta1) * dx
    secondMoment = beta2 * secondMoment + (1 - beta2) * dx * dx
    firstUnbias = firstMoment / (1 - beta1 ** t)
    secondUnbias = secondMoment / (1 - beta2 ** t)
    x -= learning_rate * firstUnbias / (np.sqrt(secondUnbias) + 1e-7))
```

Bias correction for the fact that first and second moment estimates start at zero

Adam with beta1 = 0.9, beta2 = 0.999, and learning_rate = 1e-3 or 5e-4 is a great starting point for many models!

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung
SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have **learning rate** as a hyperparameter.

=> Learning rate decay over time!

step decay:
e.g. decay learning rate by half every few epochs.

exponential decay:
\[\alpha = \alpha_0 e^{-kt} \]

1/t decay:
\[\alpha = \frac{\alpha_0}{1 + kt} \]
SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have **learning rate** as a hyperparameter.

![Graph showing loss vs. epoch with different learning rates](image)

![Graph showing loss vs. epoch with learning rate decay](image)
Plan for the rest of the lecture

Neural network basics
- Definition
- Loss functions
- Optimization w/ gradient descent and backpropagation

Convolutional neural networks (CNNs)
- Special operations
- Common architectures

Practical matters
- Getting started: Preprocessing, initialization, optimization, normalization
- Improving performance: regularization, augmentation, transfer
- Hardware and software

Understanding CNNs
- Visualization
- Breaking CNNs
Data Augmentation

Load image and label → “cat” → CNN → Compute loss
Data Augmentation

Load image and label

“cat”

Transform image

CNN

Compute loss

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung
Data Augmentation

Horizontal Flips
Random crops and scales

Training: sample random crops / scales
ResNet:
1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch
Data Augmentation

Random crops and scales

Training: sample random crops / scales
ResNet:
1. Pick random L in range $[256, 480]$
2. Resize training image, short side = L
3. Sample random 224×224 patch

Testing: average a fixed set of crops
ResNet:
1. Resize image at 5 scales: $\{224, 256, 384, 480, 640\}$
2. For each size, use 10 224×224 crops: 4 corners + center, + flips
Data Augmentation

Get creative for your problem!

Random mix/combinations of :

- translation
- rotation
- stretching
- shearing,
- lens distortions
- ...

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung; Image: https://github.com/aleju/imgaug
Regularization: Dropout

• Randomly turn off some neurons
• Allows individual neurons to independently be responsible for performance

Dropout: A simple way to prevent neural networks from overfitting [Srivastava JMLR 2014]

Adapted from Jia-bin Huang
Transfer Learning

“You need a lot of data if you want to train use CNNs”
Transfer Learning with CNNs

• The more weights you need to learn, the more data you need
• That’s why with a deeper network, you need more data for training than for a shallower network
• One possible solution:

Set these to the already learned weights from another network
Learn these on your own task
Transfer Learning with CNNs

Source: classification on ImageNet

1. Train on ImageNet

2. Small dataset:
 Freeze these
 Train this

3. Medium dataset: **finetuning**
 more data = retrain more of the network (or all of it)
 Freeze these
 Train this

Another option: use network as feature extractor, train SVM on extracted features for target task

Adapted from Andrej Karpathy
Training: Best practices

- Center (subtract mean from) your data
- To initialize weights, use “Xavier initialization”
- Use RELU or leaky RELU or ELU, don’t use sigmoid
- Use mini-batch
- Use data augmentation
- Use regularization
- Use batch normalization
- Use cross-validation for your parameters
- Learning rate: too high? Too low?
Plan for the rest of the lecture

Neural network basics
- Definition
- Loss functions
- Optimization w/ gradient descent and backpropagation

Convolutional neural networks (CNNs)
- Special operations
- Common architectures

Practical matters
- Getting started: Preprocessing, initialization, optimization, normalization
- Improving performance: regularization, augmentation, transfer
- Hardware and software

Understanding CNNs
- Visualization
- Breaking CNNs
Hardware and software
Spot the CPU! (central processing unit)
Spot the GPUs! (graphics processing unit)
CPU vs GPU

<table>
<thead>
<tr>
<th></th>
<th>Cores</th>
<th>Clock Speed</th>
<th>Memory</th>
<th>Price</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>4</td>
<td>4.2 GHz</td>
<td>System RAM</td>
<td>$339</td>
<td>~540 GFLOPs FP32</td>
</tr>
<tr>
<td>(Intel Core i7-7700k)</td>
<td>(8 threads with hyperthreading)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPU</td>
<td>3584</td>
<td>1.6 GHz</td>
<td>11 GB GDDR5X</td>
<td>$699</td>
<td>~11.4 TFLOPs FP32</td>
</tr>
<tr>
<td>(NVIDIA GTX 1080 Ti)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CPU: Fewer cores, but each core is much faster and much more capable; great at sequential tasks

GPU: More cores, but each core is much slower and “dumber”; great for parallel tasks
CPU vs GPU in practice

(CPU performance not well-optimized, a little unfair)

Data from https://github.com/jcjohnson/cnn-benchmarks
If you aren’t careful, training can bottleneck on reading data and transferring to GPU!

Solutions:
- Read all data into RAM
- Use SSD instead of HDD
- Use multiple CPU threads to prefetch data
Software: A zoo of frameworks!

Caffe
(UC Berkeley)

Caffe2
(Facebook)

Torch
(NYU / Facebook)

PyTorch
(Facebook)

Theano
(U Montreal)

TensorFlow
(Google)

PaddlePaddle
(Baidu)

MXNet
(Amazon)

Chainer
(Microsoft)

Deeplearning4j

And others...
TensorFlow: Neural Net

```python
N, D, H = 64, 1000, 100
x = tf.placeholder(tf.float32, shape=(N, D))
y = tf.placeholder(tf.float32, shape=(N, D))
w1 = tf.placeholder(tf.float32, shape=(D, H))
w2 = tf.placeholder(tf.float32, shape=(H, D))

h = tf.maximum(tf.matmul(x, w1), 0)
y_pred = tf.matmul(h, w2)
diff = y_pred - y
loss = tf.reduce_mean(tf.reduce_sum(diff ** 2, axis=1))

grad_w1, grad_w2 = tf.gradients(loss, [w1, w2])

with tf.Session() as sess:
    values = {x: np.random.randn(N, D),
              w1: np.random.randn(D, H),
              w2: np.random.randn(H, D),
              y: np.random.randn(N, D),}
    out = sess.run([loss, grad_w1, grad_w2],
                   feed_dict=values)
    loss_val, grad_w1_val, grad_w2_val = out
```

(Assume imports at the top of each snippet)
TensorFlow: Neural Net

First **define** computational graph

Then **run** the graph many times

```python
N, D, H = 64, 1000, 100
x = tf.placeholder(tf.float32, shape=(N, D))
y = tf.placeholder(tf.float32, shape=(N, D))
w1 = tf.placeholder(tf.float32, shape=(D, H))
w2 = tf.placeholder(tf.float32, shape=(H, D))

h = tf.maximum(tf.matmul(x, w1), 0)
y_pred = tf.matmul(h, w2)
diff = y_pred - y
loss = tf.reduce_mean(tf.reduce_sum(diff ** 2, axis=1))

grad_w1, grad_w2 = tf.gradients(loss, [w1, w2])

with tf.Session() as sess:
    values = {x: np.random.randn(N, D),
              w1: np.random.randn(D, H),
              w2: np.random.randn(H, D),
              y: np.random.randn(N, D),}
    out = sess.run([loss, grad_w1, grad_w2], feed_dict=values)
    loss_val, grad_w1_val, grad_w2_val = out
```
Create **placeholders** for input \(x \), weights \(w_1 \) and \(w_2 \), and targets \(y \).
Forward pass: compute prediction for y and loss. No computation - just building graph
Tell TensorFlow to compute loss of gradient with respect to w_1 and w_2. No compute - just building the graph.
Now done building our graph, so we enter a `session` so we can actually run the graph.

```
x, w1, w2, y = tf.placeholder(tf.float32, shape=(N, D))
y = tf.placeholder(tf.float32, shape=(N, D))
w1 = tf.placeholder(tf.float32, shape=(D, H))
w2 = tf.placeholder(tf.float32, shape=(H, D))

h = tf.maximum(tf.matmul(x, w1), 0)
y_pred = tf.matmul(h, w2)
diff = y_pred - y
loss = tf.reduce_mean(tf.reduce_sum(diff ** 2, axis=1))

grad_w1, grad_w2 = tf.gradients(loss, [w1, w2])

with tf.Session() as sess:
    values = {x: np.random.randn(N, D),
              w1: np.random.randn(D, H),
              w2: np.random.randn(H, D),
              y: np.random.randn(N, D),}
    out = sess.run([loss, grad_w1, grad_w2],
                   feed_dict=values)
    loss_val, grad_w1_val, grad_w2_val = out
```
Create numpy arrays that will fill in the placeholders above.

```
N, D, H = 64, 1000, 100
x = tf.placeholder(tf.float32, shape=(N, D))
y = tf.placeholder(tf.float32, shape=(N, D))
w1 = tf.placeholder(tf.float32, shape=(D, H))
w2 = tf.placeholder(tf.float32, shape=(H, D))

h = tf.maximum(tf.matmul(x, w1), 0)
y_pred = tf.matmul(h, w2)
diff = y_pred - y
loss = tf.reduce_mean(tf.reduce_sum(diff ** 2, axis=1))

grad_w1, grad_w2 = tf.gradients(loss, [w1, w2])

with tf.Session() as sess:
    values = {x: np.random.randn(N, D),
              w1: np.random.randn(D, H),
              w2: np.random.randn(H, D),
              y: np.random.randn(N, D),}
    out = sess.run([loss, grad_w1, grad_w2],
                    feed_dict=values)
    loss_val, grad_w1_val, grad_w2_val = out
```
Run the graph: feed in the numpy arrays for x, y, w1, and w2; get numpy arrays for loss, grad_w1, and grad_w2
Train the network: Run the graph over and over, use gradient to update weights.
Problem: copying weights between CPU / GPU each step

Train the network: Run the graph over and over, use gradient to update weights
TensorFlow: Neural Net

```
N, D, H = 64, 1000, 100
x = tf.placeholder(tf.float32, shape=(N, D))
y = tf.placeholder(tf.float32, shape=(N, D))
w1 = tf.Variable(tf.random_normal((D, H)))
w2 = tf.Variable(tf.random_normal((H, D)))

h = tf.maximum(tf.matmul(x, w1), 0)
y_pred = tf.matmul(h, w2)
diff = y_pred - y
loss = tf.reduce_mean(tf.reduce_sum(diff ** 2, axis=1))
grad_w1, grad_w2 = tf.gradients(loss, [w1, w2])

learning_rate = 1e-5
new_w1 = w1.assign(w1 - learning_rate * grad_w1)
new_w2 = w2.assign(w2 - learning_rate * grad_w2)

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    values = {x: np.random.randn(N, D),
              y: np.random.randn(N, D),}
    for t in range(50):
        loss_val, = sess.run([loss], feed_dict=values)
```

Change w1 and w2 from **placeholder** (fed on each call) to **Variable** (persists in the graph between calls)
TensorFlow: Neural Net

```
N, D, H = 64, 1000, 100
x = tf.placeholder(tf.float32, shape=(N, D))
y = tf.placeholder(tf.float32, shape=(N, D))
w1 = tf.Variable(tf.random_normal((D, H)))
w2 = tf.Variable(tf.random_normal((H, D)))

h = tf.maximum(tf.matmul(x, w1), 0)
y_pred = tf.matmul(h, w2)
diff = y_pred - y
loss = tf.reduce_mean(tf.reduce_sum(diff ** 2, axis=1))
grad_w1, grad_w2 = tf.gradients(loss, [w1, w2])

learning_rate = 1e-5
new_w1 = w1.assign(w1 - learning_rate * grad_w1)
new_w2 = w2.assign(w2 - learning_rate * grad_w2)

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    values = {x: np.random.randn(N, D),
              y: np.random.randn(N, D),}
    for t in range(50):
        loss_val, = sess.run([loss], feed_dict=values)
```

Add **assign** operations to update w1 and w2 as part of the graph!
TensorFlow: Neural Net

```python
N, D, H = 64, 1000, 100
x = tf.placeholder(tf.float32, shape=(N, D))
y = tf.placeholder(tf.float32, shape=(N, D))
w1 = tf.Variable(tf.random_normal((D, H)))
w2 = tf.Variable(tf.random_normal((H, D)))

h = tf.maximum(tf.matmul(x, w1), 0)
y_pred = tf.matmul(h, w2)
diff = y_pred - y
loss = tf.reduce_mean(tf.reduce_sum(diff ** 2, axis=1))
grad_w1, grad_w2 = tf.gradients(loss, [w1, w2])

learning_rate = 1e-5
new_w1 = w1.assign(w1 - learning_rate * grad_w1)
new_w2 = w2.assign(w2 - learning_rate * grad_w2)

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    values = {x: np.random.randn(N, D),
              y: np.random.randn(N, D),}
    for t in range(50):
        loss_val, = sess.run([loss], feed_dict=values)
```

Run graph once to initialize w1 and w2
Run many times to train
Add dummy graph node that depends on updates

Tell TensorFlow to compute dummy node

```python
N, D, H = 64, 1000, 100
x = tf.placeholder(tf.float32, shape=(N, D))
y = tf.placeholder(tf.float32, shape=(N, D))
w1 = tf.Variable(tf.random_normal((D, H)))
w2 = tf.Variable(tf.random_normal((H, D)))

h = tf.maximum(tf.matmul(x, w1), 0)
y_pred = tf.matmul(h, w2)
diff = y_pred - y
loss = tf.reduce_mean(tf.reduce_sum(diff ** 2, axis=1))
grad_w1, grad_w2 = tf.gradients(loss, [w1, w2])

learning_rate = 1e-5
new_w1 = w1.assign(w1 - learning_rate * grad_w1)
new_w2 = w2.assign(w2 - learning_rate * grad_w2)
updates = tf.group(new_w1, new_w2)

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    values = {x: np.random.randn(N, D),
              y: np.random.randn(N, D),}
    losses = []
    for t in range(50):
        loss_val, _ = sess.run([loss, updates],
                                feed_dict=values)
```
TensorFlow: Optimizer

Can use an **optimizer** to compute gradients and update weights

Remember to execute the output of the optimizer!
Use predefined common losses

```
N, D, H = 64, 1000, 100
x = tf.placeholder(tf.float32, shape=(N, D))
y = tf.placeholder(tf.float32, shape=(N, D))
w1 = tf.Variable(tf.random_normal((D, H)))
w2 = tf.Variable(tf.random_normal((H, D)))

h = tf.maximum(tf.matmul(x, w1), 0)
y_pred = tf.matmul(h, w2)
loss = tf.losses.mean_squared_error(y_pred, y)

optimizer = tf.train.GradientDescentOptimizer(1e-3)
updates = optimizer.minimize(loss)

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    values = {x: np.random.randn(N, D),
              y: np.random.randn(N, D),}
    for t in range(50):
        loss_val, _ = sess.run([loss, updates],
                               feed_dict=values)
```
TensorFlow: Layers

N, D, H = 64, 1000, 100
x = tf.placeholder(tf.float32, shape=(N, D))
y = tf.placeholder(tf.float32, shape=(N, D))

init = tf.variance_scaling_initializer(2.0)
h = tf.layers.dense(inputs=x, units=H,
 activation=tf.nn.relu, kernel_initializer=init)
y_pred = tf.layers.dense(inputs=h, units=D,
 kernel_initializer=init)

loss = tf.losses.mean_squared_error(y_pred, y)

optimizer = tf.train.GradientDescentOptimizer(1e0)
updates = optimizer.minimize(loss)

with tf.Session() as sess:
 sess.run(tf.global_variables_initializer())
 values = {x: np.random.randn(N, D),
 y: np.random.randn(N, D),}
 for t in range(50):
 loss_val, _ = sess.run([loss, updates],
 feed_dict=values)

Use He initializer

tf.layers automatically sets up weight and (and bias) for us!
Keras is a layer on top of TensorFlow, makes common things easy to do

(Used to be third-party, now merged into TensorFlow)
Keras: High-Level Wrapper

Define model as a sequence of layers

Get output by calling the model

```python
N, D, H = 64, 1000, 100
x = tf.placeholder(tf.float32, shape=(N, D))
y = tf.placeholder(tf.float32, shape=(N, D))

model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(H, input_shape=(D,), activation=tf.nn.relu))
model.add(tf.keras.layers.Dense(D))
y_pred = model(x)
loss = tf.losses.mean_squared_error(y_pred, y)

optimizer = tf.train.GradientDescentOptimizer(1e-0)
updates = optimizer.minimize(loss)

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    values = {x: np.random.randn(N, D),
              y: np.random.randn(N, D)}

for t in range(50):
    loss_val, _ = sess.run([loss, updates],
                           feed_dict=values)
```

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung
Keras: High-Level Wrapper

Keras can handle the training loop for you! No sessions or feed_dict

```python
N, D, H = 64, 1000, 100
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(H, input_shape=(D,),
                                 activation=tf.nn.relu))
model.add(tf.keras.layers.Dense(D))

model.compile(loss=tf.keras.losses.mean_squared_error,
               optimizer=tf.keras.optimizers.SGD(lr=1e0))

x = np.random.randn(N, D)
y = np.random.randn(N, D)

history = model.fit(x, y, epochs=50, batch_size=N)
```
TensorFlow: Pretrained Models

tf.keras: (https://www.tensorflow.org/api_docs/python/tf/keras/applications)
Add logging to code to record loss, stats, etc. Run server and get pretty graphs!
Plan for the rest of the lecture

Neural network basics
- Definition
- Loss functions
- Optimization w/ gradient descent and backpropagation

Convolutional neural networks (CNNs)
- Special operations
- Common architectures

Practical matters
- Getting started: Preprocessing, initialization, optimization, normalization
- Improving performance: regularization, augmentation, transfer
- Hardware and software

Understanding CNNs
- Visualization
- Breaking CNNs
Understanding CNNs
Layer 1

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]
Layer 2

- Activations projected down to pixel level via deconvolution
- Patches from validation images that give maximal activation of a given feature map

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]
Layer 3

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]
Layer 4 and 5

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]
Occlusion experiments

(as a function of the position of the square of zeros in the original image)

Andrej Karpathy

[Zeiler & Fergus 2014]
Occlusion experiments

(as a function of the position of the square of zeros in the original image)

[Zeiler & Fergus 2014]
What image maximizes a class score?

Repeat:
1. Forward an image
2. Set activations in layer of interest to all zero, except for a 1.0 for a neuron of interest
3. Backprop to image
4. Do an “image update”
What image maximizes a class score?

[Understanding Neural Networks Through Deep Visualization, Yosinski et al., 2015]

http://yosinski.com/deepvis

Andrej Karpathy
What image maximizes a class score?
Breaking CNNs

Take a correctly classified image (left image in both columns), and add a tiny distortion (middle) to fool the ConvNet with the resulting image (right).

Intriguing properties of neural networks [Szegedy ICLR 2014]
Breaking CNNs

Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images [Nguyen et al. CVPR 2015]
Summary of CNNs

• We use DNNs/CNNs due to performance

• Convolutional neural network (CNN)
 • Convolution, nonlinearity, max pooling
 • AlexNet, VGG, GoogleNet, ResNet, …

• Training deep neural nets
 • We need an objective function that measures and guides us towards good performance
 • Backpropagate error towards all layers and change weights
 • Take steps to minimize the loss function: SGD, AdaGrad, RMSProp, Adam

• Practices for preventing overfitting
 • Dropout; data augmentation; transfer learning