Plan for this lecture

• Filters: math and properties

• Types of filters
 – Linear
 • Smoothing
 • Other
 – Non-linear
 • Median

• Texture representation with filters

• Anti-aliasing for image subsampling
How images are represented (Matlab)

- Color images represented as a matrix with multiple channels (=1 if grayscale)
- Suppose we have a NxM RGB image called “im”
 - \(\text{im}(1,1,1) = \text{top-left pixel value in R-channel} \)
 - \(\text{im}(y, x, b) = y \text{ pixels down (rows)}, x \text{ pixels to right (cols)} \text{ in } b^{th} \text{ channel} \)
 - \(\text{im}(N, M, 3) = \text{bottom-right pixel in B-channel} \)
- \text{imread(filename)} returns a uint8 image (values 0 to 255)
Enter: Noise

- We talked about how the same object will look very different across images.
- Even multiple images of the same static scene will not be identical.
- How could we reduce the noise, i.e., give an estimate of the true intensities?
- What if there’s only one image?
Common types of noise

- **Salt and pepper noise**: random occurrences of black and white pixels

- **Impulse noise**: random occurrences of white pixels

- **Gaussian noise**: variations in intensity drawn from a Gaussian normal distribution

Source: S. Seitz
Gaussian noise

\[f(x, y) = \hat{f}(x, y) + \eta(x, y) \]

Gaussian i.i.d. ("white") noise:
\[\eta(x, y) \sim N(\mu, \sigma) \]

\[\text{>> noise} = \text{randn(size(im))}.*\text{sigma}; \]
\[\text{>> output} = \text{im} + \text{noise}; \]

What is impact of the sigma?
First attempt at a solution

• Let’s replace each pixel with an average of all the values in its neighborhood

• Assumptions:
 – Expect pixels to be like their neighbors
 – Expect noise processes to be independent from pixel to pixel
First attempt at a solution

• Let’s replace each pixel with an average of all the values in its neighborhood

• Moving average in 1D:

Source: S. Marschner
Weighted Moving Average

• Can add weights to our moving average
• *Weights* $[1, 1, 1, 1, 1] / 5$

Source: S. Marschner
Weighted Moving Average

• Non-uniform weights [1, 4, 6, 4, 1] / 16

Central pixel =
10*1 +
14*4 +
12*6 +
13*4 +
20*1

Adapted from S. Marschner
Moving Average In 2D

\[F[x, y] \]

\[G[x, y] \]

Source: S. Seitz
Moving Average In 2D

\[F[x, y] \quad G[x, y] \]
Moving Average In 2D

\[F[x, y] \]

\[G[x, y] \]

Source: S. Seitz
Moving Average In 2D

\[F[x, y] \]

\[G[x, y] \]

Source: S. Seitz
Moving Average In 2D

\[F[x, y] \]

\[G[x, y] \]

Source: S. Seitz
Moving Average In 2D

\[F[x, y] \]

\[G[x, y] \]

Source: S. Seitz
Image filtering

• Compute a function of the local neighborhood at each pixel in the image
 – Function specified by a “filter” or mask saying how to combine values from neighbors.
 – Element-wise multiplication

• Uses of filtering:
 – Enhance an image (denoise, resize, etc)
 – Extract information (texture, edges, etc)
 – Detect patterns (template matching)
Correlation filtering

Say the averaging window size is $2k+1 \times 2k+1$:

$$G[i, j] = \frac{1}{(2k + 1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} F[i + u, j + v]$$

Attribute uniform weight Loop over all pixels in neighborhood around to each pixel image pixel $F[i, j]$

Now generalize to allow different weights depending on neighboring pixel’s relative position:

$$G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v]$$

Non-uniform weights
Correlation filtering

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v] \]

This is called cross-correlation, denoted \(G = H \otimes F \)

Filtering an image: replace each pixel with a linear combination of its neighbors.

The filter “kernel” or “mask” \(H[u,v] \) is the prescription for the weights in the linear combination.
Averaging filter

- What values belong in the kernel H for the moving average example?

$$G = H \otimes F$$
Smoothing by averaging

What if the filter size was 5 x 5 instead of 3 x 3?
Gaussian filter

• What if we want nearest neighboring pixels to have the most influence on the output?

\[
\begin{array}{ccc}
F[x, y] & \begin{array}{ccc}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1
\end{array} & H[u, v]
\end{array}
\]

• Removes high-frequency components from the image ("low-pass filter").

This kernel is an approximation of a 2d Gaussian function:

\[
h(u, v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2 + v^2}{\sigma^2}}
\]

Source: S. Seitz
Smoothing with a Gaussian

Vs box filter
Gaussian filters

• What parameters matter here?
• **Size** of kernel or mask
 – Note, Gaussian function has infinite support, but discrete filters use finite kernels

\[
\sigma = 5 \text{ with } 10 \times 10 \text{ kernel} \quad \text{and} \quad \sigma = 5 \text{ with } 30 \times 30 \text{ kernel}
\]
Gaussian filters

• What parameters matter here?
• **Variance** of Gaussian: determines extent of smoothing

\[
\sigma = 2 \text{ with } 30 \times 30 \text{ kernel}
\]

\[
\sigma = 5 \text{ with } 30 \times 30 \text{ kernel}
\]
Gaussian filters

How big should the filter be?

- Values at edges should be near zero ⇐ important!
- Rule of thumb for Gaussian: set filter half-width to about 3 σ

Source: Derek Hoiem
Gaussian filter in Matlab

>> hsize = 10;
>> sigma = 5;
>> h = fspecial(‘gaussian’’ hsize, sigma);

>> mesh(h);

>> imagesc(h);

>> outim = imfilter(im, h); % correlation
>> imshow(outim);
Smoothing with a Gaussian

Parameter \(\sigma \) is the “scale” / “width” / “spread” of the Gaussian kernel, and controls the amount of smoothing.

```matlab
for sigma=1:3:10
    h = fspecial('gaussian', fsize, sigma);
    out = imfilter(im, h);
    imshow(out);
    pause;
end
```
Convolution

- Convolution:
 - Flip the filter in both dimensions (bottom to top, right to left)
 - Then apply cross-correlation

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i-u, j-v]
\]

\[G = H \ast F\]

Notation for convolution operator

Kristen Grauman
Convolution vs. correlation

Convolution

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v]F[i - u, j - v]
\]

\[
G = H \ast F
\]

Cross-correlation

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v]F[i + u, j + v]
\]

\[
G = H \otimes F
\]

For a Gaussian or box filter, how will the outputs differ?
Convolution vs. correlation

Cross-correlation

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v] \]

\[G = H \otimes F \]

Convolution

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v] \]

\[G = H * F \]
Convolution vs. correlation

Cross-correlation

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v]
\]

\[G = H \otimes F\]

Convolution

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v]
\]

\[G = H * F\]
Convolution vs. correlation

Convolution

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v]F[i - u, j - v]
\]

\[
G = H \ast F
\]

Cross-correlation

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v]F[i + u, j + v]
\]

\[
G = H \otimes F
\]
Convolution vs. correlation

Cross-correlation

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v]F[i + u, j + v] \]

\[G = H \otimes F \]

- \(u = -1, \ v = -1 \)
- \(v = 0 \)
- \(v = +1 \)
- \(u = 0, \ v = -1 \)

Convolution

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v]F[i - u, j - v] \]

\[G = H \ast F \]
Convolution vs. correlation

Cross-correlation

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v]
\]

\[
G = H \otimes F
\]

Convolution

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v]
\]

\[
G = H \ast F
\]
Convolution vs. correlation

Cross-correlation

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v] \]

\[G = H \otimes F \]

\[u = -1, \ v = -1 \]
\[v = 0 \]

Convolution

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v] \]

\[G = H \ast F \]
Convolution vs. correlation

Cross-correlation

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v]
\]

\[
G = H \otimes F
\]

- \(u = -1, v = -1 \)
- \(v = 0 \)
- \(v = +1 \)

Convolution

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v]
\]

\[
G = H \ast F
\]
Convolution vs. correlation

Cross-correlation

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v]F[i + u, j + v]
\]

\[
G = H \otimes F
\]

- \(u = -1, \ v = -1\)
- \(v = 0\)
- \(v = +1\)
- \(u = 0, \ v = -1\)

Convolution

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v]F[i - u, j - v]
\]

\[
G = H * F
\]
Properties of smoothing filters

• **Smoothing**
 – Values positive
 – Sum to 1 → overall intensity same as input
 – Amount of smoothing proportional to mask size
 – Remove “high-frequency” components; “low-pass” filter
Predict the outputs using correlation filtering

Kristen Grauman
Practice with linear filters

Original

Source: D. Lowe
Practice with linear filters

Original

Filtered (no change)

Source: D. Lowe
Practice with linear filters

Original

?

Source: D. Lowe
Practice with linear filters

Original

0 0 0
0 0 1
0 0 0

Shifted left by 1 pixel with correlation

Source: D. Lowe
Practice with linear filters

Original

\[
\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{array}
\]

Source: D. Lowe
Practice with linear filters

Original

Blur (with a box filter)

Source: D. Lowe
Practice with linear filters

Original

\[
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{array}
\]

\[
\frac{1}{9}
\]

?

Source: D. Lowe
Practice with linear filters

Sharpening filter:
accentuates differences with
local average

Source: D. Lowe
Sharpening

before

after

Kristen Grauman
Filters for computing gradients

\[
\begin{array}{ccc}
1 & 0 & -1 \\
2 & 0 & -2 \\
1 & 0 & -1 \\
\end{array}
\]

\[
\begin{array}{cc}
\text{intensity image} & \ast \end{array}
\]

Slide credit: Derek Hoiem
Median filter

- No new pixel values introduced
- Removes spikes: good for impulse, salt & pepper noise
- Non-linear filter
Median filter

- Median filter is edge preserving

<table>
<thead>
<tr>
<th>INPUT</th>
<th>MEDIAN</th>
<th>MEAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>⋯⋯⋯⋯⋯⋯⋯⋯⋯</td>
<td>⋯⋯⋯⋯⋯⋯⋯⋯⋯</td>
<td>⋯⋯⋯⋯⋯⋯⋯⋯⋯</td>
</tr>
<tr>
<td>⋯⋯⋯⋯⋯⋯⋯⋯⋯</td>
<td>⋯⋯⋯⋯⋯⋯⋯⋯⋯</td>
<td>⋯⋯⋯⋯⋯⋯⋯⋯⋯</td>
</tr>
</tbody>
</table>
Median filter

Salt and pepper noise

Plots of a row of the image

Matlab: output_im = medfilt2(im, [h w]);
Boundary issues

• What is the size of the output?
 – ‘full’: output size is larger than the size of f
 – ‘same’: output size is same as f

$f = \text{image}$
$h = \text{filter}$

Adapted from S. Lazebnik
Boundary issues

• What about near the edge?
 – the filter window might fall off the edge of the image (in ‘same’ or ‘full’)
 – need to extrapolate
 – methods:
 • clip filter (black)
 • wrap around
 • copy edge
 • reflect across edge

Source: S. Marschner
Properties of convolution

- **Commutative:**
 \[f * g = g * f \]
- **Associative**
 \[(f * g) * h = f * (g * h) \]
- **Distributes over addition**
 \[f * (g + h) = (f * g) + (f * h) \]
- **Scalars factor out**
 \[kf * g = f * kg = k(f * g) \]
- **Identity:**
 \[\text{unit impulse } e = [..., 0, 0, 1, 0, 0, ...]. \ f * e = f \]
Separability

• In some cases, filter is separable, and we can factor into two steps:
 – Convolve all rows
 – Convolve all columns
Separability example

2D filtering (center location only)

The filter factors into an outer product of 1D filters:

Perform filtering along rows:

Followed by filtering along the remaining column:

Kristen Grauman
Application: Hybrid Images

What you see... I see an angry guy

From Far Away

Up Close

It's a woman!
Application: Hybrid Images

Gaussian Filter

Laplacian Filter (sharpening)

unit impulse

Gaussian

Laplacian of Gaussian

Kristen Grauman
Application: Hybrid Images
Application: Hybrid Images

Changing expression

Sad Surprised

Kristen Grauman

Aude Oliva & Antonio Torralba & Philippe G Schyns, SIGGRAPH 2006
Plan for this lecture

• Filters: math and properties
• Types of filters
 – Linear
 • Smoothing
 • Other
 – Non-linear
 • Median
• Texture representation with filters
• Anti-aliasing for image subsampling
Texture

Due to:
Patterns, marks, etches, blobs, holes, relief, etc.
Includes: more regular patterns
Includes: more random patterns
Why analyze texture?

• Important for how we perceive objects
• Can be an important appearance cue that allows us to distinguish objects, especially if shape is similar across objects

Adapted from Kristen Grauman
Texture representation

• Textures are made up of repeated local patterns, so:
 – Find the patterns
 • Use filters that look like patterns (spots, bars, raw patches...)
 • Consider magnitude of response
 – Describe their statistics within each local window
 • E.g. mean, standard deviation
Derivative of Gaussian filter

Figures from Noah Snavely
Texture representation: example

Original Image

Derivative filter responses, squared

<table>
<thead>
<tr>
<th>Window #</th>
<th>(\text{mean } \frac{d}{dx} \text{ value})</th>
<th>(\text{mean } \frac{d}{dy} \text{ value})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Win. #1</td>
<td>4</td>
<td>10</td>
</tr>
</tbody>
</table>

Statistics to summarize patterns in small windows
Texture representation: example

- Original image
- Derivative filter responses, squared

<table>
<thead>
<tr>
<th>Window #</th>
<th>(\text{mean } d/dx) value</th>
<th>(\text{mean } d/dy) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Win. #1</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Win. #2</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td>Win. #9</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

Statistics to summarize patterns in small windows
Texture representation: example

statistics to summarize patterns in small windows

<table>
<thead>
<tr>
<th></th>
<th>mean d/dx value</th>
<th>mean d/dy value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Win. #1</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Win. #2</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td>Win. #9</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

Kristen Grauman
Texture representation: example

Windows with primarily horizontal edges

Windows with small gradient in both directions

Windows with primarily vertical edges

Both

Dimension 1 (mean d/dx value)

Dimension 2 (mean d/dy value)

<table>
<thead>
<tr>
<th></th>
<th>mean d/dx value</th>
<th>mean d/dy value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Win. #1</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Win. #2</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td>Win. #9</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

Statistics to summarize patterns in small windows

Kristen Grauman
Texture representation: example

original image

derivative filter responses, squared

visualization of the assignment to texture “types”
Texture representation: example

Dimension 1 (mean d/dx value)

Dimension 2 (mean d/dy value)

Far: dissimilar textures

Close: similar textures

statistics to summarize patterns in small windows

<table>
<thead>
<tr>
<th>Window</th>
<th>mean d/dx value</th>
<th>mean d/dy value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Win. #1</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Win. #2</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td>Win. #9</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

Kristen Grauman
Computing distances using texture

\[D(a, b) = \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2} \]

\[= \sqrt{\sum_{i=1}^{d} (a_i - b_i)^2} \]

Euclidean distance (L₂)

Kristen Grauman
Texture representation: example

Distance reveals how dissimilar texture from window a is from texture in window b.
Filter banks

• Our previous example used two filters, and resulted in a 2-dimensional feature vector to describe texture in a window.
 – x and y derivatives revealed something about local structure.

• We can generalize to apply a collection of multiple (d) filters: a “filter bank”

• Then our feature vectors will be d-dimensional.

Adapted from Kristen Grauman
Filter banks

- What filters to put in the bank?
 - Typically we want a combination of scales and orientations, different types of patterns.

Matlab code available for these examples:
http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html

Kristen Grauman
Filter bank

Kristen Grauman
To represent pixel, form a “feature vector” from the responses at that pixel.

1x38 vector representation feature

\[[r_1, r_2, \ldots, r_{38}] \]
Vectors of texture responses

To represent pixel, form a “feature vector” from the responses at that pixel.

\[
\begin{bmatrix}
 r_{(1,1)}^1, & r_{(1,1)}^2, & \ldots, & r_{(1,1)}^{38} \\
 r_{(1,2)}^1, & r_{(1,2)}^2, & \ldots, & r_{(1,2)}^{38} \\
 \vdots & \ddots & \ddots & \vdots \\
 r_{(W,H)}^1, & r_{(W,H)}^2, & \ldots, & r_{(W,H)}^{38}
\end{bmatrix}
\]

To represent *image*, compute statistics over all pixel feature vectors, e.g. their mean.

\[
[\text{mean}(r_{(:,1)}), \text{mean}(r_{(:,2)}), \ldots, \text{mean}(r_{(:,38)})]
\]
You try: Can you match the texture to the response?

Filters

A

B

C

Derek Hoiem
Representing texture by mean abs response

Filters

Mean abs responses
Classifying materials, “stuff”
Plan for next two lectures

• Filters: math and properties
• Types of filters
 – Linear
 • Smoothing
 • Other
 – Non-linear
 • Median
• Texture representation with filters
• Anti-aliasing for image subsampling
Sampling

Why does a lower resolution image still make sense to us? What do we lose?

Image: http://www.flickr.com/photos/igorms/136916757/
Subsampling by a factor of 2

Throw away every other row and column to create a 1/2 size image

Derek Hoiem
Aliasing problem

• 1D example (sinewave):

Source: S. Marschner
Aliasing problem

- 1D example (sinewave):
Aliasing problem

• Sub-sampling may be dangerous....
• Characteristic errors may appear:
 – “Wagon wheels rolling the wrong way in movies”
 – “Striped shirts look funny on color television”
Sampling and aliasing
Nyquist-Shannon Sampling Theorem

• When sampling a signal at discrete intervals, the sampling frequency must be $\geq 2 \times f_{\text{max}}$
• $f_{\text{max}} = \text{max frequency of the input signal}$
• This will allows to reconstruct the original perfectly from the sampled version
Anti-aliasing

Solutions:
• Sample more often

• Get rid of high frequencies
 – What are these in the case of images?
 – Will lose information, but it’s better than aliasing
 – Apply a smoothing filter
Algorithm for downsampling by factor of 2

1. Start with image(h, w)
2. Apply low-pass filter
 \[\text{im_blur} = \text{imfilter(image, fspecial('gaussian', 7, 1))} \]
3. Sample every other pixel
 \[\text{im_small} = \text{im_blur(1:2:end, 1:2:end);} \]
Anti-aliasing
Subsampling without pre-filtering

1/2

1/4 (2x zoom)

1/8 (4x zoom)

Slide by Steve Seitz
Subsampling with Gaussian pre-filtering

Gaussian 1/2 G 1/4 G 1/8
Summary

• Filters useful for
 – Enhancing images (smoothing, removing noise), e.g.
 • Box filter (linear)
 • Gaussian filter (linear)
 • Median filter
 – Detecting patterns (e.g. gradients)

• Texture is a useful property that is often indicative of materials, appearance cues
 – Texture representations summarize repeating patterns of local structure

• Can use filtering to reduce the effects of subsampling