CS 2770: Computer Vision
Generative Models

Prof. Adriana Kovashka
University of Pittsburgh
April 12, 17, 2018
Plan for today

• Generative models: What are they?
• Techniques: Generative Adversarial Networks
 – Conditional GANs
 – Cycle-consistency loss
 – Dealing with sparse data
 – Applications interleaved with techniques
• Generation before GANs
• Generation for synthetic training data
Supervised vs Unsupervised Learning

Supervised Learning

Data: \((x, y)\)
\(x\) is data, \(y\) is label

Goal: Learn a *function* to map \(x \rightarrow y\)

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.
Supervised vs Unsupervised Learning

Supervised Learning

Data: \((x, y)\)
- \(x\) is data, \(y\) is label

Goal: Learn a *function* to map \(x \rightarrow y\)

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.
Supervised vs Unsupervised Learning

Supervised Learning

Data: \((x, y)\)

\(x\) is data, \(y\) is label

Goal: Learn a *function* to map \(x \rightarrow y\)

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.
Supervised vs Unsupervised Learning

Supervised Learning

Data: \((x, y)\)
- \(x\) is data, \(y\) is label

Goal: Learn a *function* to map \(x \rightarrow y\)

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.
Supervised Learning

Data: (x, y)

x is data, y is label

Goal: Learn a *function* to map $x \rightarrow y$

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.
Supervised vs Unsupervised Learning

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying hidden structure of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.
Supervised vs Unsupervised Learning

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.
Unsupervised Learning

Data: \(x \)
Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

Principal Component Analysis (Dimensionality reduction)
Unsupervised Learning

Data: \(x \)
Just data, no labels!

Goal: Learn some underlying hidden structure of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

Supervised vs Unsupervised Learning

Autoencoders (Feature learning)
Supervised vs Unsupervised Learning

Unsupervised Learning

Data: \(x \)
Just data, no labels!

Goal: Learn some underlying hidden structure of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.
Supervised vs Unsupervised Learning

Supervised Learning

Data: \((x, y)\)

\(x\) is data, \(y\) is label

Goal: Learn a *function* to map \(x \rightarrow y\)

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

Unsupervised Learning

Data: \(x\)

Just data, **no labels**!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

Serena Young
Generative Models

Training data ~ $p_{data}(x)$

Generated samples ~ $p_{model}(x)$

Want to learn $p_{model}(x)$ similar to $p_{data}(x)$
Generative Models

Training data $\sim p_{\text{data}}(x)$

Generated samples $\sim p_{\text{model}}(x)$

Want to learn $p_{\text{model}}(x)$ similar to $p_{\text{data}}(x)$

Addresses density estimation, a core problem in unsupervised learning

Several flavors:
- Explicit density estimation: explicitly define and solve for $p_{\text{model}}(x)$
- Implicit density estimation: learn model that can sample from $p_{\text{model}}(x)$ w/o explicitly defining it
Why Generative Models?

- Realistic samples for artwork, super-resolution, colorization, etc.
- Generative models of time-series data can be used for simulation and planning (reinforcement learning applications!)
- Training generative models can also enable inference of latent representations that can be useful as general features
Taxonomy of Generative Models

Generative models

Explicit density

- Fully Visible Belief Nets
 - NADE
 - MADE
 - PixelRNN/CNN
- Change of variables models (nonlinear ICA)

Implicit density

Approximate density

- Variational Autoencoder
- Boltzmann Machine

Markov Chain

Boltzmann Machine

Markov Chain

GAN

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.
Problem: Want to sample from complex, high-dimensional training distribution. No direct way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to training distribution.

Q: What can we use to represent this complex transformation?
Generative Adversarial Networks

Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to training distribution.

Q: What can we use to represent this complex transformation?

A: A neural network!

Input: Random noise

Generator Network

Output: Sample from training distribution
Training GANs: Two-player game

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014
Training GANs: Two-player game

Generator network: try to fool the discriminator by generating real-looking images

Discriminator network: try to distinguish between real and fake images

Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014

Serena Yeung
Adversarial Networks Framework

- **Input noise Z**
 - Differentiable function G
 - x sampled from model
 - D tries to output 0
- **Input noise Z**
 - Differentiable function G
 - x sampled from data
 - D tries to output 1

Adversarial Networks Framework by Ian Goodfellow
Adversarial Networks Framework

Generator
\[x \sim G(z) \]

Discriminator
Real vs. Fake

[Goodfellow et al. 2014]

Jun-Yan Zhu
Training GANs: Two-player game

Generator network: try to fool the discriminator by generating real-looking images

Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$
Training GANs: Two-player game

Generator network: try to fool the discriminator by generating real-looking images

Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Discriminator outputs likelihood in (0,1) of real image

Discriminator output for real data x

Discriminator output for generated fake data G(z)
Training GANs: Two-player game

- **Generator network**: try to fool the discriminator by generating real-looking images
- **Discriminator network**: try to distinguish between real and fake images

Train jointly in **minimax game**

Minimax objective function:

\[
\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]
\]

- **Discriminator** (θ_d) wants to **maximize objective** such that $D(x)$ is close to 1 (real) and $D(G(z))$ is close to 0 (fake)
- **Generator** (θ_g) wants to **minimize objective** such that $D(G(z))$ is close to 1 (discriminator is fooled into thinking generated $G(z)$ is real)
Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Alternate between:

1. **Gradient ascent** on discriminator

 $$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

2. **Gradient descent** on generator

 $$\min_{\theta_g} \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z)))$$
Training GANs: Two-player game

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Alternate between:

1. Gradient ascent on discriminator
 $$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

2. Gradient descent on generator
 $$\min_{\theta_g} \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z)))$$

In practice, optimizing this generator objective does not work well!

When sample is likely fake, want to learn from it to improve generator. But gradient in this region is relatively flat!

Gradient signal dominated by region where sample is already good
Training GANs: Two-player game

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Alternate between:

1. **Gradient ascent** on discriminator
 $$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

2. **Instead: Gradient ascent** on generator, different objective
 $$\max_{\theta_g} \mathbb{E}_{z \sim p(z)} \log (D_{\theta_d}(G_{\theta_g}(z)))$$

Instead of minimizing likelihood of discriminator being correct, now maximize likelihood of discriminator being wrong.

Same objective of fooling discriminator, but now higher gradient signal for bad samples => works much better! Standard in practice.
Training GANs: Two-player game

Putting it together: GAN training algorithm

for number of training iterations do
 for k steps do
 • Sample minibatch of m noise samples \(\{ z^{(1)}, \ldots, z^{(m)} \} \) from noise prior \(p_g(z) \).
 • Sample minibatch of m examples \(\{ x^{(1)}, \ldots, x^{(m)} \} \) from data generating distribution \(p_{\text{data}}(x) \).
 • Update the discriminator by ascending its stochastic gradient:
 \[
 \nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} \left[\log D_{\theta_d}(x^{(i)}) + \log(1 - D_{\theta_d}(G_{\theta_g}(z^{(i)}))) \right]
 \]
 end for
 • Sample minibatch of m noise samples \(\{ z^{(1)}, \ldots, z^{(m)} \} \) from noise prior \(p_g(z) \).
 • Update the generator by ascending its stochastic gradient (improved objective):
 \[
 \nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log(D_{\theta_d}(G_{\theta_g}(z^{(i)})))
 \]
end for
Training GANs: Two-player game

Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014

Putting it together: GAN training algorithm

\begin{algorithm}
\textbf{for} number of training iterations \textbf{do}
\textbf{for} \(k\) steps \textbf{do}
\begin{itemize}
\item Sample minibatch of \(m\) noise samples \(\{z^{(1)}, \ldots, z^{(m)}\}\) from noise prior \(p_g(z)\).
\item Sample minibatch of \(m\) examples \(\{x^{(1)}, \ldots, x^{(m)}\}\) from data generating distribution \(p_{\text{data}}(x)\).
\item Update the discriminator by ascending its stochastic gradient:
\[\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} \left[\log D_{\theta_d}(x^{(i)}) + \log(1 - D_{\theta_d}(G_{\theta_g}(z^{(i)}))) \right] \]
\end{itemize}
\textbf{end for}
\begin{itemize}
\item Sample minibatch of \(m\) noise samples \(\{z^{(1)}, \ldots, z^{(m)}\}\) from noise prior \(p_g(z)\).
\item Update the generator by ascending its stochastic gradient (improved objective):
\[\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log(D_{\theta_d}(G_{\theta_g}(z^{(i)}))) \]
\end{itemize}
\textbf{end for}
\end{algorithm}

Some find \(k=1\) more stable, others use \(k > 1\), no best rule.

Recent work (e.g. Wasserstein GAN) alleviates this problem, better stability!
Training GANs: Two-player game

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

After training, use generator network to generate new images
Generative Adversarial Nets

Samples from the model look amazing!

Radford et al, ICLR 2016
Interpolating between random points in latent space

Generative Adversarial Nets

Radford et al, ICLR 2016
Generative Adversarial Nets: Interpretable Vector Math

Smiling woman | Neutral woman | Neutral man

Samples from the model

Radford et al, ICLR 2016
Generative Adversarial Nets: Interpretable Vector Math

Samples from the model

Average Z vectors, do arithmetic

Smiling woman
Neutral woman
Neutral man

Radford et al, ICLR 2016
Generative Adversarial Nets: Interpretable Vector Math

Radford et al, ICLR 2016

Samples from the model

Smiling woman Neutral woman Neutral man

Average Z vectors, do arithmetic

Smiling Man

Serena Young
Generative Adversarial Nets: Interpretable Vector Math

Glasses man No glasses man No glasses woman

Radford et al, ICLR 2016
Generative Adversarial Nets: Interpretable Vector Math

Glasses man No glasses man No glasses woman

Woman with glasses

Radford et al., ICLR 2016
What is in this image?

(Yeh et al., 2016)
Generative modeling reveals a face

(Yeh et al., 2016)
Celebrities Who Never Existed

(Karras et al., 2017)

Ian Goodfellow
Creative Adversarial Networks

CAN: Top ranked by human subjects

(Elgammal et al., 2017)
Artificial Fashion: vue.ai
2017: Year of the GAN

Better training and generation

Source->Target domain transfer

Text -> Image Synthesis

many examples at https://phillipi.github.io/pix2pix/
Plan for today

• Generative models: What are they?

• Techniques: Generative Adversarial Networks
 – Conditional GANs
 – Cycle-consistency loss
 – Dealing with sparse data
 – Applications interleaved with techniques

• Generation before GANs

• Generation for synthetic training data
GANs

G: generate fake samples that can fool D
D: classify fake samples vs. real images

[Goodfellow et al. 2014]
Conditional GANs

Adapted from Jun-Yan Zhu

Edges → Images

Edges from [Xie & Tu, 2015]
Sketches \rightarrow Images

Trained on Edges \rightarrow Images

Data from [Eitz, Hays, Alexa, 2012]

Pix2pix / CycleGAN
#edges2cats [Christopher Hesse]

Ivy Tasi @ivymyt

Vitaly Vidmirov @vvid

https://affinelayer.com/pixsrv/
Cycle Consistency

Discriminator D_Y: $L_{GAN}(G(x), y)$
Real zebras vs. generated zebras

Zhu et al., “Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks”, ICCV 2017
Cycle Consistency

Discriminator D_X: $L_{GAN}(F(y), x)$
Real horses vs. generated horses

Discriminator D_Y: $L_{GAN}(G(x), y)$
Real zebras vs. generated zebras

Zhu et al., “Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks”, ICCV 2017
mode collapse!

Zhu et al., “Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks”, ICCV 2017
No input-output pairs!

Zhu et al., “Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks”, ICCV 2017
Cycle Consistency

Forward cycle loss: $\|F(G(x)) - x\|_1$

Zhu et al., “Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks”, ICCV 2017
Cycle Consistency

Forward cycle loss: $\|F(G(x)) - x\|_1$

Zhu et al., "Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks", ICCV 2017
Cycle Consistency

Forward cycle loss: $\|F(G(x)) - x\|_1$

Backward cycle loss: $\|G(F(y)) - y\|_1$

Zhu et al., “Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks”, ICCV 2017
Training Details: Objective

\[\mathcal{L}_{\text{GAN}}(G, D_Y, X, Y) = \mathbb{E}_{y \sim p_{\text{data}}(y)}[\log D_Y(y)] + \mathbb{E}_{x \sim p_{\text{data}}(x)}[\log(1 - D_Y(G(x)))] , \]

\[\mathcal{L}_{\text{cyc}}(G, F) = \mathbb{E}_{x \sim p_{\text{data}}(x)}[\|F(G(x)) - x\|_1] + \mathbb{E}_{y \sim p_{\text{data}}(y)}[\|G(F(y)) - y\|_1]. \]

\[\mathcal{L}(G, F, D_X, D_Y) = \mathcal{L}_{\text{GAN}}(G, D_Y, X, Y) + \mathcal{L}_{\text{GAN}}(F, D_X, Y, X) + \lambda \mathcal{L}_{\text{cyc}}(G, F), \]

\[G^*, F^* = \arg \min_{G, F} \max_{D_X, D_Y} \mathcal{L}(G, F, D_X, D_Y). \]

Zhu et al., “Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks”, ICCV 2017
Monet’s paintings → photos

Pix2pix / CycleGAN
Monet’s paintings \rightarrow photos

Pix2pix / CycleGAN
#CycleGAN

Monet → Thomas Kinkade @David Fouhey

Birds @Matt Powell

Resurrecting Ancient Cities @ Jack Clark

Bear → Panda @Matt Powell

Pix2pix / CycleGAN
#CycleGAN

Portrait to Dollface
@Mario Klingemann

Colorizing legacy photographs
@Mario Klingemann

Pix2pix / CycleGAN
StarGAN

Choi et al., “StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation”, CVPR 2018
Choi et al., “StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation”, CVPR 2018
Plan for today

• Generative models: What are they?
• Techniques: Generative Adversarial Networks
 – Conditional GANs
 – Cycle-consistency loss
 – Dealing with sparse data
 – Applications interleaved with techniques
• Generation before GANs
• Generation for synthetic training data
Autoencoders

$\frac{L_1}{L_2}$ reconstruction loss

Encoder

Decoder

code

Mihaela Rosca
Adversarial Autoencoders

Improve reconstruction quality by adding a GAN loss.

Adversarial Autoencoders
A. Makhzani, J. Shlens, N.Jaitly, I. Goodfellow, B. Frey
Autoencoder GANs

- Combine the reconstruction power of autoencoders with the sampling power of GANs.
- By construction, autoencoders learn to cover the entire training data.
- Work on the codespace - not data space.

Adapted from Mihaela Rosca
Learning the code distribution

Assumption
learning the code distribution is simpler than learning data distribution

Encoder → Decoder

learn \(p(\text{codes}) \)

Decoder

reconstructing

sampling

Mihaela Rosca
Plan for today

- Generative models: What are they?
- Techniques: Generative Adversarial Networks
 - Conditional GANs
 - Cycle-consistency loss
 - Dealing with sparse data
 - Applications interleaved with techniques
- Generation before GANs
- Generation for synthetic training data
Neural Style Transfer

Image Quilting for Texture Synthesis & Transfer

Alexei Efros (UC Berkeley)
Bill Freeman (MERL)
Efros & Leung ’99

[Shannon, ’48] proposed a way to generate English-looking text using N-grams:

- Assume a generalized Markov model
- Use a large text to compute prob. distributions of each letter given N-1 previous letters
- Starting from a seed repeatedly sample this Markov chain to generate new letters
- Also works for whole words

WE NEED TO EAT CAKE
Assuming Markov property, compute $P(p | N(p))$

- Building explicit probability tables infeasible
- Instead, let’s search the input image for all similar neighborhoods — that’s our histogram for p

To synthesize p, just pick one match at random
Texture Transfer

Take the texture from one object and “paint” it onto another object

- This requires separating texture and shape
- That’s HARD, but we can cheat
- Assume we can capture shape by boundary and rough shading

Then, just add another constraint when sampling: similarity to underlying image at that spot
Plan for today

• Generative models: What are they?
• Techniques: Generative Adversarial Networks
 – Conditional GANs
 – Cycle-consistency loss
 – Dealing with sparse data
 – Applications interleaved with techniques
• Generation before GANs
• Generation for synthetic training data
Generating Training Data

Shrivastava et al., “Learning From Simulated and Unsupervised Images Through Adversarial Training”, CVPR 2017
Generating Training Data

(a) Image examples from the Linemod dataset.

(b) Examples generated by our model, trained on Linemod.

Bousmalis et al., “Unsupervised Pixel-Level Domain Adaptation With Generative Adversarial Networks”, CVPR 2017
Generating Training Data

Figure 1: (a) Examples from our novel Precarious Pedestrian Dataset of dangerous, but rare pedestrian scenes.

Huang and Ramanan, “Expecting the Unexpected: Training Detectors for Unusual Pedestrians With Adversarial Imposters”, CVPR
Generating Training Data

Varol et al., “Learning From Synthetic Humans”, CVPR 2017
Recognizing atypical objects

- Computer vision models cannot recognize objects in unusual modalities well

Thomas and Kovashka, in submission to ECCV 2018
Recognizing atypical objects

• Training a network with two source modalities helps it generalize to novel target modalities

• We can obtain good secondary modalities for free:
 • Automatic transformation of a photo to a cartoon/sketch (style transfer by Johnson et al. ECCV 2016)
Recognizing atypical objects

Thomas and Kovashka, in submission to ECCV 2018
Recognizing atypical objects

• We outperform prior domain adaptation methods
 • Including a generous modification of Bousmalis et al. 2017 ~ our approach but with GAN instead of style transfer

<table>
<thead>
<tr>
<th></th>
<th>PACS: Art, Cartoons, Sketches (Li 2017)</th>
<th>Sketchy Database (Sangkloy 2016)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Adaptation</td>
<td>0.388605333</td>
<td>0.093055</td>
</tr>
<tr>
<td>Ganin & Lempitsky 2015</td>
<td>0.537944333</td>
<td>0.112329</td>
</tr>
<tr>
<td>Castrejon et al. 2016</td>
<td>0.400783</td>
<td>0.085107</td>
</tr>
<tr>
<td>Ghifary et al. 2016</td>
<td>0.462287276</td>
<td>0.22547</td>
</tr>
<tr>
<td>Long et al. 2016</td>
<td>0.566674</td>
<td>0.303163</td>
</tr>
<tr>
<td>Bousmalis et al. 2017 + domain confusion</td>
<td>0.547297333</td>
<td>0.284765</td>
</tr>
<tr>
<td>Ours</td>
<td>0.587813333</td>
<td>0.326453</td>
</tr>
<tr>
<td>Supervised (upper bound)</td>
<td>0.904064333</td>
<td>0.822074</td>
</tr>
</tbody>
</table>

Thomas and Kovashka, in submission to ECCV 2018