CS 1678: Intro to Deep Learning
Convolutional Neural Networks

Prof. Adriana Kovashka
University of Pittsburgh
March 2, 2021
Plan for this lecture

• Motivation: Scanning for patterns
• Convolutional network operations
• Common architectures
• Visualizing convolutional networks
• Applications in computer vision
Neural networks so far

- Can recognize patterns in data (e.g. digits)

Adapted from Bhiksha Raj
The weights look for patterns

- The green pattern looks more like the weights pattern (black) than the red pattern
 - The green pattern is more correlated with the weights

\[y = \begin{cases}
1 & \text{if } \sum w_i x_i \geq T \\
0 & \text{else}
\end{cases} \]

Correlation = 0.57

Correlation = 0.82
A problem

• Does this signal contain the word “Welcome”?
• Compose a NN for this problem
 – Assuming all recordings are exactly the same length
Finding a Welcome

- Trivial solution: Train a NN for the entire recording
Finding a Welcome

• Problem with trivial solution: Network that finds a “welcome” in the top recording will not find it in the lower one
 – Unless trained with both
 – Will require a very large network and a large amount of training data to cover every case
• Need a *simple* network that will fire regardless of the location of “Welcome”
 – and not fire when there is none
Flower

- Is there a flower in any of these images?
• Will a NN that recognizes the left image as a flower also recognize the one on the right as a flower?
• Need a network that will “fire” regardless of the precise location of the target object
The need for *shift invariance*

- In many problems the *location* of a pattern is not important
 - Only the presence of the pattern is important
- Conventional NNs are sensitive to location of pattern
 - Moving it by one component results in an entirely different input that the NN won't recognize
- Requirement: Network must be *shift invariant*
Solution: Scan

- Scan for the target word
 - The audio signals in a “window” are input to a “welcome-detector” NN
Solution: Scan

• “Does welcome occur in this recording?”
 – Maximum of all outputs (Equivalent of Boolean OR)
 – Or more complex function

Adapted from Bhiksha Raj
2-d analogue: Does this picture have a flower?

- *Scan* for the desired object
 - “Look” for the target object at each position
 - At each location, entire region is sent through NN
A giant net with common identical subnets

- Determine if any of the locations had a flower
 - Each dot in the right represents the output of the NN when it classifies one location in the input figure
 - Look at the maximum value
 - Or pass it through a simple NN (e.g. linear combination + softmax)

Adapted from Bhiksha Raj
• Consider the first layer
 – Assume \(N \) inputs and \(M \) outputs
• The weights matrix is a full \(N \times M \) matrix
 – Requiring \(N \times M \) unique parameters
Scanning networks

- In a **scanning NN** each neuron is connected to a subset of neurons in the previous layer
 - The weights matrix is sparse
 - The weights matrix is block structured with identical blocks
 - The network is a **shared parameter** model

Adapted from Bhiksha Raj
Training the network

• These are really just large networks
 • Can use conventional backpropagation to learn parameters
 • Backprop learns a network that maps the training inputs to the target binary outputs
Training the network: constraint

- These are *shared parameter* networks
 - All lower-level subnets are identical
 - Are all searching for the same pattern
 - Any update of the parameters of one copy of the subnet must equally update *all* copies
Convolutional Neural Networks (CNN)

- Neural network with specialized connectivity structure
- Stack multiple stages of feature extractors
- Higher stages compute more global, more invariant, more abstract features
- Classification layer at the end

Convolutional Neural Networks (CNN)

- Feed-forward feature extraction:
 1. *Convolve* input with learned filters
 2. Apply non-linearity
 3. Spatial pooling (downsample)

- Recent architectures have additional operations (to be discussed)

- Trained with some loss, backprop
1. Convolution

- Apply learned filter weights
- One feature map per filter
- Stride can be greater than 1 (faster, less memory)

Adapted from Rob Fergus
2. Non-Linearity

- Per-element (independent)
- Some options:
 - Tanh
 - Sigmoid: \(\frac{1}{1+\exp(-x)} \)
 - Rectified linear unit (ReLU)
 - Avoids saturation issues

Adapted from Rob Fergus

Krizhevsky et al.

Figure 1: A four-layer convolutional neural network with ReLUs (solid line) reaches a 25% training error rate on CIFAR-10 six times faster than an equivalent network with tanh neurons (dashed line). The learning rates for each network were chosen independently to make training as fast as possible. No regularization of any kind was employed. The magnitude of the effect demonstrated here varies with network architecture, but networks with ReLUs consistently learn several times faster than equivalents with saturating neurons.
3. Spatial Pooling

- Sum or max over non-overlapping / overlapping regions

Rob Fergus, figure from Andrej Karpathy
3. Spatial Pooling

• Sum or max over non-overlapping / overlapping regions

• Role of pooling:
 • Invariance to small transformations
 • Larger receptive fields (neurons see more of input)

Adapted from Rob Fergus
Figure 9.1: An example of 2-D convolution without kernel flipping. We restrict the output to only positions where the kernel lies entirely within the image, called “valid” convolution in some contexts. We draw boxes with arrows to indicate how the upper-left element of the output tensor is formed by applying the kernel to the corresponding upper-left region of the input tensor.
Background: Moving Average In 2D

\[F[x, y] \]

\[G[x, y] \]

Source: S. Seitz
Background: Moving Average In 2D

\[F[x, y] \]

\[G[x, y] \]

Source: S. Seitz
Background: Moving Average In 2D

\[F[x, y] \]

\[G[x, y] \]
Background: Moving Average In 2D

\[F[x, y] \]

\[G[x, y] \]

Source: S. Seitz
Background: Moving Average In 2D

\[F[x, y] \]

\[G[x, y] \]

Source: S. Seitz
Background: Moving Average In 2D

\[F[x, y] \quad \text{and} \quad G[x, y] \]

Source: S. Seitz
Image filtering

• Compute a function of the local neighborhood at each pixel in the image
 – Function specified by a “filter” or mask saying how to combine values from neighbors.
 – Element-wise multiplication

• Uses of filtering:
 – Enhance an image (denoise, resize, etc)
 – Extract information (texture, edges, etc)
 – Detect patterns (template matching)

Adapted from Derek Hoiem
Correlation filtering

Say the averaging window size is $2k+1 \times 2k+1$:

$$G[i, j] = \frac{1}{(2k + 1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} F[i + u, j + v]$$

Attribute uniform weight to each pixel
Loop over all pixels in neighborhood around image pixel $F[i,j]$

Now generalize to allow **different weights** depending on neighboring pixel’s relative position:

$$G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v]F[i + u, j + v]$$

Non-uniform weights
Correlation filtering

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v] \]

This is called cross-correlation, denoted \(G = H \otimes F \)

Filtering an image: replace each pixel with a linear combination of its neighbors.

The filter a.k.a. kernel a.k.a. mask \(H[u, v] \) is the prescription for the weights in the linear combination.

Adapted from Kristen Grauman
Averaging filter

- What values belong in the kernel H for the moving average example?

$$G = H \otimes F$$
Smoothing by averaging

What if the filter size was 5 x 5 instead of 3 x 3?
Gaussian filter

- What if we want nearest neighboring pixels to have the most influence on the output?

This kernel is an approximation of a 2d Gaussian function:

\[
h(u, v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2 + v^2}{2\sigma^2}}
\]

Source: S. Seitz
Convolution

- Convolution:
 - Flip the filter in both dimensions (bottom to top, right to left)
 - Then apply cross-correlation

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v]
\]

\[
G = H \ast F
\]

Notation for convolution operator
Convolution vs. correlation

Convolution

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v] \]

\[G = H \ast F \]

Cross-correlation

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v] \]

\[G = H \otimes F \]

For a Gaussian or box filter, how will the outputs differ?
Convolution vs. correlation

Cross-correlation

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v]
\]

\[
G = H \otimes F
\]

Convolution

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v]
\]

\[
G = H \ast F
\]
Convolution vs. correlation

Cross-correlation

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v] \]

\[G = H \otimes F \]

- \(u = -1, \ v = -1 \)
- \(v = 0 \)

Convolution

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v] \]

\[G = H \ast F \]
Convolution vs. correlation

Cross-correlation

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v]F[i + u, j + v]
\]

\[
G = H \otimes F
\]

- \(u = -1, v = -1\)
- \(v = 0\)
- \(v = +1\)

Convolution

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v]F[i - u, j - v]
\]

\[
G = H \ast F
\]
Cross-correlation

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v] \]

\[G = H \ast F \]

Convolution

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v] \]

\[G = H \ast F \]
Convolutions vs. correlation

Cross-correlation

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v] \]

\[G = H \otimes F \]

Convolution

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v] \]

\[G = H \ast F \]
Convolution vs. correlation

Cross-correlation

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v] \]

\[G = H \otimes F \]

Convolution

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v] \]

\[G = H \ast F \]
Convolution vs. correlation

Cross-correlation

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v]F[i + u, j + v] \]

\[G = H \otimes F \]

Convolution

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v]F[i - u, j - v] \]

\[G = H * F \]
Convolution vs. correlation

Cross-correlation

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v]F[i + u, j + v]
\]

\[
G = H \otimes F
\]

Convolution

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v]F[i - u, j - v]
\]

\[
G = H \ast F
\]
Predict the outputs using correlation filtering

\[
\begin{array}{c c c c c c}
0 & 0 & 0 & \ast & 0 & 1 & 0 \\
0 & 1 & 0 & \ast & 0 & 0 & 0 \\
\end{array}
= ?
\]

\[
\begin{array}{c c c c c c}
0 & 0 & 0 & \ast & 0 & 0 & 1 \\
0 & 0 & 1 & \ast & 0 & 0 & 0 \\
\end{array}
= ?
\]

\[
\begin{array}{c c c c c c}
0 & 0 & 0 & \ast & 0 & 0 & 0 \\
0 & 0 & 0 & \ast & 0 & 2 & 0 \\
0 & 0 & 0 & \ast & 0 & 0 & 0 \\
\end{array}
= \frac{1}{9} \begin{array}{c c c c}
1 & 1 & 1 & \ast \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
\end{array}
= ?
\]
Practice with linear filters

Original

\[
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
\end{array}
\]
Practice with linear filters

Original

Filtered (no change)

Source: D. Lowe
Practice with linear filters

Original

\[
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
\end{array}
\]

Source: D. Lowe
Practice with linear filters

Original

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Shifted left by 1 pixel with correlation

Source: D. Lowe
Practice with linear filters

Original

\[
\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{array}
\]

Source: D. Lowe
Practice with linear filters

Original

Blur (with a box filter)

Source: D. Lowe
Practice with linear filters

Original

\[
\begin{bmatrix}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0 \\
\end{bmatrix}
- \frac{1}{9}
\begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{bmatrix}
\]

Source: D. Lowe
Practice with linear filters

Sharpening filter:
accentuates differences with local average

Source: D. Lowe
Sharpening

before

after
Filters for computing gradients
Texture representation: example

Original image

Derivative filter responses, squared

Statistics to summarize patterns in small windows

<table>
<thead>
<tr>
<th>Win. #1</th>
<th>mean d/dx value</th>
<th>mean d/dy value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Texture representation: example

- Original image
- Derivative filter responses, squared
- Statistics to summarize patterns in small windows

<table>
<thead>
<tr>
<th></th>
<th>mean d/dx value</th>
<th>mean d/dy value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Win. #1</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Win. #2</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Texture representation: example

Original image

Derivative filter responses, squared

Statistics to summarize patterns in small windows

<table>
<thead>
<tr>
<th>Window</th>
<th>(\text{mean } \frac{d}{dx} \text{ value})</th>
<th>(\text{mean } \frac{d}{dy} \text{ value})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Win. #1</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Win. #2</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td>Win. #9</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

Kristen Grauman
Vectors of texture responses

To represent pixel, form a “feature vector” from the responses at that pixel.

\[
\begin{align*}
[r_{(1,1)}^1, r_{(1,1)}^2, \ldots, r_{(1,1)}^{38}] \\
[r_{(1,2)}^1, r_{(1,2)}^2, \ldots, r_{(1,2)}^{38}] \\
[r_{(W,H)}^1, r_{(W,H)}^2, \ldots, r_{(W,H)}^{38}]
\end{align*}
\]

To represent image, compute statistics over all pixel feature vectors, e.g. their mean.

\[
[\text{mean}(r_{(\cdot)}^1), \text{mean}(r_{(\cdot)}^2), \ldots, \text{mean}(r_{(\cdot)}^{38})]
\]
You try: Can you match the texture to the response?

Filters

Mean abs responses

A

B

C

Derek Hoiem
Representing texture by mean abs response

Filters

Mean abs responses

Derek Hoiem
Convolutions: More detail

32x32x3 image

Andrej Karpathy
Convolutions: More detail

Convolve the filter with the image i.e. “slide over the image spatially, computing dot products”
Convolutions: More detail

Convolution Layer

32x32x3 image
5x5x3 filter \(w \)

1 number: the result of taking a dot product between the filter and a small 5x5x3 chunk of the image (i.e. \(5 \times 5 \times 3 = 75 \)-dimensional dot product + bias)

\[w^T x + b \]
Convolutions: More detail

Convolution Layer

32x32x3 image
5x5x3 filter

convolve (slide) over all spatial locations

activation map
Convolutions: More detail

Convolution Layer

32x32x3 image
5x5x3 filter

convolve (slide) over all spatial locations

consider a second, green filter

activation maps

Andrej Karpathy
For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!
Convolutions: More detail

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions.
ConvNet is a sequence of Convolutional Layers, interspersed with activation functions.

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with activation functions.

Convolutions: More detail

Andrej Karpathy
Convolutions: More detail

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
We call the layer convolutional because it is related to convolution of two signals:

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v] \]

Element-wise multiplication and sum of a filter and the signal (image)

Example 5x5 filters (32 total)
Convolutions: More detail

A closer look at spatial dimensions:

- 32x32x3 image
- 5x5x3 filter
- convolve (slide) over all spatial locations

activation map
Convolutions: More detail

A closer look at spatial dimensions:

7x7 input (spatially)
assume 3x3 filter
Convolutions: More detail

A closer look at spatial dimensions:

7x7 input (spatially)
assume 3x3 filter
Convolutions: More detail

A closer look at spatial dimensions:

7x7 input (spatially)
assume 3x3 filter
Convolutions: More detail

A closer look at spatial dimensions:

7x7 input (spatially)
assume 3x3 filter
Convolutions: More detail

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter => 5x5 output
Convolutions: More detail

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter applied with stride 2
Convolutions: More detail

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter applied with stride 2
Convolutions: More detail

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter applied with stride 2 => 3x3 output!
Convolutions: More detail

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter applied **with stride 3?**
Convolutions: More detail

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter applied with stride 3?

doesn’t fit!
cannot apply 3x3 filter on 7x7 input with stride 3.
Convolutions: More detail

Output size: \((N - F) / \text{stride} + 1\)

e.g. \(N = 7, F = 3\):

- **stride 1** => \((7 - 3)/1 + 1 = 5\)
- **stride 2** => \((7 - 3)/2 + 1 = 3\)
- **stride 3** => \((7 - 3)/3 + 1 = 2.33 :\)
In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with **stride 1**
pad with 1 pixel border => what is the output?

(recall:)
\[(N - F) / \text{stride} + 1\]
Convolutions: More detail

In practice: Common to zero pad the border

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

e.g. input 7x7

3x3 filter, applied with **stride 1**

pad with 1 pixel border ⇒ what is the output?

7x7 output!
Convolutions: More detail

In practice: Common to zero pad the border

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

e.g. input 7x7

3x3 filter, applied with **stride 1**

pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with

stride 1, filters of size FxF, and zero-padding with

\((F-1)/2\). (will preserve size spatially)

e.g. \(F = 3\) => zero pad with 1

\(F = 5\) => zero pad with 2

\(F = 7\) => zero pad with 3

\[(N + 2*padding - F) / \text{stride} + 1\]
Figure 9.13: The effect of zero padding on network size. Consider a convolutional network with a kernel of width six at every layer. In this example, we do not use any pooling, so only the convolution operation itself shrinks the network size. (Top) In this convolutional network, we do not use any implicit zero padding. This causes the representation to shrink by five pixels at each layer. Starting from an input of sixteen pixels, we are only able to have three convolutional layers, and the last layer does not ever move the kernel, so arguably only two of the layers are truly convolutional. The rate of shrinking can be mitigated by using smaller kernels, but smaller kernels are less expressive, and some shrinking is inevitable in this kind of architecture. (Bottom) By adding five implicit zeros to each layer, we prevent the representation from shrinking with depth. This allows us to make an arbitrarily deep convolutional network.
Convolutions: More detail

Examples time:

Input volume: \textbf{32x32x3}
10 5x5x3 filters with stride 1, pad 2

Output volume size: ?
Convolutions: More detail

Examples time:

Input volume: \(32\times32\times3\)
\(10\ 5\times5\times3\) filters with stride 1, pad 2

Output volume size:
\((32+2\times2-5)/1+1 = 32\) spatially, so
\(32\times32\times10\)
Convolutions: More detail

Examples time:

Input volume: \textbf{32x32x3}
10 5x5x3 filters with stride 1, pad 2

Number of parameters in this layer?
Examples time:

Input volume: 32x32x3
10 5x5x3 filters with stride 1, pad 2

Number of parameters in this layer? each filter has 5*5*3 + 1 = 76 params (bias)
=> 76*10 = 760
Putting it all together
Some Common Architectures
Case Study: AlexNet

[Krizhevsky et al. 2012]

Architecture:
CONV1
MAX POOL1
NORM1
CONV2
MAX POOL2
NORM2
CONV3
CONV4
CONV5
Max POOL3
FC6
FC7
FC8
Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Output volume **[55x55x96]**

Parameters: \((11 \times 11 \times 3) \times 96 = 35K\)
Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2
Output volume: 27x27x96

Q: what is the number of parameters in this layer?
Case Study: AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
- [227x227x3] INPUT
- [55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
- [27x27x96] MAX POOL1: 3x3 filters at stride 2
- [27x27x96] NORM1: Normalization layer
- [27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
- [13x13x256] MAX POOL2: 3x3 filters at stride 2
- [13x13x256] NORM2: Normalization layer
- [13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
- [13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
- [13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
- [6x6x256] MAX POOL3: 3x3 filters at stride 2
- [4096] FC6: 4096 neurons
- [4096] FC7: 4096 neurons
- [1000] FC8: 1000 neurons (class scores)

Details/Retrospectives:
- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10 manually when val accuracy plateaus
- L2 weight decay 5e-4

3.3 Local Response Normalization

ReLU's have the desirable property that they do not require input normalization to prevent them from saturating. If at least some training examples produce a positive input to a ReLU, learning will happen in that neuron. However, we still find that the following local normalization scheme aids generalization. Denoting by \(a^i_{x,y} \) the activity of a neuron computed by applying kernel *i* at position \((x, y)\) and then applying the ReLU nonlinearity, the response-normalized activity \(b^i_{x,y} \) is given by the expression

\[
 b^i_{x,y} = a^i_{x,y} / \left(k + \alpha \sum_{j=\max(0,i-n+2),i}^{\min(N-1,i+n/2)} (a^j_{x,y})^\beta \right)
\]

where \(k \) is a “clipping” level, \(\alpha \) is a smoothing weight with \(\alpha \geq 1 \), and \(N \) is the width of the kernel.
The diagram illustrates the winners of the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) from 2010 to 2017. The x-axis represents the years from 2010 to 2017, and the y-axis represents the classification accuracy. The bars show the accuracy percentages for each year, with the best performance highlighted. The diagram also indicates the number of layers in the winning models for each year. For instance, the winning model in 2010 used shallow networks (8 layers), while the models in 2014 and 2017 used deeper networks with 152 layers. The model in 2015 used a ResNet (152 layers), and the model in 2016 used a SENet (152 layers). The model in 2017 used a SE-ResNet (152 layers). The model in 2014 used a VGG (19 layers) and a GoogleNet (22 layers). The model in 2015 used a ResNet (152 layers). The model in 2016 used a SENet (152 layers). The model in 2017 used a SE-ResNet (152 layers). The model in 2018 used a human model with 5.1% accuracy.
Case Study: VGGNet

[Simonyan and Zisserman, 2014]

Small filters, Deeper networks

8 layers (AlexNet)

-> 16 - 19 layers (VGG16Net)

Only 3x3 CONV stride 1, pad 1

and 2x2 MAX POOL stride 2

11.7% top 5 error in ILSVRC’13

(ZFNet)

-> 7.3% top 5 error in ILSVRC’14

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung
Case Study: VGGNet
[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers
has same **effective receptive field** as
one 7x7 conv layer

But deeper, more non-linearities

And fewer parameters: 3 * (3^2C^2) vs. 7^2C^2 for C channels per layer

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung
Case Study: VGGNet

INPUT: [224x224x3] memory: 224*224*3=150K params: 0

CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0

CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0

CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0

CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0

FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

TOTAL memory: 24M * 4 bytes ~= 96MB / image (for a forward pass)
TOTAL params: 138M parameters
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

- **2010**: 28.2
 - Lin et al

- **2011**: 25.8
 - Sanchez & Perronnin

- **2012**: 16.4
 - Krizhevsky et al (AlexNet)

- **2013**: 11.7
 - Zeiler & Fergus

- **2014**: 7.3
 - Simonyan & Zisserman (VGG)

- **2014**: 6.7
 - Szegedy et al (GoogleNet)

- **2015**: 3.6
 - He et al (ResNet)

- **2016**: 3
 - Shao et al

- **2017**: 2.3
 - Hu et al (SENet)

- **2018**: 5.1
 - Russakovsky et al

Layer Depth:
- Shallow
- 8 layers
- 152 layers
- 19 layers
- 22 layers
- Human
Case Study: GoogLeNet
[Szegedy et al., 2014]

Deeper networks, with computational efficiency

- 22 layers
- Efficient “Inception” module
- No FC layers
- Only 5 million parameters!
 12x less than AlexNet
- ILSVRC’14 classification winner
 (6.7% top 5 error)
Case Study: GoogLeNet
[Szegedy et al., 2014]

“Inception module”: design a good local network topology (network within a network) and then stack these modules on top of each other.

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung
Case Study: GoogLeNet
[Szegedy et al., 2014]

Apply parallel filter operations on the input from previous layer:
- Multiple receptive field sizes for convolution (1x1, 3x3, 5x5)
- Pooling operation (3x3)

Concatenate all filter outputs together depth-wise
Case Study: GoogLeNet
[Szegedy et al., 2014]

Example:

Q3: What is output size after filter concatenation?

\[
28 \times 28 \times (128 + 192 + 96 + 256) = 28 \times 28 \times 672
\]

Conv Ops:

- [1x1 conv, 128] 28x28x128x1x1x256
- [3x3 conv, 192] 28x28x192x3x3x256
- [5x5 conv, 96] 28x28x96x5x5x256

Total: 854M ops

Very expensive compute

Pooling layer preserves feature depth, which means total depth after concatenation can only grow at every layer!

Solution: “bottleneck” layers that use 1x1 convolutions to reduce feature depth

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung
1x1 convolutions

Each filter has size 1x1x64, and performs a 64-dimensional dot product

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung
1x1 convolutions

Preserves spatial dimensions, reduces depth!

Projects depth to lower dimension (combination of feature maps)
Inception module with dimension reduction

Naive Inception module

Case Study: GoogLeNet
[Ørstvedt et al., 2014]

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Total: 854M ops

Total: 358M ops

1x1 conv “bottleneck” layers
Case Study: GoogLeNet

[Szegedy et al., 2014]

Full GoogLeNet architecture

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

“Revolution of Depth”

- 152 layers
- 152 layers
- 152 layers

- Shallow
- 8 layers
- 8 layers
- 19 layers
- 22 layers

2010: Lin et al. Sanchez & Perronnin
2011: Krizhevsky et al. (AlexNet)
2012: Zeiler & Fergus
2013: Simonyan & Zisserman (VGG)
2014: Szegedy et al. (GoogLeNet)
2014: He et al. (ResNet)
2015: Shao et al.
2016: Hu et al. (SENet)
2017: Russakovsky et al.

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung
Case Study: ResNet

[He et al., 2016]

Very deep networks using residual connections

- 152-layer model for ImageNet
- ILSVRC’15 classification winner (3.57% top 5 error)
- Swept all classification and detection competitions in ILSVRC’15 and COCO’15!
Case Study: ResNet
[He et al., 2016]

What happens when we continue stacking deeper layers on a “plain” convolutional neural network?

Q: What’s strange about these training and test curves? [Hint: look at the order of the curves]

56-layer model performs worse on both training and test error
-> The deeper model performs worse, but it’s not caused by overfitting!
Case Study: ResNet

[He et al., 2016]

Hypothesis:
The problem is an optimization problem, deeper models are harder to optimize.

The deeper model should be able to perform at least as well as the shallower model.

A solution by construction is copying the learned layers from the shallower model and setting additional layers to identity mapping.
Case Study: ResNet
[He et al., 2016]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a desired underlying mapping.

\[H(x) = F(x) + x \]

Use layers to fit residual \(F(x) = H(x) - x \) instead of \(H(x) \) directly.
Case Study: ResNet

[He et al., 2016]

Full ResNet architecture:
- Stack residual blocks
- Every residual block has two 3x3 conv layers

![ResNet Diagram](image-url)
Comparing complexity...

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung; figures by Alfredo Canziani, Adam Paszke, Eugenio Culurciello
Improving ResNets...

Wide Residual Networks

[Zagoruyko et al. 2016]

- Argues that residuals are the important factor, not depth
- User wider residual blocks (F x k filters instead of F filters in each layer)
- 50-layer wide ResNet outperforms 152-layer original ResNet
- Increasing width instead of depth more computationally efficient (parallelizable)
Improving ResNets...
Aggregated Residual Transformations for Deep Neural Networks (ResNeXt)

[Xie et al. 2016]

- Also from creators of ResNet
- Increases width of residual block through multiple parallel pathways ("cardinality")
- Parallel pathways similar in spirit to Inception module

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung
Improving ResNets...
Deep Networks with Stochastic Depth

[Huang et al. 2016]

- Motivation: reduce vanishing gradients and training time through short networks during training
- Randomly drop a subset of layers during each training pass
- Bypass with identity function
- Use full deep network at test time
Beyond ResNets...

Densely Connected Convolutional Networks

[Huang et al. 2017]

- Dense blocks where each layer is connected to every other layer in feedforward fashion
- Alleviates vanishing gradient, strengthens feature propagation, encourages feature reuse
Summary: CNN Architectures

Case Studies
- AlexNet
- VGG
- GoogLeNet
- ResNet

Also....
- Wide ResNet
- ResNeXT
- DenseNet
Summary: CNN Architectures

- VGG, GoogLeNet, ResNet all in wide use, available in model zoos
- Trend towards extremely deep networks
- Significant research centers around design of layer / skip connections and improving gradient flow
- Efforts to investigate necessity of depth vs. width and residual connections
- Even more recent trend towards *meta-learning* (e.g. learning what architecture should be)

Adapted from Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung
Understanding CNNs
Layer 1

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]
Layer 2

- Activations projected down to pixel level via decovolution
- Patches from validation images that give maximal activation of a given feature map

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]
Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]
Layer 4 and 5

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]
Occlusion experiments

as a function of the position of the square of zeros in the original image

[Zeiler & Fergus 2014]
Occlusion experiments

(a) Input Image

(d) Classifier, probability of correct class

(as a function of the position of the square of zeros in the original image)

[Zeiler & Fergus 2014]
What image maximizes a class score?

Repeat:
1. Forward an image
2. Set activations in layer of interest to all zero, except for a 1.0 for a neuron of interest
3. Backprop to image
4. Do an “image update”
What image maximizes a class score?

[Understanding Neural Networks Through Deep Visualization, Yosinski et al., 2015]
http://yosinski.com/deepvis

Andrej Karpathy
What image maximizes a class score?
Fig. 1: (a) Original image with a cat and a dog. (b-f) Support for the cat category according to various visualizations for VGG-16 and ResNet. (b) Guided Backpropagation [53]; highlights all contributing features. (c, f) Grad-CAM (Ours): localizes class-discriminative regions, (d) Combining (b) and (c) gives Guided Grad-CAM, which gives high-resolution class-discriminative visualizations. Interestingly, the localizations achieved by our Grad-CAM technique, (c) are very similar to results from occlusion sensitivity (e), while being orders of magnitude cheaper to compute. (f, l) are Grad-CAM visualizations for ResNet-18 layer. Note that in (c, f, i, l), red regions corresponds to high score for class, while in (e, k), blue corresponds to evidence for the class. Figure best viewed in color.
Breaking CNNs

Take a correctly classified image (left image in both columns), and add a tiny distortion (middle) to fool the ConvNet with the resulting image (right).

Intriguing properties of neural networks [Szegedy ICLR 2014]
Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images [Nguyen et al. CVPR 2015]
Applications in computer vision
Image Classification

Class Scores
Cat: 0.9
Dog: 0.05
Car: 0.01
...

Vector:
4096

Fully-Connected:
4096 to 1000

Slide by: Justin Johnson
Other Computer Vision Tasks

Semantic Segmentation

Classification + Localization

Object Detection

Instance Segmentation

- GRASS, CAT, TREE, SKY
- CAT
- DOG, DOG, CAT
- DOG, DOG, CAT

No objects, just pixels

Single Object

Multiple Object

Slide by: Justin Johnson
Classification + Localization

- Single Object
- Multiple Object

No objects, just pixels

Slide by: Justin Johnson
Classification + Localization

Class Scores
Cat: 0.9
Dog: 0.05
Car: 0.01
...

Fully Connected:
4096 to 1000

Vector:
4096

Fully Connected:
4096 to 4

Box Coordinates
(x, y, w, h)

Treat localization as a regression problem!

Slide by: Justin Johnson
Classification + Localization

Correct label: Cat

Class Scores
- Cat: 0.9
- Dog: 0.05
- Car: 0.01
...

Fully Connected: 4096 to 1000

Softmax Loss

Correct box: (x', y', w', h')

L2 Loss

Box Coordinates (x, y, w, h)

Fully Connected: 4096 to 4

Vector: 4096

Treat localization as a regression problem!

Slide by: Justin Johnson
Classification + Localization

Class Scores
- Cat: 0.9
- Dog: 0.05
- Car: 0.01
- ...

Correct label: Cat

Softmax Loss

Multitask Loss

Treat localization as a regression problem!

Vector: 4096

Fully Connected: 4096 to 1000

Box Coordinates
(x, y, w, h)

L2 Loss

Correct box: (x’, y’, w’, h’)

May 10, 2017

Classification + Localization

Slide by: Justin Johnson
Classification + Localization

Often pretrained on ImageNet (Transfer learning)

Treat localization as a regression problem!

Class Scores
- Cat: 0.9
- Dog: 0.05
- Car: 0.01
...

Correct label: Cat → Softmax Loss

Vector: 4096

Fully Connected: 4096 to 1000

Box Coordinates: (x, y, w, h)

Fully Connected: 4096 to 4

L2 Loss

Correct box: (x', y', w', h')

May 10, 2017

Classification + Localization

Slide by: Justin Johnson
Object Detection as Regression?

CAT: \((x, y, w, h)\)

DOG: \((x, y, w, h)\)

DUCK: \((x, y, w, h)\)

….
Object Detection as Regression?

CAT: \((x, y, w, h)\)
4 numbers

DOG: \((x, y, w, h)\)
16 numbers

DUCK: \((x, y, w, h)\)
Many numbers!

Each image needs a different number of outputs!

Slide by: Justin Johnson
Object Detection as Classification: Sliding Window

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background.

Dog? NO
Cat? NO
Background? YES
Object Detection as Classification: Sliding Window

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background.

Dog? YES
Cat? NO
Background? NO
Object Detection as Classification: Sliding Window

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background.

Dog? YES
Cat? NO
Background? NO
Object Detection as Classification: Sliding Window

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background.

Dog? NO
Cat? YES
Background? NO
Object Detection as Classification: Sliding Window

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Problem: Need to apply CNN to huge number of locations and scales, very computationally expensive!

Dog? NO
Cat? YES
Background? NO
Region Proposals

- Find “bloppy” image regions that are likely to contain objects
- Relatively fast to run; e.g. Selective Search gives 1000 region proposals in a few seconds on CPU

Alexe et al., “Measuring the objectness of image windows”, TPAMI 2012
Uijlings et al., “Selective Search for Object Recognition”, IJCV 2013
Cheng et al., “BING: Binarized normed gradients for objectness estimation at 300fps”, CVPR 2014
Zitnick and Dollar, “Edge boxes: Locating object proposals from edges”, ECCV 2014
R-CNN

R-CNN

R-CNN

R-CNN

R-CNN

Classify regions with SVMs

Forward each region through ConvNet

Warped image regions

Regions of Interest (RoI) from a proposal method (~2k)

R-CNN

Linear Regression for bounding box offsets

Classify regions with SVMs

Forward each region through ConvNet

Warped image regions

Regions of Interest (RoI) from a proposal method (~2k)

Input image

R-CNN on ImageNet detection

ILSVRC2013 detection test set mAP

*OverFeat (1) 11.5%
*OverFeat (2) 24.3%
UvA-Euvison 22.6%
*NEC-MU 20.9%
*R-CNN BB 31.4%
Toronto A 19.4%
SYSU_Vision 10.5%
GPU_UCLA 9.8%
Delta 6.1%
UIUC-IFP 1.0%

R-CNN

Linear Regression for bounding box offsets

Classify regions with SVMs

Forward each region through ConvNet

Warped image regions

Regions of Interest (RoI) from a proposal method (~2k)

Input image

What’s wrong with slow R-CNN?

- Ad hoc training objectives
 - Fine-tune network with softmax classifier (log loss)
 - Train post-hoc linear SVMs (hinge loss)
 - Train post-hoc bounding-box regressions (least squares)
- Training is slow (84h), takes a lot of disk space
- Inference (detection) is slow
 - 47s / image with VGG16 [Simonyan & Zisserman, ICLR15]

Fast R-CNN

• Fast test time
• One network, trained in one stage
• Higher mean average precision
Fast R-CNN

Fast R-CNN

Fast R-CNN

Regions of Interest (RoIs) from a proposal method

“conv5” feature map of image

Forward whole image through ConvNet

Input image

Fast R-CNN

Regions of Interest (RoIs) from a proposal method

“RoI Pooling” layer

“conv5” feature map of image

Forward whole image through ConvNet

Fast R-CNN

Fast R-CNN

Fast R-CNN (Training)

Log loss + Smooth L1 loss

Multi-task loss

Linear + softmax

Linear

FCs

ConvNet

Input image

Fast R-CNN (Training)

Input image

Fast R-CNN vs R-CNN

<table>
<thead>
<tr>
<th></th>
<th>Fast R-CNN</th>
<th>R-CNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train time (h)</td>
<td>9.5</td>
<td>84</td>
</tr>
<tr>
<td>Speedup</td>
<td>8.8x</td>
<td>1x</td>
</tr>
<tr>
<td>Test time / image</td>
<td>0.32s</td>
<td>47.0s</td>
</tr>
<tr>
<td>Test speedup</td>
<td>146x</td>
<td>1x</td>
</tr>
<tr>
<td>mAP</td>
<td>66.9%</td>
<td>66.0%</td>
</tr>
</tbody>
</table>

Timings exclude object proposal time, which is equal for all methods. All methods use VGG16 from Simonyan and Zisserman.

Faster R-CNN

Make CNN do proposals!

Insert Region Proposal Network (RPN) to predict proposals from features

Jointly train with 4 losses:
1. RPN classify object / not object
2. RPN regress box coordinates
3. Final classification score (object classes)
4. Final box coordinates

Semantic Segmentation

GRASS, CAT, TREE, SKY
No objects, just pixels

CAT
Single Object

DOG, DOG, CAT
Multiple Object
Semantic Segmentation

Label each pixel in the image with a category label

Don’t differentiate instances, only care about pixels
Semantic Segmentation Idea: Sliding Window

Full image -> Extract patch -> Classify center pixel with CNN

Farabet et al, "Learning Hierarchical Features for Scene Labeling," TPAMI 2013
Pinheiro and Collobert, "Recurrent Convolutional Neural Networks for Scene Labeling", ICML 2014
Semantic Segmentation Idea: Sliding Window

Problem: Very inefficient! Not reusing shared features between overlapping patches

Farabet et al, "Learning Hierarchical Features for Scene Labeling," TPAMI 2013
Pinheiro and Collobert, "Recurrent Convolutional Neural Networks for Scene Labeling", ICML 2014
Semantic Segmentation Idea: Fully Convolutional

Design a network as a bunch of convolutional layers to make predictions for pixels all at once!

Input: $3 \times H \times W$

Convolutions: $D \times H \times W$

Scores: $C \times H \times W$

Predictions: $H \times W$

Slide by: Justin Johnson
Design a network as a bunch of convolutional layers to make predictions for pixels all at once!

Input: $3 \times H \times W$

Convolutions: $D \times H \times W$

Scores: $C \times H \times W$

Predictions: $H \times W$

Problem: convolutions at original image resolution will be very expensive ...

Semantic Segmentation Idea: Fully Convolutional
Semantic Segmentation Idea: Fully Convolutional

Design network as a bunch of convolutional layers, with **downsampling** and **upsampling** inside the network!

Input: $3 \times H \times W$

<table>
<thead>
<tr>
<th>Level</th>
<th>Resolution</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-res:</td>
<td>$D_3 \times H/4 \times W/4$</td>
<td></td>
</tr>
<tr>
<td>Med-res:</td>
<td>$D_2 \times H/4 \times W/4$</td>
<td></td>
</tr>
<tr>
<td>High-res:</td>
<td>$D_1 \times H/2 \times W/2$</td>
<td></td>
</tr>
<tr>
<td>Predictions:</td>
<td>$H \times W$</td>
<td></td>
</tr>
</tbody>
</table>

Slide by: Justin Johnson