CS 1675: Intro to Machine Learning

Ensemble Methods, Decision Trees

Prof. Adriana Kovashka
University of Pittsburgh
November 13, 2018
Plan for This Lecture

- Ensemble methods: introduction
- Boosting
 - Algorithm
 - Application to face detection
- Decision trees
 - Example
 - Algorithm
Learning Ensembles

- Learn multiple alternative definitions of a concept using different training data or different learning algorithms
- Train several classifiers: SVM, KNN, logistic regression, decision tree, neural network etc.
- Call these classifiers \(f_1(x), f_2(x), \ldots, f_M(x) \)
- Take majority of predictions:
 \[y = \text{majority}(f_1(x), f_2(x), \ldots, f_M(x)) \]
- For regression use mean or median of the predictions
- Averaging is a form of regularization: each model can individually overfit but the average is able to overcome the overfitting
Learning Ensembles

- Learn multiple alternative definitions of a concept using different training data or different learning algorithms
- Combine decisions of multiple definitions

```
Training Data

Data1  Data2  ...  Data m

Learner1  Learner2  ...  Learner m

Model1  Model2  ...  Model m

Model Combiner

Final Model
```
Value of Ensembles

• When combing multiple *independent* and *diverse* decisions each of which is at least more accurate than random guessing, random errors cancel each other out, correct decisions are reinforced.

• Human ensembles are demonstrably better
 – How many jelly beans in the jar?: Individual estimates vs. group average.
 – Who Wants to be a Millionaire: Expert friend vs. audience vote.

 • http://www.telegraph.co.uk/culture/books/3620109/Always-ask-the-audience.html

Adapted from Ray Mooney
Homogenous Ensembles

• Use a single learning algorithm but manipulate training data to make it learn multiple models.
 – Data1 ≠ Data2 ≠ … ≠ Data m
 – Learner1 = Learner2 = … = Learner m

• Different methods for changing training data:
 – Bagging: Resample training data
 – Boosting: Reweight training data
Bagging

- Create ensembles by repeatedly randomly resampling the training data.
- Given a training set of size n, create m samples of size n by drawing n examples from the original data, with replacement.
- Train m models and combine them using simple majority vote.
- Decreases error by decreasing the variance in the results due to unstable (high-variance) learners, algorithms (like decision trees) whose output can change dramatically when the training data is slightly changed.
- However, often the errors of the different models are correlated, which defies the purpose of bagging.

Adapted from Ray Mooney
Boosting

- Originally proposed in (Schapire, 1990), revised to be a practical algorithm, AdaBoost, for building ensembles that empirically improves generalization performance (Freund & Shapire, 1996).

- Relies on weak learners which only need to generate a hypothesis with a training accuracy greater than 0.5.

- Examples are given weights. At each iteration, a new hypothesis is learned and the examples are reweighted to focus the system on examples that the most recently learned classifier got wrong.
Boosting: Basic Algorithm

• **General Loop:**

 Set all examples to have equal uniform weights.
 For \(m \) from 1 to \(M \) do:

 - Find the weak learner \(h_m \) that achieves lowest *weighted* training error
 - Increase the weights of examples that \(h_m \) classifies incorrectly

• **During testing:**

 - Each of the \(M \) classifiers gets a weighted vote proportional to its accuracy on the training data; final classifier is a linear combination of all weak learners.

• **Intuition/advantage:**

 - Base (weak) learner must focus on correctly classifying the most highly weighted examples while strongly avoiding over-fitting.

• **Assumption:**

 - Weak learners must perform better than chance.
Boosting Illustration

Weights Increased
Boosting Illustration

Weak Classifier 2
Boosting Illustration

Weights Increased
Boosting Illustration

Weak Classifier 3
Final classifier is a combination of weak classifiers.
AdaBoost

1. Initialize the data weighting coefficients \(\{w_n\} \) by setting \(w_n^{(1)} = 1/N \) for \(n = 1, \ldots, N \).

2. For \(m = 1, \ldots, M \):

 (a) Fit a classifier \(y_m(x) \) to the training data by minimizing the weighted error function

 \[
 J_m = \sum_{n=1}^{N} w_n^{(m)} I(y_m(x_n) \neq t_n)
 \]
 (14.15)

 where \(I(y_m(x_n) \neq t_n) \) is the indicator function and equals 1 when \(y_m(x_n) \neq t_n \) and 0 otherwise.

 (b) Evaluate the quantities

 \[
 \epsilon_m = \frac{\sum_{n=1}^{N} w_n^{(m)} I(y_m(x_n) \neq t_n)}{\sum_{n=1}^{N} w_n^{(m)}}
 \]
 (14.16)

 and then use these to evaluate

 \[
 \alpha_m = \ln \left\{ \frac{1 - \epsilon_m}{\epsilon_m} \right\}.
 \]
 (14.17)

 (c) Update the data weighting coefficients

 \[
 w_n^{(m+1)} = w_n^{(m)} \exp \{\alpha_m I(y_m(x_n) \neq t_n)\}
 \]
 (14.18)

 (d) Normalize the weights so they sum to 1

3. Make predictions using the final model, which is given by

\[
Y_M(x) = \text{sign} \left(\sum_{m=1}^{M} \alpha_m y_m(x) \right).
\]
(14.19)

Start with uniform weights on training examples.

For \(M \) rounds

Evaluate weighted error for each weak learner, pick best learner.

\(y_m(x_n) \) is the prediction, \(t_n \) is ground truth for \(x_n \)

Optional: If error > 0.5, exit loop

Re-weight the examples: Incorrectly classified get more weight.

Final classifier is combination of weak ones, weighted according to error they had.
Boosting application: Face detection
Viola-Jones face detector (CVPR 2001)

Main idea:

- Represent local texture with efficiently computable “rectangular” features within window of interest
- Select discriminative features to be weak classifiers
- Use boosted combination of them as final classifier
- Form a cascade of such classifiers, rejecting clear negatives quickly (not discussed)
Viola-Jones detector: features

“Rectangular” filters
Feature output is difference between adjacent regions

Value = \sum (\text{pixels in white area}) - \sum (\text{pixels in black area})

Kristen Grauman, Lana Lazebnik
Considering all possible filter parameters: position, scale, and type:

180,000+ possible features associated with each 24 x 24 window

Which subset of these features should we use to determine if a window has a face?

Use AdaBoost both to select the informative features and to form the classifier
Viola-Jones detector: AdaBoost

- Want to select the single rectangle feature and threshold that best separates **positive** (faces) and **negative** (non-faces) training examples, in terms of **weighted** error.

Resulting weak classifier:

$$h_t(x) = \begin{cases}
+1 & \text{if } f_t(x) > \theta_t \\
-1 & \text{otherwise}
\end{cases}$$

For next round, reweight the examples according to errors, choose another filter/threshold combo.
Boosting for face detection

- First two features selected by boosting:

- This feature combination can yield 100% detection rate and 50% false positive rate
Viola-Jones face detector: Results

Kristen Grauman
Decision Stumps

- Like the thresholded features=classifiers in face detection
- A single-level decision tree (discussed next)
Decision Trees

- Tree-based classifiers
- Nodes test features, there is one branch for each value of the feature, and leaves specify the category

Can be rewritten as a set of rules:
- red ∧ circle → pos
- red ∧ circle → A
- blue → B
- red ∧ square → B
- green → C
- red ∧ triangle → C

Adapted from Ray Mooney
What about continuous features?

- Continuous (real-valued) features can be handled by allowing nodes to split a real valued feature into two ranges based on a threshold (e.g. length < 3 and length ≥3)
- Classification trees have discrete class labels at the leaves.

Adapted from Ray Mooney
Top-Down Decision Tree Induction

- Recursively build a tree top-down by divide and conquer.

\[
\begin{align*}
\text{<big, red, circle>}: & + & \text{<small, red, circle>}: & + \\
\text{<small, red, square>}: & - & \text{<big, blue, circle>}: & -
\end{align*}
\]

```
<big, red, circle>: +
<small, red, circle>: +
<small, red, square>: –
<big, blue, circle>: –
```
Top-Down Decision Tree Induction

- Recursively build a tree top-down by divide and conquer.

\[
\begin{align*}
\text{<big, red, circle>}: + & \quad \text{<small, red, circle>}: + \\
\text{<small, red, square>}: - & \quad \text{<big, blue, circle>}: -
\end{align*}
\]
Decision Tree Induction Pseudocode

DTree($examples, features$) returns a tree
 If all $examples$ are in one category, return a leaf node with that category label.
 Else if the set of $features$ is empty, return a leaf node with the category label that
 is the most common in $examples$.
 Else pick a feature F and create a node R for it
 For each possible value v_i of F:
 Add an out-going edge E to node R labeled with the value v_i.
 Let $examples_i$ be the subset of examples that have value v_i for F
 If $examples_i$ is empty
 then attach a leaf node to edge E labeled with the category that
 is the most common in $examples$.
 else call DTree($examples_i, features − \{F\}$) and attach the resulting
 tree as the subtree under edge E.
 Return the subtree rooted at R.

Adapted from Ray Mooney
Picking a Good Split Feature

• Goal is to have the resulting tree be as small as possible, per Occam’s razor.
• Finding a minimal decision tree (nodes, leaves, or depth) is an NP-hard optimization problem.
• Want to pick a feature that creates subsets of examples that are relatively “pure” in a single class so they are “closer” to being leaf nodes.
• There are a variety of heuristics for picking a good test, a popular one is based on information gain that originated with the ID3 system of Quinlan (1979).
Entropy

• Entropy (disorder, impurity) of a set of examples, S, relative to a binary classification is:

\[
Entropy(S) = -p_1 \log_2(p_1) - p_0 \log_2(p_0)
\]

where \(p_1\) is the fraction of positive examples in S and \(p_0\) is the fraction of negatives.

• If all examples are in one category, entropy is zero (we define \(0 \cdot \log(0) = 0\))

• If examples are equally mixed (\(p_1=p_0=0.5\)), entropy is a maximum of 1.

• For multi-class problems with \(c\) categories, entropy generalizes to:

\[
Entropy(S) = \sum_{i=1}^{c} - p_i \log_2(p_i)
\]

Adapted from Ray Mooney
Entropy Plot for Binary Classification
Information Gain

- The information gain of a feature F is the expected reduction in entropy resulting from splitting on this feature.

$$Gain(S, F) = Entropy(S) - \sum_{v \in Values(F)} \frac{|S_v|}{|S|} Entropy(S_v)$$

where S_v is the subset of S having value v for feature F.

- Entropy of each resulting subset weighted by its relative size.

- Example:
 - $<\text{big, red, circle}>$: +
 - $<\text{small, red, circle}>$: +
 - $<\text{small, red, square}>$: -
 - $<\text{big, blue, circle}>$: -

<table>
<thead>
<tr>
<th>Value</th>
<th>Size</th>
<th>Color</th>
<th>Shape</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>big</td>
<td>red</td>
<td>circle</td>
</tr>
<tr>
<td></td>
<td>small</td>
<td>blue</td>
<td>square</td>
</tr>
<tr>
<td>$1+, 1-$</td>
<td>$1+, 1-$</td>
<td>$2+, 1-$</td>
<td>$2+, 1-$</td>
</tr>
<tr>
<td>E=1</td>
<td>E=1</td>
<td>E=0.918</td>
<td>E=0.918</td>
</tr>
<tr>
<td>Gain=1−(0.5·1 + 0.5·1) = 0</td>
<td>Gain=1−(0.75·0.918 + 0.25·0) = 0.311</td>
<td>Gain=1−(0.75·0.918 + 0.25·0) = 0.311</td>
<td></td>
</tr>
</tbody>
</table>
Another Example Decision Tree Classifier

- **Problem**: decide whether to wait for a table at a restaurant, based on the following attributes:
 1. **Alternate**: is there an alternative restaurant nearby?
 2. **Bar**: is there a comfortable bar area to wait in?
 3. **Fri/Sat**: is today Friday or Saturday?
 4. **Hungry**: are we hungry?
 5. **Patrons**: number of people in the restaurant (None, Some, Full)
 6. **Price**: price range ($, $$, $$$)
 7. **Raining**: is it raining outside?
 8. **Reservation**: have we made a reservation?
 9. **Type**: kind of restaurant (French, Italian, Thai, Burger)
 10. **WaitEstimate**: estimated waiting time (0-10, 10-30, 30-60, >60)
Another Example Decision Tree Classifier

<table>
<thead>
<tr>
<th>Example</th>
<th>Alt</th>
<th>Bar</th>
<th>Fri</th>
<th>Hun</th>
<th>Pat</th>
<th>Price</th>
<th>Rain</th>
<th>Res</th>
<th>Type</th>
<th>Est</th>
<th>Target</th>
<th>Wait</th>
</tr>
</thead>
<tbody>
<tr>
<td>X₁</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>Some</td>
<td>$$ $$</td>
<td>F</td>
<td>T</td>
<td>French</td>
<td>0–10</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>X₂</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>Full</td>
<td>$</td>
<td>F</td>
<td>F</td>
<td>Thai</td>
<td>30–60</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>X₃</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>Some</td>
<td>$</td>
<td>F</td>
<td>F</td>
<td>Burger</td>
<td>0–10</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>X₄</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>Full</td>
<td>$</td>
<td>F</td>
<td>F</td>
<td>Thai</td>
<td>10–30</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>X₅</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>Full</td>
<td>$$ $$</td>
<td>F</td>
<td>T</td>
<td>French</td>
<td>>60</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>X₆</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>Some</td>
<td>$$</td>
<td>T</td>
<td>T</td>
<td>Italian</td>
<td>0–10</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>X₇</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>None</td>
<td>$</td>
<td>T</td>
<td>F</td>
<td>Burger</td>
<td>0–10</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>X₈</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>Some</td>
<td>$$</td>
<td>T</td>
<td>T</td>
<td>Thai</td>
<td>0–10</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>X₉</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>Full</td>
<td>$</td>
<td>T</td>
<td>F</td>
<td>Burger</td>
<td>>60</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>X₁₀</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>Full</td>
<td>$$ $$</td>
<td>F</td>
<td>T</td>
<td>Italian</td>
<td>10–30</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>X₁₁</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>None</td>
<td>$</td>
<td>F</td>
<td>F</td>
<td>Thai</td>
<td>0–10</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>X₁₂</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>Full</td>
<td>$</td>
<td>F</td>
<td>F</td>
<td>Burger</td>
<td>30–60</td>
<td>T</td>
<td></td>
</tr>
</tbody>
</table>
Overfitting

- Learning a tree that classifies the training data perfectly may not lead to the tree with the best generalization to unseen data.
 - There may be noise in the training data that the tree is erroneously fitting.
 - The algorithm may be making poor decisions towards the leaves of the tree that are based on very little data and may not reflect reliable trends.
Category or feature noise can easily cause overfitting.

- Add noisy instance \(<\text{medium, blue, circle}>\): pos (but really neg)
Overfitting Noise in Decision Trees

- Category or feature noise can easily cause overfitting.
 - Add noisy instance <medium, blue, circle>: pos (but really neg)

- Noise can also cause different instances of the same feature vector to have different classes. Impossible to fit this data and must label leaf with the majority class.
 - <big, red, circle>: neg (but really pos)
Overfitting Prevention (Pruning) Methods

- Two basic approaches for decision trees
 - Prepruning: Stop growing tree as some point during top-down construction when there is no longer sufficient data to make reliable decisions.
 - Postpruning: Grow the full tree, then remove subtrees that do not have sufficient evidence.
- Label leaf resulting from pruning with the majority class of the remaining data.
- Some methods for determining which subtrees to prune:
 - Cross-validation: Reserve some training data as a hold-out set (validation set) to evaluate utility of subtrees.
 - Minimum description length (MDL): Determine if the additional complexity of the hypothesis is less complex than just explicitly remembering any exceptions resulting from pruning.

Adapted from Ray Mooney