CS 1674: Intro to Computer Vision

Image Filtering and Texture

Prof. Adriana Kovashka
University of Pittsburgh
January 18, 2018
Plan for next two lectures

• Filters: math and properties
• Types of filters
 – Linear
 • Smoothing
 • Other
 – Non-linear
 • Median
• Texture representation with filters
• Anti-aliasing for image subsampling
How images are represented (Matlab)

• Color images represented as a matrix with multiple channels (=1 if grayscale)
• Suppose we have a NxM RGB image called “im”
 – im(1,1,1) = top-left pixel value in R-channel
 – im(y, x, b) = y pixels down (rows), x pixels to right (cols) in bth channel
 – im(N, M, 3) = bottom-right pixel in B-channel
• imread(filename) returns a uint8 image (values 0 to 255)

<table>
<thead>
<tr>
<th>row</th>
<th>column</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.92</td>
<td>0.93</td>
</tr>
<tr>
<td>0.95</td>
<td>0.89</td>
</tr>
<tr>
<td>0.89</td>
<td>0.72</td>
</tr>
<tr>
<td>0.96</td>
<td>0.95</td>
</tr>
<tr>
<td>0.71</td>
<td>0.81</td>
</tr>
<tr>
<td>0.49</td>
<td>0.62</td>
</tr>
<tr>
<td>0.86</td>
<td>0.84</td>
</tr>
<tr>
<td>0.96</td>
<td>0.67</td>
</tr>
<tr>
<td>0.69</td>
<td>0.49</td>
</tr>
<tr>
<td>0.79</td>
<td>0.73</td>
</tr>
<tr>
<td>0.91</td>
<td>0.94</td>
</tr>
</tbody>
</table>

Adapted from Derek Hoiem
Enter: Noise

- We talked about how the same object will look very different across images.
- Even multiple images of the same static scene will not be identical.
- How could we reduce the noise, i.e., give an estimate of the true intensities?
- What if there’s only one image?
Common types of noise

- **Salt and pepper noise**: random occurrences of black and white pixels

- **Impulse noise**: random occurrences of white pixels

- **Gaussian noise**: variations in intensity drawn from a Gaussian normal distribution

Source: S. Seitz
Gaussian noise

$$f(x, y) = \hat{f}(x, y) + \eta(x, y)$$

Gaussian i.i.d. ("white") noise:
$$\eta(x, y) \sim N(\mu, \sigma)$$

$$\gg \text{noise} = \text{randn(size(im))}\ast\text{sigma};$$
$$\gg \text{output} = \text{im} + \text{noise};$$

What is impact of the sigma?

Fig: M. Hebert
First attempt at a solution

• Let’s replace each pixel with an average of all the values in its neighborhood

• Assumptions:
 – Expect pixels to be like their neighbors
 – Expect noise processes to be independent from pixel to pixel
First attempt at a solution

• Let’s replace each pixel with an average of all the values in its neighborhood

• Moving average in 1D:

Source: S. Marschner
Weighted Moving Average

- Can add weights to our moving average
- *Weights* $[1, 1, 1, 1, 1] / 5$

Source: S. Marschner
Weighted Moving Average

• Non-uniform weights \([1, 4, 6, 4, 1] / 16\)

Central pixel =
\[10 \times 1 + 14 \times 4 + 12 \times 6 + 13 \times 4 + 20 \times 1\]

Adapted from S. Marschner
Moving Average In 2D

\[F[x, y] \]

\[G[x, y] \]
Moving Average In 2D

\[F[x, y] \]

\[G[x, y] \]
Moving Average In 2D

\[F[x, y] \]

\[G[x, y] \]

Source: S. Seitz
Moving Average In 2D

\[F[x, y] \]

\[G[x, y] \]
Moving Average In 2D

\[F[x, y] \]

\[G[x, y] \]

Source: S. Seitz
Moving Average In 2D

\[F[x, y] \]

\[G[x, y] \]
Image filtering

• Compute a function of the local neighborhood at each pixel in the image
 – Function specified by a “filter” or mask saying how to combine values from neighbors.
 – Element-wise multiplication

• Uses of filtering:
 – Enhance an image (denoise, resize, etc)
 – Extract information (texture, edges, etc)
 – Detect patterns (template matching)
Correlation filtering

Say the averaging window size is $2k+1 \times 2k+1$:

$$G[i, j] = \frac{1}{(2k + 1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} F[i + u, j + v]$$

Attribute uniform weight Loop over all pixels in neighborhood around to each pixel image pixel $F[i,j]$

Now generalize to allow different weights depending on neighboring pixel’s relative position:

$$G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v]F[i + u, j + v]$$

Non-uniform weights
Correlation filtering

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v]
\]

This is called \textbf{cross-correlation}, denoted \(G = H \otimes F \).

Filtering an image: replace each pixel with a linear combination of its neighbors.

The filter \textbf{"kernel"} or \textbf{"mask"} \(H[u,v] \) is the prescription for the weights in the linear combination.
Averaging filter

- What values belong in the kernel H for the moving average example?

$$G = H \otimes F$$
Smoothing by averaging

depicts box filter:
white = high value, black = low value

original

filtered

What if the filter size was 5 x 5 instead of 3 x 3?
Gaussian filter

• What if we want nearest neighboring pixels to have the most influence on the output?

This kernel is an approximation of a 2d Gaussian function:

\[h(u, v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2+v^2}{\sigma^2}} \]

• Removes high-frequency components from the image (“low-pass filter”).
Smoothing with a Gaussian

Vs box filter
Gaussian filters

• What parameters matter here?
• **Size** of kernel or mask

 – Note, Gaussian function has infinite support, but discrete filters use finite kernels

\[
\sigma = 5 \text{ with } 10 \times 10 \text{ kernel}
\]

\[
\sigma = 5 \text{ with } 30 \times 30 \text{ kernel}
\]
Gaussian filters

• What parameters matter here?
• **Variance** of Gaussian: determines extent of smoothing

\[
\sigma = 2 \text{ with 30 x 30 kernel} \quad \sigma = 5 \text{ with 30 x 30 kernel}
\]
Gaussian filters

How big should the filter be?

- Values at edges should be near zero ← important!
- Rule of thumb for Gaussian: set filter half-width to about 3 σ
Gaussian filter in Matlab

```matlab
>> hsize = 10;
>> sigma = 5;
>> h = fspecial('gaussian', hsize, sigma);

>> mesh(h);

>> imagesc(h);

>> outim = imfilter(im, h); % correlation
>> imshow(outim);
```

Kristen Grauman
Smoothing with a Gaussian

Parameter σ is the “scale” / “width” / “spread” of the Gaussian kernel, and controls the amount of smoothing.

```matlab
for sigma=1:3:10
    h = fspecial('gaussian', fsize, sigma);
    out = imfilter(im, h);
    imshow(out);
    pause;
end
```
Convolution

- Convolution:
 - Flip the filter in both dimensions (bottom to top, right to left)
 - Then apply cross-correlation

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v] \]

\[G = H \ast F \]

Notation for convolution operator

Kristen Grauman
Convolution vs. correlation

Convolution

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v]F[i - u, j - v] \]

\[G = H \ast F \]

Cross-correlation

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v]F[i + u, j + v] \]

\[G = H \otimes F \]

For a Gaussian or box filter, how will the outputs differ?
Convolution vs. correlation

Cross-correlation

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v]
\]

\[
G = H \otimes F
\]

Convolution

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v]
\]

\[
G = H \ast F
\]
Convolution vs. correlation

Cross-correlation

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v]
\]

\[
G = H \otimes F
\]

Convolution

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v]
\]

\[
G = H \ast F
\]
Convolution vs. correlation

Cross-correlation

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v] \]

\[G = H \otimes F \]

- \(u = -1, \; v = -1 \)
- \(v = 0 \)
- \(v = +1 \)

Convolution

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v] \]

\[G = H * F \]
Convolution vs. correlation

Cross-correlation

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v]
\]

\[
G = H \otimes F
\]

- \(u = -1, v = -1\)
- \(v = 0\)
- \(v = +1\)
- \(u = 0, v = -1\)

Convolution

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v]
\]

\[
G = H \ast F
\]
Convolutions vs. correlation

Cross-correlation

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v] \]

\[G = H \otimes F \]

Convolution

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v] \]

\[G = H \ast F \]
Convolution vs. Correlation

Cross-correlation

\[
G[i, j] = \sum_{u = -k}^{k} \sum_{v = -k}^{k} H[u, v] F[i + u, j + v]
\]

\[G = H \otimes F\]

Convolution

\[
G[i, j] = \sum_{u = -k}^{k} \sum_{v = -k}^{k} H[u, v] F[i - u, j - v]
\]

\[G = H \ast F\]
Convolution vs. correlation

Cross-correlation

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v]
\]

\[
G = H \otimes F
\]

- \(u = -1, v = -1\)
- \(v = 0\)
- \(v = +1\)

Convolution

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v]
\]

\[
G = H \star F
\]
Convolution vs. correlation

Cross-correlation

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v]
\]

\[G = H \otimes F\]

Convolution

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v]
\]

\[G = H \ast F\]
Properties of smoothing filters

- **Smoothing**
 - Values positive
 - Sum to 1 → overall intensity same as input
 - Amount of smoothing proportional to mask size
 - Remove "high-frequency" components; "low-pass" filter
Predict the outputs using correlation filtering

\[
\begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix}
\ast
\begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix}
= ?
\]

\[
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix}
\ast
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix}
= ?
\]

\[
\begin{bmatrix}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{bmatrix}
\ast
\begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{bmatrix}
- \frac{1}{9}
= ?
\]
Practice with linear filters

Original

Source: D. Lowe
Practice with linear filters

Original

Filtered (no change)

Source: D. Lowe
Practice with linear filters

Original

\[
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
\end{bmatrix}
\]

Source: D. Lowe
Practice with linear filters

Original

Shifted left by 1 pixel with correlation

Source: D. Lowe
Practice with linear filters

Original

\[\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \]
Practice with linear filters

Original

Blur (with a box filter)

Source: D. Lowe
Practice with linear filters

Original

\[
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0 \\
\end{array}
\quad - \quad \frac{1}{9}
\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{array}
\]
Practice with linear filters

Original

Sharpening filter:
accentuates differences with local average

Source: D. Lowe
Sharpening

before

after
Filters for computing \textit{gradients}

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
1 & 0 & -1 \\
\hline
2 & 0 & -2 \\
\hline
1 & 0 & -1 \\
\hline
\end{tabular}
\end{table}

\begin{equation*}
\text{intensity image} \ast \begin{array}{c}
\text{mask} \\
\end{array} = \begin{array}{c}
\text{gradient map}
\end{array}
\end{equation*}
Median filter

- No new pixel values introduced
- Removes spikes: good for impulse, salt & pepper noise
- Non-linear filter
Median filter

- Median filter is edge preserving

<table>
<thead>
<tr>
<th></th>
<th>INPUT</th>
<th>MEDIAN</th>
<th>MEAN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>❌❌</td>
<td>❌❌❌</td>
<td>❌❌</td>
</tr>
<tr>
<td>❌❌</td>
<td>❌❌</td>
<td>❌❌❌</td>
<td>❌❌</td>
</tr>
<tr>
<td>❌❌</td>
<td>❌❌</td>
<td>❌❌</td>
<td>❌❌</td>
</tr>
</tbody>
</table>
Median filter

Salt and pepper noise

Plots of a row of the image

Matlab: output_im = medfilt2(im, [h w]);

Source: M. Hebert
What is the size of the output?

- ‘full’: output size is larger than the size of f
- ‘same’: output size is same as f
Boundary issues

• What about near the edge?
 – the filter window might fall off the edge of the image (in ‘same’ or ‘full’)
 – need to extrapolate
 – methods:
 • clip filter (black)
 • wrap around
 • copy edge
 • reflect across edge

Source: S. Marschner
Properties of convolution

• Commutative:
 \[f * g = g * f \]

• Associative
 \[(f * g) * h = f * (g * h) \]

• Distributes over addition
 \[f * (g + h) = (f * g) + (f * h) \]

• Scalars factor out
 \[kf * g = f * kg = k(f * g) \]

• Identity:
 \[\text{unit impulse } e = [..., 0, 0, 1, 0, 0, ...]. \quad f * e = f \]
Separability

- In some cases, filter is separable, and we can factor into two steps:
 - Convolve all rows
 - Convolve all columns
Separability example

2D filtering (center location only)

The filter factors into an \textit{outer} product of 1D filters:

Perform filtering along rows:

Followed by filtering along the remaining column:

Kristen Grauman
Application: Hybrid Images

What you see...

I see an angry guy

From Far Away

Up Close

It’s a woman!
Application: Hybrid Images

Gaussian Filter

Laplacian Filter (sharpening)

unit impulse

Gaussian

Laplacian of Gaussian

Kristen Grauman
Application: Hybrid Images
Application: Hybrid Images

Changing expression

Sad Surprised
Plan for next two lectures

• Filters: math and properties
• Types of filters
 – Linear
 • Smoothing
 • Other
 – Non-linear
 • Median
• Texture representation with filters
• Anti-aliasing for image subsampling
Texture

Due to:
Patterns, marks, etches, blobs, holes, relief, etc.
Includes: more regular patterns
Includes: more random patterns
Why analyze texture?

- Important for how we perceive objects
- Can be an important appearance cue that allows us to distinguish objects, especially if shape is similar across objects
Texture representation

• Textures are made up of repeated local patterns, so:
 – Find the patterns
 • Use filters that look like patterns (spots, bars, raw patches...)
 • Consider magnitude of response
 – Describe their statistics within each local window
 • E.g. mean, standard deviation
Derivative of Gaussian filter

Figures from Noah Snavely
Texture representation: example

original image

derivative filter responses, squared

statistics to summarize patterns in small windows

<table>
<thead>
<tr>
<th>Win. #1</th>
<th>mean d/dx value</th>
<th>mean d/dy value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>10</td>
</tr>
</tbody>
</table>

Kristen Grauman
Texture representation: example

- **Original image**
 - Texture details

- **Derivative filter responses, squared**
 - Calculated values for gradient components

- **Statistics to summarize patterns in small windows**
 - | Window | mean d/dx value | mean d/dy value |
 - |-------|----------------|----------------|
 - | Win. #1 | 4 | 10 |
 - | Win. #2 | 18 | 7 |
 - ...
Texture representation: example

original image

derivative filter responses, squared

<table>
<thead>
<tr>
<th>Window</th>
<th>mean d/dx value</th>
<th>mean d/dy value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Win. #1</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Win. #2</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td>Win. #9</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

statistics to summarize patterns in small windows
Texture representation: example

- Dimension 1 (mean d/dx value)
- Dimension 2 (mean d/dy value)

Table

<table>
<thead>
<tr>
<th>Win. #</th>
<th>mean d/dx value</th>
<th>mean d/dy value</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>#2</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td>#9</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

Statistics to summarize patterns in small windows
Texture representation: example

- Windows with primarily horizontal edges
- Windows with small gradient in both directions
- Windows with primarily vertical edges
- Both

<table>
<thead>
<tr>
<th>Windows</th>
<th>mean (\frac{d}{dx}) value</th>
<th>mean (\frac{d}{dy}) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Win. #1</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Win. #2</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td>Win. #9</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

statistics to summarize patterns in small windows
Texture representation: example

original image

visualization of the assignment to texture “types”

derivative filter responses, squared
Texture representation: example

Dimension 1 (mean d/dx value) vs Dimension 2 (mean d/dy value)

- **Far: dissimilar textures**
- **Close: similar textures**

<table>
<thead>
<tr>
<th>Window</th>
<th>d/dx value</th>
<th>d/dy value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Win. #1</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Win. #2</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td>Win. #9</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

Statistics to summarize patterns in small windows

Kristen Grauman
Computing distances using texture

\[D(a, b) = \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2} \]

\[= \sqrt{\sum_{i=1}^{d} (a_i - b_i)^2} \]

Euclidean distance (L_2)
Texture representation: example

Distance reveals how dissimilar texture from window a is from texture in window b.
Filter banks

• Our previous example used two filters, and resulted in a 2-dimensional feature vector to describe texture in a window.
 – x and y derivatives revealed something about local structure.

• We can generalize to apply a collection of multiple (d) filters: a “filter bank”

• Then our feature vectors will be d-dimensional.
Filter banks

• What filters to put in the bank?
 – Typically we want a combination of scales and orientations, different types of patterns.

Matlab code available for these examples:
http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html

Kristen Grauman
Filter bank
To represent a pixel, form a "feature vector" from the responses at that pixel.

1x38 vector representation feature

[r1, r2, ..., r38]
Vectors of texture responses

To represent pixel, form a “feature vector” from the responses at that pixel.

\[
[r_{(1,1)}^1, \ r_{(1,1)}^2, \ldots, \ r_{(1,1)}^{38}] \\
[r_{(1,2)}^1, \ r_{(1,2)}^2, \ldots, \ r_{(1,2)}^{38}] \\
[r_{(W,H)}^1, \ r_{(W,H)}^2, \ldots, \ r_{(W,H)}^{38}] \\
\text{mean}(r_{(\cdot)}^1), \ \text{mean}(r_{(\cdot)}^2), \ldots, \ \text{mean}(r_{(\cdot)}^{38})
\]

To represent image, compute statistics over all pixel feature vectors, e.g. their mean.
You try: Can you match the texture to the response?

Filters

1

2

3

Mean abs responses

A

B

C

Derek Hoiem
Representing texture by mean abs response

Filters

Mean abs responses
Classifying materials, “stuff”

Figure by Varma & Zisserman
Plan for next two lectures

• Filters: math and properties
• Types of filters
 – Linear
 • Smoothing
 • Other
 – Non-linear
 • Median
• Texture representation with filters
• Anti-aliasing for image subsampling
Sampling

Why does a lower resolution image still make sense to us? What do we lose?
Subsampling by a factor of 2

Throw away every other row and column to create a $1/2$ size image
Aliasing problem

• 1D example (sinewave):
Aliasing problem

• 1D example (sinewave):
Aliasing problem

• Sub-sampling may be dangerous....

• Characteristic errors may appear:
 – “Wagon wheels rolling the wrong way in movies”
 – “Striped shirts look funny on color television”
Sampling and aliasing
Nyquist-Shannon Sampling Theorem

- When sampling a signal at discrete intervals, the sampling frequency must be $\geq 2 \times f_{\text{max}}$
- $f_{\text{max}} = \text{max frequency of the input signal}$
- This will allow to reconstruct the original perfectly from the sampled version

![Diagram of good and bad sampling examples](image)
Anti-aliasing

Solutions:

• Sample more often

• Get rid of high frequencies
 – What are these in the case of images?
 – Will lose information, but it’s better than aliasing
 – Apply a smoothing filter
Algorithm for downsampling by factor of 2

1. Start with image \((h, w)\)
2. Apply low-pass filter
 \[\text{im_blur} = \text{imfilter}(\text{image}, \text{fspecial('gaussian', 7, 1)}) \]
3. Sample every other pixel
 \[\text{im_small} = \text{im_blur}(1:2:end, 1:2:end); \]
Anti-aliasing
Subsampling without pre-filtering

1/2

1/4 (2x zoom)

1/8 (4x zoom)
Subsampling with Gaussian pre-filtering

Gaussian 1/2
G 1/4
G 1/8

Slide by Steve Seitz
Subsampling away...

Why would we want to do this?
Can we reconstruct the original from the Laplacian pyramid?

\[
\{f_0, f_1, \ldots, f_n\} = \text{Gaussian pyramid}
\]
\[
\{h_0, h_1, \ldots, h_n\} = \text{Laplacian pyramid}
\]

\[
f_0 - l_0 = h_0
\]
\[
f_1 - l_1 = h_1
\]
\[
h_2 = f_2
\]
Gaussian pyramid

Source: Forsyth
Laplacian pyramid

Source: Forsyth
Summary

• Filters useful for
 – Enhancing images (smoothing, removing noise), e.g.
 • Box filter (linear)
 • Gaussian filter (linear)
 • Median filter
 – Detecting patterns (e.g. gradients)

• Texture is a useful property that is often indicative of materials, appearance cues
 – Texture representations summarize repeating patterns of local structure

• Can use filtering to reduce the effects of subsampling