CS 1674: Intro to Computer Vision
Grouping: Edges, Lines, Circles, Segments

Prof. Adriana Kovashka
University of Pittsburgh
September 22, 2020
Plan for this lecture

• Edges
 – Extract gradients and threshold

• Lines and circles
 – Find which edge points are collinear or belong to another shape e.g. circle
 – Automatically detect and ignore outliers

• Segments
 – Find which pixels form a consistent region
 – Clustering (e.g. K-means)
Edge detection

• **Goal:** map image from 2d array of pixels to a set of curves or line segments or contours.

• **Why?**

• **Main idea:** look for strong gradients, post-process

Figure from J. Shotton et al., PAMI 2007

Source: K. Grauman
Designing an edge detector

• Criteria for a good edge detector
 – Good categorization (edge vs not edge)
 • find all real edges, ignoring noise or other artifacts
 – Good localization
 • detect edges as close as possible to the true edges
 • return one point only for each true edge point
 (true edges = the edges humans drew on an image)

• Cues of edge detection
 – Bottom-up: Differences in color, intensity, or texture across the boundary
 – Top-down: Continuity and closure, high-level knowledge

Adapted from L. Fei-Fei
Examples of edge detection results

Xie and Tu, *Holistically-Nested Edge Detection*, ICCV 2015
What causes an edge?

Reflectance change: appearance information, texture

Depth discontinuity: object boundary

Cast shadows

Adapted from K. Grauman
Characterizing edges

- An edge is a place of rapid change in the image intensity function.

Source: L. Lazebnik
Intensity profile

![Intensity profile diagram](image)

Source: D. Hoiem
With a little Gaussian noise
Effects of noise

• Consider a single row or column of the image
 – Plotting intensity as a function of position gives a signal

\[f(x) \]

\[\frac{d}{dx} f(x) \]

Where is the edge?

Source: S. Seitz
Without noise

• Consider a single row or column of the image
 – Plotting intensity as a function of position gives a signal

\[
\frac{d}{dx} f(x) = \Delta \frac{f(a)}{\Delta a} = \frac{f(a + h) - f(a)}{(a + h) - (a)} = \frac{f(a + h) - f(a)}{h} = f(x+1) - f(x)
\]

Where is the edge?
With noise

- Consider a single row or column of the image
 - Plotting intensity as a function of position gives a signal

\[
\frac{d}{dx} f(x) \quad \text{Diff} = \frac{\Delta f(a)}{\Delta a} = \frac{f(a + h) - f(a)}{(a + h) - (a)} = \frac{f(a + h) - f(a)}{h} = f(x+1) - f(x)
\]

Where is the edge?
Effects of noise

• Difference filters respond strongly to noise
 – Image noise results in pixels that look very different from their neighbors
 – Generally, the larger the noise the stronger the response

• What can we do about it?

Source: D. Forsyth
Solution: smooth first

- To find edges, look for peaks in \(\frac{d}{dx} (f * g) \)

Source: S. Seitz
Derivative theorem of convolution

- Differentiation is convolution, and convolution is associative:

\[\frac{d}{dx} (f * g) = f * \frac{d}{dx} g \]

- This saves us one operation:
Canny edge detector

- Filter image with derivative of Gaussian
- Find magnitude and orientation of gradient
- Threshold: Determine which local maxima from filter output are actually edges
- **Non-maximum suppression:**
 - Thin wide “ridges” down to single pixel width
- **Linking and thresholding (hysteresis):**
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them

Adapted from K. Grauman, D. Lowe, L. Fei-Fei
Example

input image ("Lena")
Derivative of Gaussian filter

x-direction

y-direction

Source: L. Lazebnik
Compute Gradients

X-Derivative of Gaussian Y-Derivative of Gaussian Gradient Magnitude

Source: D. Hoiem
Thresholding

- Choose a threshold value t
- Set any pixels less than t to 0 (off)
- Set any pixels greater than or equal to t to 1 (on)

Source: K. Grauman
The Canny edge detector

norm of the gradient (magnitude)

Source: K. Grauman
The Canny edge detector

thresholding

Source: K. Grauman
Another example: Gradient magnitudes
Thresholding gradient with a lower threshold

Source: K. Grauman
Thresholding gradient with a higher threshold
Effect of σ of Gaussian kernel

Original

Canny with $\sigma = 1$

Canny with $\sigma = 2$

The choice of σ depends on desired behavior

- large σ detects large scale edges
- small σ detects fine edges

Source: S. Seitz
Plan for this lecture

• Edges
 – Extract gradients and threshold

• Lines and circles
 – Find which edge points are collinear or belong to another shape e.g. circle
 – Automatically detect and ignore outliers

• Segments
 – Find which pixels form a consistent region
 – Clustering (e.g. K-means)
Line detection (fitting)

- Why fit lines?
 Many objects characterized by presence of straight lines

- Why aren’t we done just by running edge detection?
Difficulty of line fitting

- **Noise** in measured edge points, orientations:
 - e.g. edges not collinear where they should be
 - how to detect true underlying parameters?

- **Extra** edge points (clutter):
 - which points go with which line, if any?

- Only some parts of each line detected, and some parts are **missing**:
 - how to find a line that bridges missing evidence?
Least squares line fitting

• Data:
 \((x_1, y_1), \ldots, (x_n, y_n)\)

• Line equation:
 \(y_i = mx_i + b\)

• Find \((m, b)\) to minimize

\[
E = \sum_{i=1}^{n} (mx_i + b - y_i)^2
\]

where line you found tells you point is along y axis
where point really is along y axis
You want to find a single line that “explains” all of the points in your data, but data may be noisy!

\[
E = \sum_{i=1}^{n} \left(\begin{bmatrix} x_i & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} - y_i \right)^2 = \left\| \begin{bmatrix} x_1 \\ 1 \\ \vdots \\ x_n \\ 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} - \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \right\|^2 = \|Ap - y\|^2
\]

Matlab:
\[
p = A \backslash y; \text{ or } p = \text{pinv}(A) * y;
\]

Adapted from Svetlana Lazebnik
Outliers affect least squares fit
Outliers affect least squares fit
Dealing with outliers: Voting

- **Voting** is a general technique where we let the features vote for all models that are compatible with it.
 - Cycle through features, cast votes for model parameters.
 - Look for model parameters that receive a lot of votes.

- Noise & clutter features?
 - They will cast votes too, but typically their votes should be inconsistent with the majority of “good” features.

- Common techniques
 - Hough transform
 - RANSAC

Adapted from Kristen Grauman
Finding lines in an image: Hough space

Connection between image \((x,y)\) and Hough \((m,b)\) spaces

\[y = m_0x + b_0 \]

A line in the image corresponds to a point in Hough space.
Finding lines in an image: Hough space

Connection between image \((x, y)\) and Hough \((m, b)\) spaces

- A line in the image corresponds to a point in Hough space
- What does a point \((x_0, y_0)\) in the image space map to?
 - Answer: the solutions of \(b = -x_0m + y_0\)
 - This is a line in Hough space
 - Given a pair of points \((x, y)\), find all \((m, b)\) such that \(y = mx + b\)

Adapted from Steve Seitz
Finding lines in an image: Hough space

What are the line parameters for the line that contains both \((x_0, y_0)\) and \((x_1, y_1)\)?

- It is the intersection of the lines \(b = -x_0m + y_0\) and
 \(b = -x_1m + y_1\)
Finding lines in an image: Hough space

How can we use this to find the most likely parameters \((m,b)\) for the most prominent line in the image space?

- Let each edge point in image space *vote* for a set of possible parameters in Hough space.
- Accumulate votes in discrete set of bins; parameters with the most votes indicate line in image space.
Finding lines in an image: Hough space

Adapted from Silvio Savarese
Parameter space representation

- Problems with the \((m, b)\) space:
 - Unbounded parameter domains
 - Vertical lines require infinite \(m\)
- Alternative: *polar representation*

\[
x \cos \theta + y \sin \theta = \rho
\]

Each point \((x,y)\) will add a sinusoid in the \((\theta, \rho)\) parameter space.
Parameter space representation

- Problems with the \((m, b)\) space:
 - Unbounded parameter domains
 - Vertical lines require infinite \(m\)
- Alternative: *polar representation*

Each point \((x, y)\) will add a sinusoid in the \((\theta, \rho)\) parameter space
Algorithm outline: Hough transform

- Initialize accumulator H to all zeros
- For each edge point (x, y) in the image
 - For $\theta = 0$ to 180
 - $\rho = x \cos \theta + y \sin \theta$
 - $H(\theta, \rho) = H(\theta, \rho) + 1$
 - end
- Find the value(s) of (θ^*, ρ^*) where $H(\theta, \rho)$ is a local maximum
- The detected line in the image is given by $\rho^* = x \cos \theta^* + y \sin \theta^*$
Incorporating image gradients

• Recall: when we detect an edge point, we also know its gradient direction
• But this means that the line is uniquely determined!

• Modified Hough transform:

For each edge point \((x, y)\) in the image

\[
\begin{align*}
\theta &= \text{gradient orientation at } (x, y) \\
\rho &= x \cos \theta + y \sin \theta \\
H(\theta, \rho) &= H(\theta, \rho) + 1
\end{align*}
\]

\[\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]\]

\[\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)\]

Svetlana Lazebnik
Hough transform example
Impact of noise on Hough

Image space
edge coordinates

Votes
Impact of noise on Hough Image space edge coordinates Votes

What difficulty does this present for an implementation?
Voting: practical tips

- Minimize irrelevant tokens first (reduce noise)
- Choose a good grid / discretization
 - Too coarse: large votes obtained when too many different lines correspond to a single bucket
 - Too fine: miss lines because points that are not exactly collinear cast votes for different buckets
- Vote for neighbors (smoothing in accumulator array)
- Use direction of edge to reduce parameters by 1
- To read back which points voted for “winning” peaks, keep tags on the votes
Hough transform for circles

- A circle with radius r and center (a, b) can be described as:

 \[x = a + r \cos(\theta) \]
 \[y = b + r \sin(\theta) \]
Hough transform for circles

- Circle: center \((a, b)\) and radius \(r\)

\[
(x_i - a)^2 + (y_i - b)^2 = r^2
\]

- For a fixed radius \(r\), unknown gradient direction

![Diagram showing the Hough transform for circles](image)
Hough transform for circles

- Circle: center \((a, b)\) and radius \(r\)
 \[
 (x_i - a)^2 + (y_i - b)^2 = r^2
 \]

- For a fixed radius \(r\), unknown gradient direction

Intersection: most votes for center occur here.
Hough transform for circles

For every edge pixel \((x,y)\) :

For each possible radius value \(r\):

For each possible gradient direction \(\theta\):

\[
\begin{align*}
&\text{// or use estimated gradient at \((x,y)\)} \\
&\text{\hspace{1cm} } a = x - r \cos(\theta) \hspace{1cm} \text{// column} \\
&\text{\hspace{1cm} } b = y - r \sin(\theta) \hspace{1cm} \text{// row} \\
&H[a,b,r] += 1
\end{align*}
\]

Your homework!

Modified from Kristen Grauman
Example: detecting circles with Hough

Note: a different Hough transform (with separate accumulators) was used for each circle radius (quarters vs. penny).

Kristen Grauman, images from Vivek Kwatra
Example: detecting circles with Hough

Note: a different Hough transform (with separate accumulators) was used for each circle radius (quarters vs. penny).
Hough transform: pros and cons

Pros

• All points are processed independently, so can cope with occlusion, gaps
• Some robustness to noise: noise points *unlikely* to contribute *consistently* to any single bin
• Can detect multiple instances of a model in a single pass

Cons

• Complexity of search time for maxima increases exponentially with the number of model parameters
 – If 3 parameters and 10 choices for each, search is $O(10^3)$
• Quantization: can be tricky to pick a good grid size

Adapted from Kristen Grauman
(Optional) Check hidden slides for:

- Generalized Hough transform algorithm
- RANSAC (another voting algorithm)
Plan for today

• Edges
 – Extract gradients and threshold

• Lines and circles
 – Find which edge points are collinear or belong to another shape e.g. circle
 – Automatically detect and ignore outliers

• Segments
 – Find which pixels form a consistent region
 – Clustering (e.g. K-means)
Edges vs Segments

- Edges: More low-level; don’t need to be closed
- Segments: Ideally one segment for each semantic group/object; should include closed contours

Figure adapted from J. Hays
The goals of segmentation

- Separate image into coherent “objects”

Source: L. Lazebnik
The goals of segmentation

• Separate image into coherent “objects”
• Group together similar-looking pixels for efficiency of further processing

“superpixels”

We perceive the interpretation

The Muller-Lyer illusion

Adapted from K. Grauman, D. Hoiem
Proximity
Common fate

Slide: K. Grauman
• These intensities define the three groups.
• We could label every pixel in the image according to which of these primary intensities it is.
 • i.e., segment the image based on the intensity feature.
• What if the image isn’t quite so simple?
• Now how to determine the three main intensities that define our groups?
• We need to *cluster.*
• Goal: choose three “centers” as the representative intensities, and label every pixel according to which of these centers it is nearest to.

• Best cluster centers are those that minimize sum of squared differences (SSD) between all points and their nearest cluster center c_i:

\[
\sum_{\text{clusters } i} \sum_{\text{points } p \text{ in cluster } i} ||p - c_i||^2
\]

Source: K. Grauman
Clustering

• With this objective, it is a “chicken and egg” problem:
 – If we knew the **cluster centers**, we could allocate points to groups by assigning each to its closest center.
 – If we knew the **group memberships**, we could get the centers by computing the mean per per group.

Source: K. Grauman
K-means clustering

• Basic idea: randomly initialize the k cluster centers, and iterate between the two steps we just saw.

1. *Randomly* initialize the cluster centers, $c_1, ..., c_K$
2. *Given cluster centers*, determine points in each cluster
 • For each point p, find the closest c_i. Put p into cluster i
3. *Given points in each cluster*, solve for c_i
 • Set c_i to be the mean of points in cluster i
4. If c_i have changed, repeat Step 2

Properties
• Will always converge to *some* solution
• Can be a “local minimum” of objective:

$$\sum_{i \text{ clusters}} \sum_{p \text{ points in cluster } i} ||p - c_i||^2$$
K-means

1. Ask user how many clusters they’d like.
 \textit{(e.g. } k=5 \textit{)}
K-means

1. Ask user how many clusters they’d like. *(e.g. k=5)*

2. Randomly guess k cluster Center locations
K-means

1. Ask user how many clusters they’d like. *(e.g. k=5)*

2. Randomly guess k cluster Center locations

3. Each datapoint finds out which Center it’s closest to. (Thus each Center “owns” a set of datapoints)

Source: A. Moore
K-means

1. Ask user how many clusters they’d like.
 (e.g. k=5)

2. Randomly guess k cluster Center locations

3. Each datapoint finds out which Center it’s closest to.

4. Each Center finds the centroid of the points it owns

Source: A. Moore
K-means

1. Ask user how many clusters they’d like.
 (e.g. k=5)

2. Randomly guess k cluster Center locations

3. Each datapoint finds out which Center it’s closest to.

4. Each Center finds the centroid of the points it owns...

5. ...and jumps there

6. ...Repeat until terminated!

Source: A. Moore
K-means converges to a local minimum

How can I try to fix this problem?

Adapted from James Hays
K-means: pros and cons

Pros

• Simple, fast to compute
• Converges to local minimum of within-cluster squared error

Cons/issues

• Setting k?
 – One way: silhouette coefficient
• Sensitive to initial centers
 – Use heuristics or output of another method
• Sensitive to outliers
• Detects spherical clusters

Adapted from K. Grauman
Aside: Smoothing cluster assignments

- Assigning a cluster label per pixel may yield outliers:

 - How to ensure they are spatially smooth?

Source: K. Grauman
Segmentation as clustering

Depending on what we choose as the *feature space*, we can group pixels in different ways.

Grouping pixels based on **intensity** similarity

Feature space: intensity value (1-d)

Source: K. Grauman
Adapted from K. Grauman
Segmentation as clustering

Depending on what we choose as the feature space, we can group pixels in different ways.

Grouping pixels based on intensity similarity

Clusters based on intensity similarity don’t have to be spatially coherent.

Source: K. Grauman
Segmentation as clustering

Depending on what we choose as the feature space, we can group pixels in different ways.

Grouping pixels based on intensity+position similarity

Both regions are black, but if we also include position \((x,y)\), then we could group the two into distinct segments; way to encode both similarity & proximity.

Source: K. Grauman
Segmentation as clustering

Depending on what we choose as the feature space, we can group pixels in different ways.

Grouping pixels based on color similarity

Feature space: color value (3-d)

Source: K. Grauman
Segmentation as clustering

- Color, brightness, position alone are not enough to distinguish all regions…

Source: L. Lazebnik
Segmentation as clustering

Depending on what we choose as the *feature space*, we can group pixels in different ways.

Grouping pixels based on *texture* similarity

Feature space: filter bank responses (e.g., 24-d)

Source: K. Grauman
Segmentation w/ texture features

- Describe texture in a window as histogram over filter bank responses (simplified version, better: use “textons”)

Malik, Belongie, Leung and Shi, IJCV 2001

Adapted from L. Lazebnik
State-of-the-art (instance) segmentation: Mask R-CNN

Classification Scores: C
Box coordinates (per class): 4 * C

Predict a mask for each of C classes

He et al, "Mask R-CNN", ICCV 2017; slide adapted from Justin Johnson
Summary: classic approaches

- Edges: threshold gradient magnitude
- Lines: edge points vote for parameters of line, circle, etc. (works for general objects)
- Segments: use clustering (e.g. K-means) to group pixels by intensity, texture, etc.