CS 1674: Intro to Computer Vision

Image Filtering and Texture

Prof. Adriana Kovashka
University of Pittsburgh
September 5, 2018
Plan for next three lectures

• Filters: motivation, math and properties
• Types of filters
 – Linear
 • Smoothing
 • Other
 – Non-linear
 • Median
• Applications of filters
 – Texture representation with filters
 – Anti-aliasing for image subsampling
How images are represented (Matlab)

- Color images represented as a matrix with multiple channels (=1 if grayscale)
- Suppose we have a NxM RGB image called “im”
 - $im(1,1,1)$ = top-left pixel value in R-channel
 - $im(y, x, b) = y$ pixels down (rows), x pixels to right (cols) in b^{th} channel
 - $im(N, M, 3) =$ bottom-right pixel in B-channel
- `imread(filename)` returns a uint8 image (values 0 to 255)

Adapted from Derek Hoiem
Enter: Noise

- We talked about how the same object will look very different across images
- Even multiple images of the same static scene will not be identical
- How could we reduce the noise, i.e., give an estimate of the true intensities?
- What if there’s only one image?
Common types of noise

- **Salt and pepper noise**: random occurrences of black and white pixels

- **Impulse noise**: random occurrences of white pixels

- **Gaussian noise**: variations in intensity drawn from a Gaussian normal distribution

Source: S. Seitz
Gaussian noise

\[f(x, y) = \hat{f}(x, y) + \eta(x, y) \]

Gaussian i.i.d. ("white") noise:
\[\eta(x, y) \sim \mathcal{N}(\mu, \sigma) \]

\[
\text{>> noise} = \text{randn(size(im))}.*\text{sigma;}
\text{>> output} = \text{im + noise;}
\]

What is impact of the sigma?
First attempt at a solution

- Let’s replace each pixel with an average of all the values in its neighborhood

- Assumptions:
 - Expect pixels to be like their neighbors
 - Expect noise processes to be independent from pixel to pixel
First attempt at a solution

- Let’s replace each pixel with an average of all the values in its neighborhood
- Moving average in 1D:

Source: S. Marschner
Weighted Moving Average

- Can add weights to our moving average
- \textit{Weights} \ [1, 1, 1, 1, 1] / 5

Source: S. Marschner
Weighted Moving Average

• Non-uniform weights [1, 4, 6, 4, 1] / 16

Central pixel =
10*1 +
14*4 +
12*6 +
13*4 +
20*1

Adapted from S. Marschner
Moving Average In 2D

\[F[x, y] \]

\[G[x, y] \]

Source: S. Seitz
Moving Average In 2D

\[F[x, y] \]

\[G[x, y] \]

Source: S. Seitz
Moving Average In 2D

\[F[x, y] \]

\[G[x, y] \]

Source: S. Seitz
Moving Average In 2D

\[F[x, y] \quad G[x, y] \]

Source: S. Seitz
Moving Average In 2D

\[F[x, y] \quad G[x, y] \]
Moving Average In 2D

\[F[x, y] \]

\[G[x, y] \]
Image filtering

• Compute a function of the local neighborhood at each pixel in the image
 – Function specified by a “filter” or mask saying how to combine values from neighbors
 – Element-wise multiplication of filter and image patch

• Uses of filtering:
 – Enhance an image (denoise, resize, etc)
 – Extract information (texture, edges, etc)
 – Detect patterns (template matching)

Adapted from Derek Hoiem
Correlation filtering

Non-weighted, averaging window size is $2k+1 \times 2k+1$:

$$G[i, j] = \frac{1}{(2k + 1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} F[i + u, j + v]$$

Attribute uniform weight to each pixel

Loop over all pixels in neighborhood around image pixel $F[i,j]$

Now generalize to allow different weights depending on neighboring pixel’s relative position:

$$G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v]$$

Non-uniform weights
Correlation filtering

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v] \]

This is called **cross-correlation**, denoted

\[G = H \otimes F \]

Filtering an image: replace each pixel with a linear combination of its neighbors.

The filter “**kernel**” or “**mask**” \(H[u,v]\) is the prescription for the weights in the linear combination.
Averaging filter

- What values belong in the kernel H for the moving average example?

$$G = H \otimes F$$
Smoothing by averaging

depicts box filter: white = high value, black = low value

What if the filter size was 5 x 5 instead of 3 x 3?

Kristen Grauman
Gaussian filter

• What if we want nearest neighboring pixels to have the most influence on the output?

\[
\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 90 & 90 & 90 & 90 & 0 \\
0 & 0 & 0 & 90 & 90 & 90 & 90 & 0 \\
0 & 0 & 0 & 90 & 90 & 90 & 90 & 0 \\
0 & 0 & 0 & 90 & 90 & 90 & 90 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 90 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

\[
H[u, v] = \frac{1}{16}
\]

\[
F[x, y]
\]

• Removes high-frequency components from the image ("low-pass filter").

This kernel is an approximation of a 2d Gaussian function:

\[
h(u, v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2 + v^2}{\sigma^2}}
\]

Source: S. Seitz
Smoothing with a Gaussian

Vs box filter

Kristen Grauman
Gaussian filters

• What parameters matter here?
• **Size** of kernel or mask
 - Note, Gaussian function has infinite support, but discrete filters use finite kernels

\[\sigma = 5 \text{ with } 10 \times 10 \text{ kernel} \]

\[\sigma = 5 \text{ with } 30 \times 30 \text{ kernel} \]
Gaussian filters

- What parameters matter here?
- **Variance** of Gaussian: determines extent of smoothing

\[
\sigma = 2 \text{ with } 30 \times 30 \text{ kernel }
\]

\[
\sigma = 5 \text{ with } 30 \times 30 \text{ kernel }
\]
Gaussian filters

How big should the filter be?

• Values at edges should be near zero \(\leftarrow\) important!
• Rule of thumb for Gaussian: set filter half-width to about 3 \(\sigma\)

Source: Derek Hoiem
Gaussian filter in Matlab

\[
\begin{align*}
\text{>> } & \text{ hsize } = 10; \\
\text{>> } & \text{ sigma } = 5; \\
\text{>> } & \text{ h = fspecial('gaussian' hsize, sigma); }
\end{align*}
\]

\[
\begin{align*}
\text{>> } & \text{ mesh(h); } \\
\text{>> } & \text{ imagesc(h); }
\end{align*}
\]

\[
\begin{align*}
\text{>> } & \text{ outim = imfilter(im, h); } \% \text{ correlation} \\
\text{>> } & \text{ imshow(outim); }
\end{align*}
\]
Smoothing with a Gaussian

Parameter σ is the “scale” / “width” / “spread” of the Gaussian kernel, and controls the amount of smoothing.

```matlab
for sigma=1:3:10
    h = fspecial('gaussian', fsize, sigma);
    out = imfilter(im, h);
    imshow(out);
    pause;
end
```
Convolution

- Convolution:
 - Flip the filter in both dimensions (bottom to top, right to left)
 - Then apply cross-correlation

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v] \]

\[G = H \ast F \]

Notation for convolution operator
Convolution vs. correlation

Convolution

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v]F[i - u, j - v]
\]

\[
G = H \star F
\]

Cross-correlation

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v]F[i + u, j + v]
\]

\[
G = H \otimes F
\]

For a Gaussian or box filter, how will the outputs differ?
Convolution vs. correlation

Cross-correlation

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v]
\]

\[
G = H \odot F
\]

Convolution

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v]
\]

\[
G = H \ast F
\]
Convolution vs. correlation

Cross-correlation

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v]
\]

\[
G = H \otimes F
\]

Convolution

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v]
\]

\[
G = H \ast F
\]
Convolution vs. correlation

Cross-correlation

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v]
\]

\[
G = H \otimes F
\]

Convolution

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v]
\]

\[
G = H \ast F
\]
Convolution vs. correlation

Cross-correlation

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v]
\]

\[G = H \otimes F\]

Convolution

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v]
\]

\[G = H \ast F\]
Convolution vs. correlation

Cross-correlation

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v] \]

\[G = H \otimes F \]

Convolution

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v] \]

\[G = H \ast F \]
Convolution vs. correlation

Cross-correlation

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v]
\]

\[
G = H \otimes F
\]

Convolution

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v]
\]

\[
G = H \ast F
\]
Convolution vs. correlation

Cross-correlation

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v] \]

\[G = H \otimes F \]

Convolution

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v] \]

\[G = H \ast F \]
Convolution vs. correlation

Cross-correlation

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v] \]

\[G = H \otimes F \]

For \(u = -1, v = -1 \)

\(v = 0 \)

\(v = +1 \)

\(u = 0, v = -1 \)

Convolution

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v] \]

\[G = H \ast F \]
Properties of smoothing filters

- **Smoothing**
 - Values positive
 - Sum to 1 \rightarrow overall intensity same as input
 - Amount of smoothing proportional to mask size
 - Remove “high-frequency” components; “low-pass” filter
Predict the outputs using correlation filtering

\[
\begin{array}{ccc}
\times & \begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
\end{array} & = ? \\
\end{array}
\]

\[
\begin{array}{ccc}
\times & \begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
\end{array} & = ? \\
\end{array}
\]

\[
\begin{array}{ccc}
\times & \begin{array}{ccc}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0 \\
\end{array} & - \frac{1}{9} \begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{array} = ? \\
\end{array}
\]

Kristen Grauman
Practice with linear filters

Original

Source: D. Lowe
Practice with linear filters

Original

Filtered (no change)

Source: D. Lowe
Practice with linear filters

Original

Source: D. Lowe
Practice with linear filters

Original

Shifted left by 1 pixel with correlation

Source: D. Lowe
Practice with linear filters

Original

\[
\begin{array}{ccc}
0 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 0 \\
\end{array}
\]

\[
\frac{1}{9}
\]

Source: D. Lowe
Practice with linear filters

Original

Blur (with a box filter)

Source: D. Lowe
Practice with linear filters

Original

\[
\begin{bmatrix}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0 \\
\end{bmatrix} - \frac{1}{9}
\begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{bmatrix}
\]

Source: D. Lowe
Practice with linear filters

Original

Sharpening filter:
accentuates differences with local average

Source: D. Lowe
Sharpening

before

after

Kristen Grauman
Filters for computing gradients

\[
\begin{array}{ccc}
1 & 0 & -1 \\
2 & 0 & -2 \\
1 & 0 & -1 \\
\end{array}
\]

* intensity image

Adapted from Derek Hoiem
Median filter

- No new pixel values introduced
- Removes spikes: good for impulse, salt & pepper noise
- Non-linear filter
Median filter

- Median filter is edge preserving

Adapted from Kristen Grauman
Median filter

Salt and pepper noise

Plots of a row of the image

Matlab: output_im = medfilt2(im, [h w]);

Source: M. Hebert
• What is the size of the output?
 – ‘full’: output size is larger than the size of f
 – ‘same’: output size is same as f
Boundary issues

- What about near the edge?
 - the filter window might fall off the edge of the image (in ‘same’ or ‘full’)
 - need to extrapolate
 - methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

Source: S. Marschner
Properties of convolution

• Commutative:
 \[f \ast g = g \ast f \]

• Associative:
 \[(f \ast g) \ast h = f \ast (g \ast h) \]

• Distributes over addition:
 \[f \ast (g + h) = (f \ast g) + (f \ast h) \]

• Scalars factor out:
 \[kf \ast g = f \ast kg = k(f \ast g) \]

• Identity:
 \[\text{unit impulse } e = [..., 0, 0, 1, 0, 0, ...]. \ f \ast e = f \]
Separability

• In some cases, filter is separable, and we can factor into two steps:
 – Convolve all rows
 – Convolve all columns
Separability example

2D filtering (center location only)

The filter factors into an *outer* product of 1D filters:

Perform filtering along rows:

Followed by filtering along the remaining column:
Application: Hybrid Images

What you see...
I see an angry guy

From Far Away

Up Close
It’s a woman!
Application: Hybrid Images

Gaussian Filter

Laplacian Filter (sharpening)

unit impulse

Gaussian

Laplacian of Gaussian
Application: Hybrid Images
Application: Hybrid Images

Changing expression

Sad Surprised

Kristen Grauman

Aude Oliva & Antonio Torralba & Philippe G Schyns, SIGGRAPH 2006
Plan for next two lectures

• Filters: math and properties
• Types of filters
 – Linear
 • Smoothing
 • Other
 – Non-linear
 • Median
• Applications
 – Texture representation with filters
 – Anti-aliasing for image subsampling
Texture

Due to:
Patterns, marks, etches, blobs, holes, relief, etc.
Includes: more regular patterns
Includes: more random patterns
Why analyze texture?

- Important for how we perceive objects
- Can be an important appearance cue that allows us to distinguish objects, especially if shape is similar across objects

Adapted from Kristen Grauman
Texture representation

• Textures are made up of repeated local patterns, so:
 – Find the patterns
 • Use filters that look like patterns (spots, bars, raw patches...)
 • Consider magnitude of response
 – Describe their statistics within each local window
 • E.g. mean, standard deviation, histogram
Derivative of Gaussian filter

Figures from Noah Snavely
Texture representation: example

original image

derivative filter responses, squared

statistics to summarize patterns in small windows

<table>
<thead>
<tr>
<th></th>
<th>mean d/dx value</th>
<th>mean d/dy value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Win. #1</td>
<td>4</td>
<td>10</td>
</tr>
</tbody>
</table>

Kristen Grauman
Texture representation: example

- **original image**
- **derivative filter responses, squared**

<table>
<thead>
<tr>
<th>Window</th>
<th>mean d/dx value</th>
<th>mean d/dy value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Win. #1</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Win. #2</td>
<td>18</td>
<td>7</td>
</tr>
</tbody>
</table>

statistics to summarize patterns in small windows
Texture representation: example

original image

derivative filter responses, squared

statistics to summarize patterns in small windows

<table>
<thead>
<tr>
<th>Win.</th>
<th>mean $\frac{d}{dx}$ value</th>
<th>mean $\frac{d}{dy}$ value</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>#2</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td>#9</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

Kristen Grauman
Texture representation: example

Statistics to summarize patterns in small windows

<table>
<thead>
<tr>
<th></th>
<th>mean d/dx value</th>
<th>mean d/dy value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Win. #1</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Win. #2</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td>Win. #9</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

Kristen Grauman
Texture representation: example

Windows with primarily horizontal edges

Windows with small gradient in both directions

Windows with primarily vertical edges

Both

<table>
<thead>
<tr>
<th>Windows</th>
<th>mean d/dx value</th>
<th>mean d/dy value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Win. #1</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Win. #2</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td>Win. #9</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

statistics to summarize patterns in small windows

Kristen Grauman
Texture representation: example

original image

derivative filter responses, squared

visualization of the assignment to texture “types”
Texture representation: example

statistics to summarize patterns in small windows

<table>
<thead>
<tr>
<th></th>
<th>Dimension 1 (mean d/dx value)</th>
<th>Dimension 2 (mean d/dy value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Win. #1</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Win. #2</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td>Win. #9</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

Far: dissimilar textures
Close: similar textures
Computing distances using texture

\[D(a,b) = \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2} \]

\[= \sqrt{\sum_{i=1}^{d} (a_i - b_i)^2} \]

Euclidean distance (L_2)
Texture representation: example

Distance reveals how dissimilar texture from window a is from texture in window b.
Filter banks

• Our previous example used two filters, and resulted in a 2-dimensional feature vector to describe texture in a window.
 – x and y derivatives revealed something about local structure.

• We can generalize to apply a collection of multiple (d) filters: a “filter bank”.

• Then our feature vectors will be d-dimensional.

Adapted from Kristen Grauman
Filter banks

• What filters to put in the bank?
 – Typically we want a combination of scales and orientations, different types of patterns.

Matlab code available for these examples:
http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html

Kristen Grauman
Filter bank

Kristen Grauman
Vectors of texture responses

To represent pixel, form a “feature vector” from the responses at that pixel.

1x38 vector representation feature

\[[r_1, r_2, \ldots, r_{38}] \]
Vectors of texture responses

To represent pixel, form a “feature vector” from the responses at that pixel.

$[r_{(1,1)}^1, r_{(1,1)}^2, \ldots, r_{(1,1)}^{38}]$

$[r_{(1,2)}^1, r_{(1,2)}^2, \ldots, r_{(1,2)}^{38}]$

\[\text{Pixel location} \]
\[\text{Filter ID} \]

$[r_{(W,H)}^1, r_{(W,H)}^2, \ldots, r_{(W,H)}^{38}]$

To represent *image*, compute statistics over all pixel feature vectors, e.g. their mean.

$[\text{mean}(r_{(1,1)}^1), \text{mean}(r_{(1,1)}^2), \ldots, \text{mean}(r_{(1,1)}^{38})]$
You try: Can you match the texture to the response?

Filters

1

2

3

Mean abs responses

A

B

C

Derek Hoiem
Representing texture by mean abs response

Filters

Mean abs responses
Classifying materials, “stuff”

Figure by Varma & Zisserman
Plan for next two lectures

• Filters: math and properties
• Types of filters
 – Linear
 • Smoothing
 • Other
 – Non-linear
 • Median
• Applications
 – Texture representation with filters
 – Anti-aliasing for image subsampling
Sampling

Why does a lower resolution image still make sense to us? What do we lose?

Subsampling by a factor of 2

Throw away every other row and column to create a 1/2 size image
Aliasing problem

• 1D example (sinewave):
Aliasing problem

• 1D example (sinewave):
Aliasing problem

• Sub-sampling may be dangerous....
• Characteristic errors may appear:
 – “Wagon wheels rolling the wrong way in movies”
 – “Striped shirts look funny on color television”
Sampling and aliasing
Nyquist-Shannon Sampling Theorem

• When sampling a signal at discrete intervals, the sampling frequency must be $\geq 2 \times f_{\text{max}}$
• $f_{\text{max}} = \text{max frequency of the input signal}$
• This will allows to reconstruct the original perfectly from the sampled version
Anti-aliasing

Solutions:
• Sample more often
• Get rid of high frequencies
 – What are these in the case of images?
 – Will lose information, but it’s better than aliasing
 – Apply a smoothing filter
Algorithm for downsampling by factor of 2

1. Start with image(h, w)
2. Apply low-pass filter
 \[\text{im_blur} = \text{imfilter(} \text{image, fspecial('gaussian', 7, 1)} \text{)} \]
3. Sample every other pixel
 \[\text{im_small} = \text{im_blur}(1:2:end, 1:2:end); \]
Anti-aliasing

Forsyth and Ponce 2002
Subsampling without pre-filtering

1/2

1/4 (2x zoom)

1/8 (4x zoom)

Slide by Steve Seitz
Subsampling with Gaussian pre-filtering

Gaussian 1/2

G 1/4

G 1/8

Slide by Steve Seitz
Subsampling away...

Why would we want to do this?
Can we reconstruct the original from the Laplacian pyramid?

\[\{f_0, f_1, ..., f_n\} = \text{Gaussian pyramid} \]

\[\{h_0, h_1, ..., h_n\} = \text{Laplacian pyramid} \]
Gaussian pyramid

Source: Forsyth
Summary

• Filters useful for
 – Enhancing images (smoothing, removing noise), e.g.
 • Box filter (linear)
 • Gaussian filter (linear)
 • Median filter
 – Detecting patterns (e.g. gradients)

• Texture is a useful property that is often indicative of materials, appearance cues
 – Texture representations summarize repeating patterns of local structure

• Can use filtering to reduce the effects of subsampling