Plan for today

• Feature detection / keypoint extraction
 – Corner detection
 – Blob detection
• Feature description (of detected features)
• Matching features across images
An image is a set of pixels...
Problems with pixel representation

• Not invariant to small changes
 – Translation
 – Illumination
 – etc.
• Some parts of an image are more important than others
• What do we want to represent?
Human eye movements

Yarbus eye tracking
Local features

• *Local* means that they only cover a small part of the image

• There will be many local features detected in an image

• Later we’ll talk about how to use those to compute a representation of the whole image

• Local features usually exploit image gradients, ignore color
Local features: desired properties

• Locality
 – A feature occupies a relatively small area of the image; robust to clutter and occlusion

• Repeatability and flexibility
 – Robustness to expected variations: the same feature can be found in several images despite geometric/photometric transformations
 – Maximize correct matches

• Distinctiveness
 – Each feature has a distinctive description
 – Minimize wrong matches

• Compactness and efficiency
 – Many fewer features than image pixels

Adapted from K. Grauman and D. Hoiem
Interest(ing) points

• Note: “interest points” = “keypoints”, also sometimes called “features”

• Many applications
 – Image search: which points would allow us to match images between query and database?
 – Recognition: which patches are likely to tell us something about the object category?
 – 3D reconstruction: how to find correspondences across different views?
 – Tracking: which points are good to track?

Adapted from D. Hoiem
Interest points

• Suppose you have to click on some point, go away and come back after I deform the image, and click on the same points again.

 – Which points would you choose?
Choosing interest points

Where would you tell your friend to meet you?

→ Corner detection
Choosing interest points

Where would you tell your friend to meet you? → Blob detection
Application 1: Keypoint Matching for Search

1. Find a set of distinctive keypoints
2. Define a region around each keypoint (window)
3. Compute a local descriptor from the region
4. Match descriptors

\[d(f_A, f_B) < T \]

Adapted from K. Grauman, B. Leibe
Application 1: Keypoint Matching For Search

Goal:
We want to detect *repeatable* and *distinctive* points
- *Repeatable*: so that if images are slightly different, we can still retrieve them
- *Distinctive*: so we don’t retrieve irrelevant content

Adapted from D. Hoiem
Application 2: Panorama stitching

We have two images – how do we combine them?
Application 2: Panorama stitching

We have two images – how do we combine them?

Step 1: extract features
Step 2: match features
Application 2: Panorama stitching

We have two images – how do we combine them?

Step 1: extract features
Step 2: match features
Step 3: align images
Corners as distinctive interest points

• We should easily recognize the keypoint by looking through a small window
• Shifting a window in *any direction* should give a *large change* in intensity

- **“flat” region:** no change in all directions
- **“edge”:** no change along the edge direction
- **“corner”:** significant change in all directions

Adapted from A. Efros, D. Frolova, D. Simakov
Corners as distinctive interest points

- We should easily recognize the keypoint by looking through a small window
- Shifting a window in *any direction* should give a *large change* in intensity

“flat” region: no change in all directions
“edge”: no change along the edge direction
“corner”: significant change in all directions

Adapted from A. Efros, D. Frolova, D. Simakov
Corners as distinctive interest points

- We should easily recognize the keypoint by looking through a small window
- Shifting a window in *any direction* should give a *large change* in intensity

"flat" region: no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions

Adapted from A. Efros, D. Frolova, D. Simakov
Corners as distinctive interest points

• We should easily recognize the keypoint by looking through a small window
• Shifting a window in *any direction* should give a *large change* in intensity

“flat” region: no change in all directions

“edge”: no change along the edge direction

“corner”: significant change in all directions

Adapted from A. Efros, D. Frolova, D. Simakov
Corners as distinctive interest points

- We should easily recognize the keypoint by looking through a small window
- Shifting a window in *any direction* should give a *large change* in intensity

“flat” region: no change in all directions

“edge”: no change along the edge direction

“corner”: significant change in all directions

Adapted from A. Efros, D. Frolova, D. Simakov
What points would you choose?
Harris Detector: Mathematics

Window-averaged squared change of intensity induced by shifting the patch for a fixed candidate keypoint by \([u, v]\):

\[
E(u, v) = \sum_{x,y} \left[I(x + u, y + v) - I(x, y) \right]^2
\]

Adapted from D. Frolova, D. Simakov
Harris Detector: Mathematics

Window-averaged squared change of intensity induced by shifting the patch for a fixed candidate keypoint by \([u, v]\):

\[
E(u, v) = \sum_{x, y} \left[I(x + u, y + v) - I(x, y) \right]^2
\]

Adapted from D. Frolova, D. Simakov
Harris Detector: Mathematics

For every pixel \((r, c)\) as candidate keypoint

- Initialize \(E = \text{zeros}(\text{max_offset}, \text{max_offset})\)
- For each offset \((u, v)\)
 - Initialize \(\text{sum} \) to 0
 - For each neighbor \((x, y)\) of \((r, c)\)
 - \(\text{sum} = \text{sum} + [I(x, y) - I(x+u, y+v)]^2\)
 - \(E(u, v) = \text{sum}\)
 - Plot \(E(u, v)\)

See `autocorr_surface.m`

Here \(u = 1, v = 0\)
Harris Detector: Mathematics

We can approximate the autocorrelation surface between a patch and itself, shifted by \([u,v]\), as:

\[
E(u, v) \equiv \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}
\]

where \(M\) is a \(2 \times 2\) matrix computed from image derivatives:

\[
M = \sum_{x,y} \begin{bmatrix} I_h^2 & I_h I_v \\ I_h I_v & I_v^2 \end{bmatrix}
\]

Adapted from D. Frolova, D. Simakov
Harris Detector: Mathematics

How else can I write this?

\[M = \sum_{x, y} \begin{bmatrix} I_h^2 & I_h I_v \\ I_h I_v & I_v^2 \end{bmatrix} \]

Notation:

\[I_h \leftrightarrow \frac{\partial I}{\partial x} \quad I_v \leftrightarrow \frac{\partial I}{\partial y} \quad I_h I_v \leftrightarrow \frac{\partial I}{\partial x} \frac{\partial I}{\partial y} \]

Adapted from K. Grauman
Harris Detector: Mathematics

For every pixel \((r, c)\) as candidate keypoint

Let \(I_h\) (of size width x height of the image) be the image derivative in the horizontal direction, \(I_y\) be derivative in the vertical direction. (Both require one correlation op to compute.)

Initialize \(M = \text{zeros}(2, 2)\)

For every pixel \((r, c)\) as candidate keypoint

For \(x = r - 1 : r + 1\)

For \(y = c - 1 : c + 1\)

\[
M(1, 1) = M(1, 1) + I_h(x, y)^2
\]

\[
M(1, 2) = ?
\]

\[
M(2, 1) = ?
\]

\[
M(2, 2) = ?
\]

Your homework!
What does the matrix M reveal?

Since M is symmetric, we have

$$M = X \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} X^T$$

$$Mx_i = \lambda_i x_i$$

The *eigenvalues* of M reveal the amount of intensity change in the two principal orthogonal gradient directions in the window.
Corner response function

“edge”: \[\lambda_1 \gg \lambda_2 \]
\[\lambda_2 \gg \lambda_1 \]

“corner”: \[\lambda_1 \text{ and } \lambda_2 \text{ are large,} \]
\[\lambda_1 \sim \lambda_2 \]

“flat” region: \[\lambda_1 \text{ and } \lambda_2 \text{ are small} \]
Harris Detector: Mathematics

Measure of corner response:

$$R = \det M - k \left(\text{trace } M \right)^2$$

Because M is symmetric

$$\det M = \lambda_1 \lambda_2$$
$$\text{trace } M = \lambda_1 + \lambda_2$$

(k – empirical constant, $k = 0.04$-0.06)
Harris Detector: Algorithm

- Compute image gradients I_h and I_v for all pixels
- For each pixel
 - Compute $M = \sum_{x,y} \begin{bmatrix} I_h^2 & I_h I_v \\ I_h I_v & I_v^2 \end{bmatrix}$
 by looping over neighbors x, y
 - compute $R = \det M - k \left(\text{trace } M \right)^2$
 (k : empirical constant, $k = 0.04$-0.06)
- Find points with large corner response function R
 ($R > \text{threshold}$)
- Non-max suppression: Take the points of locally maximum R as the detected feature points (i.e., pixels where R is bigger than for all the 4 or 8 neighbors)
Example of Harris application
Example of Harris application

- Corner response at every pixel
More Harris responses

Effect: A very precise corner detector.
More Harris responses
Properties: Invariance vs covariance

“A function is *invariant* under a certain family of transformations if its value does not change when a transformation from this family is applied to its argument. A function is *covariant* when it commutes with the transformation, i.e., applying the transformation to the argument of the function has the same effect as applying the transformation to the output of the function. […]

- [For example,] the area of a 2D surface is invariant under 2D rotations, since rotating a 2D surface does not make it any smaller or bigger.
- But the orientation of the major axis of inertia of the surface is covariant under the same family of transformations, since rotating a 2D surface will affect the orientation of its major axis in exactly the same way.”
- Another example: If \(f \) is *invariant* under linear transformations, then \(f(ax+b) = f(x) \), and if it is *covariant* with respect to these transformations, then \(f(ax+b) = af(x) + b \)
What happens if: Affine intensity change

- Only derivatives are used => invariance to intensity shift $I \rightarrow I + b$

- Intensity scaling: $I \rightarrow a I$

Partially invariant to affine intensity change
What happens if: Image translation

- Derivatives and window function are shift-invariant

Corner location is covariant w.r.t. translation (on image level), corner response is invariant (on patch level)

Adapted from L. Lazebnik
What happens if: Image rotation

Second moment ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner location is covariant w.r.t. rotation (on image level), corner response is invariant (on patch level)

Adapted from L. Lazebnik
What happens if: Scaling
Invariant to image scale?

image
zoomed image

A. Torralba
What happens if: Scaling

Corner location is not covariant to scaling!

Corner

All points will be classified as edges

L. Lazebnik
Scale invariant detection

• Problem:
 – How do we choose corresponding windows \textit{independently} in each image?
 – Do objects have a characteristic scale that we can identify?
Scale invariant detection

Solution:
- Design a function on the region which has the same shape even if the image is resized
- Take a local maximum of this function

Adapted from A. Torralba
Scale invariant detection

- A “good” function for scale detection: has one stable sharp peak

Adapted from A. Torralba
Automatic scale selection

How to find corresponding patch sizes?

\[f(I_{i_1...i_m}(x, \sigma)) = f(I_{i_1...i_m}(x', \sigma')) \]
Automatic scale selection

• Function responses for increasing scale (scale signature)
Automatic scale selection

- Function responses for increasing scale (scale signature)

\[f(I_{i_1...i_m}(x, \sigma)) \]

\[f(I_{i_1...i_m}(x', \sigma)) \]
Automatic scale selection

- Function responses for increasing scale (scale signature)

\[f(I_{i_1\ldots i_m}(x, \sigma)) \]

\[f(I_{i_1\ldots i_m}(x', \sigma)) \]
Automatic scale selection

- Function responses for increasing scale (scale signature)
Automatic scale selection

- Function responses for increasing scale (scale signature)
Automatic scale selection

- Function responses for increasing scale (scale signature)
What is a useful signature function?

- Laplacian of Gaussian = “blob” detector
Blob detection in 2D

- Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D

\[\nabla^2 g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} \]
Difference of Gaussian \approx Laplacian

- We can approximate the Laplacian with a difference of Gaussians; more efficient to implement.

\[
L = \sigma^2 \left(G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \right)
\]

(Laplacian)

\[
DoG = G(x, y, k\sigma) - G(x, y, \sigma)
\]

(Difference of Gaussians)

\[
I(k\sigma) - I(\sigma) = I(k\sigma) - I(\sigma)
\]
Difference of Gaussian: Efficient computation

• Computation in Gaussian scale pyramid

See blobs.m
Find **local maxima** in position-scale space of Difference-of-Gaussian

Find places where X greater than all of its neighbors (in green)

\Rightarrow List of (x, y, s)

Adapted from K. Grauman, B. Leibe
Laplacian pyramid example

- Allows detection of increasingly coarse detail

See blobs.m
Results: Difference-of-Gaussian

K. Grauman, B. Leibe
Plan for today

• Feature detection / keypoint extraction
 – Corner detection
 – Blob detection
• Feature description (of detected features)
• Matching features across images
Geometric transformations

e.g. scale, translation, rotation
Photometric transformations
Scale-Invariant Feature Transform (SIFT) descriptor

Journal + conference versions: 60,126 citations

Histogram of oriented gradients
- Captures important texture information
- Robust to small translations / affine deformations

[Lowe, ICCV 1999]

K. Grauman, B. Leibe
Computing gradients

L = the image intensity

\[m(x, y) = \sqrt{\left(L(x+1, y) - L(x-1, y) \right)^2 + \left(L(x, y+1) - L(x, y-1) \right)^2} \]

- gradient in x direction
- gradient in y direction

\[\theta(x, y) = \tan^{-1} \left(\frac{L(x, y+1) - L(x, y-1)}{L(x+1, y) - L(x-1, y)} \right) \]

- gradient in y direction
- gradient in x direction

\[\tan(\alpha) = \frac{\text{opposite side}}{\text{adjacent side}} \]
Gradients

\[m(x, y) = \sqrt{(L(x + 1, y) - L(x - 1, y))^2 + (L(x, y + 1) - L(x, y - 1))^2} \]

\[\theta(x, y) = \tan^{-1}((L(x, y + 1) - L(x, y - 1))/(L(x + 1, y) - L(x - 1, y))) \]

\[m(x, y) = \sqrt{1 + 0} = 1 \]

\[\theta(x, y) = \tan^{-1}(0/-1) = 0 \]
Gradients

\[m(x, y) = \sqrt{(L(x + 1, y) - L(x - 1, y))^2 + (L(x, y + 1) - L(x, y - 1))^2} \]

\[\theta(x, y) = \tan^{-1}((L(x, y + 1) - L(x, y - 1))/(L(x + 1, y) - L(x - 1, y))) \]

\[m(x, y) = \sqrt{0 + 1} = 1 \]

\[\Theta(x, y) = \tan^{-1}(1/0) = 90 \]
Gradients

Gradients

\[m(x, y) = \sqrt{(L(x + 1, y) - L(x - 1, y))^2 + (L(x, y + 1) - L(x, y - 1))^2} \]

\[\theta(x, y) = \tan^{-1}\left(\frac{L(x, y + 1) - L(x, y - 1)}{L(x + 1, y) - L(x - 1, y)}\right) \]

\[m(x, y) = \sqrt{1 + 1} = 1.41 \]

\[\Theta(x, y) = \tan^{-1}(1/1) = 45 \]
Scale Invariant Feature Transform

Basic idea:

- Take 16x16 square window around detected feature
- Compute gradient orientation for each pixel
- Create histogram over edge orientations weighted by magnitude
- That’s your feature descriptor!

Adapted from L. Zitnick, D. Lowe
Scale Invariant Feature Transform

Full version

- Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
- Quantize the gradient orientations i.e. snap each gradient to one of 8 angles
- Each gradient contributes not just 1, but magnitude(gradient) to the histogram, i.e. stronger gradients contribute more
- 16 cells * 8 orientations = 128 dimensional descriptor for each detected feature

Adapted from L. Zitnick, D. Lowe
Scale Invariant Feature Transform

Gradients

Uniform weight (ignore magnitude)

Count

2 3 2 2

Type = 1 2 3 4

Histogram of gradients
Scale Invariant Feature Transform

Weight contribution by magnitude (e.g. long = 1, short = 0.5)

Gradients

<table>
<thead>
<tr>
<th>Type</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2.5</td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Histogram of gradients
Scale Invariant Feature Transform

Full version

- Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
- Quantize the gradient orientations i.e. snap each gradient to one of 8 angles
- Each gradient contributes not just 1, but magnitude(gradient) to the histogram, i.e. stronger gradients contribute more
- 16 cells * 8 orientations = 128 dimensional descriptor for each detected feature
- Normalize + clip (threshold normalize to 0.2) + normalize the descriptor
- We want:

\[\sum_{i} d_i = 1 \quad \text{such that: } \quad d_i < 0.2 \]

Adapted from L. Zitnick, D. Lowe
Making descriptor rotation invariant

- Rotate patch according to its dominant gradient orientation
- This puts the patches into a canonical orientation
SIFT is robust

- Can handle changes in viewpoint
 - Up to about 60 degree out of plane rotation
- Can handle significant changes in illumination
 - Sometimes even day vs. night (below)
- Fast and efficient—can run in real time

- Can be made to work without feature detection, resulting in “dense SIFT” (more points means robustness to occlusion)

- One commonly used implementation
 - http://www.vlfeat.org/overview/sift.html

Adapted from S. Seitz
Examples of using SIFT
Examples of using SIFT
Examples of using SIFT

Images from S. Seitz
Applications of local invariant features

- Object recognition
- Indexing and retrieval
- Robot navigation
- 3D reconstruction
- Motion tracking
- Image alignment
- Panoramas and mosaics
- ...

Adapted from K. Grauman and L. Lazebnik

http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html
Plan for today

• Feature detection / keypoint extraction
 – Corner detection
 – Blob detection
• Feature description (of detected features)
• Matching features across images
Matching local features

- To generate **candidate matches**, find patches that have the most similar appearance (e.g., lowest feature Euclidean distance)
- Simplest approach: compare query to all other features, take the closest (or closest k, or within a thresholded distance) as matches

K. Grauman
Robust matching

- At what Euclidean distance value do we have a good match?
- To add robustness to matching, can consider ratio: distance of query to best match / distance to second best match
 - If low, first match looks good
 - If high, could be ambiguous match
Matching SIFT descriptors

- Nearest neighbor (Euclidean distance)
- Threshold ratio of 1^{st} nearest to 2^{nd} nearest descriptor

Lowe IJCV 2004
Efficient matching

• So far we discussed matching features across just two images
• What if you wanted to match a query feature from one image, to features from all frames in a video?
• Or an image to other images in a giant database?
• With potentially thousands of features per image, and hundreds to millions of images to search, how to efficiently find those that are relevant to a new image?

Adapted from K. Grauman
Indexing local features: Setup

- Each patch / region has a descriptor, which is a point in some high-dimensional feature space (e.g., SIFT)
Indexing local features: Setup

- When we see close points in feature space, we have similar descriptors, which indicates similar local content
Indexing local features: Inverted file index

- For text documents, an efficient way to find all pages on which a word occurs is to use an index...

- We want to find all images in which a feature occurs.

- To use this idea, we’ll need to map our features to “visual words”.

K. Grauman
Visual words: Main idea

- Extract some local features from a number of images …

• e.g., SIFT descriptor space: each point is 128-dimensional
Visual words: Main idea
Visual words: Main idea

D. Nister, CVPR 2006
Visual words: Main idea
Each point is a local descriptor, e.g. SIFT feature vector.
“Quantize” the space by grouping (clustering) the features.
Note: For now, we’ll treat clustering as a black box.
Visual words

• Patches on the right = regions used to compute SIFT
• Each group of patches belongs to the same “visual word”

Figure from Sivic & Zisserman, ICCV 2003

Adapted from K. Grauman
Visual words for indexing

- Map high-dimensional descriptors to tokens/words by quantizing the feature space.

 - Each cluster has a center.
 - To determine which word to assign to new image region (e.g., query), find closest cluster center.

 - To compare features: Only compare query feature to others in same cluster (speed up).
 - To compare images: see next slide.

Adapted from K. Grauman
Inverted file index

- Index database images: map each word to image IDs that contain it
Inverted file index

When will this indexing process give us a gain in efficiency?

- For a new query image, find which database images share a word with it, and retrieve those images as matches (or inspect only those further)

Adapted from K. Grauman
Of all the sensory impressions proceeding to the brain, the visual experiences are the dominant ones. Our perception of the world around us is based essentially on the messages that reach our brain from our eyes. For a long time it was thought that the retinal image was transmitted point by point to visual centers in the brain; the cerebral cortex was a movie screen, so to speak, upon which the image was projected. Through the discoveries of Hubel and Wiesel we now know that behind the origin of the visual perception in the brain there is a considerably more complicated course of events. By following the visual impulses along their path to the various cell layers of the optical cortex, Hubel and Wiesel have been able to demonstrate that the message about the image falling on the retina undergoes a step-wise analysis in a system of nerve cells stored in columns. In this system each cell has its specific function and is responsible for a specific detail in the pattern of the retinal image.

China is forecasting a trade surplus of $90bn (£51bn) to $100bn this year, a threefold increase on 2004's $32bn. The Commerce Ministry said the surplus would be created by a predicted 30% jump in exports to $750bn, compared with $660bn. This could further annoy the US, which has long argued that China's exports are unfairly helped by a deliberately undervalued yuan. Beijing agrees the surplus is too high, but says the yuan is only one factor. Bank of China governor Zhou Xiaochuan said the country also needed to do more to boost domestic demand so more goods stayed within the country. China increased the value of the yuan against the dollar by 2.1% in July and permitted it to trade within a narrow band, but the US wants the yuan to be allowed to trade freely. However, Beijing has made it clear that it will take its time and tread carefully before allowing the yuan to rise further in value.
Describing images w/ visual words

- Summarize entire image based on its distribution (histogram) of word occurrences
- Analogous to bag of words representation commonly used for documents

Feature patches:

Adapted from K. Grauman
Describing images w/ visual words

- Summarize entire image based on its distribution (histogram) of word occurrences
- Analogous to bag of words representation commonly used for documents

Feature patches:

Visual words
Comparing bags of words

- Rank images by normalized scalar product between their occurrence counts—*nearest neighbor* search for similar images.

\[
\text{sim}(d_j, q) = \frac{\langle d_j, q \rangle}{\|d_j\| \|q\|}
\]

\[
= \frac{\sum_{i=1}^{V} d_j(i) * q(i)}{\sqrt{\sum_{i=1}^{V} d_j(i)^2} * \sqrt{\sum_{i=1}^{V} q(i)^2}}
\]

for vocabulary of \(V \) words
Bags of words: pros and cons

+ flexible to geometry / deformations / viewpoint
+ compact summary of image content
+ good results in practice

- basic model ignores geometry – must verify afterwards, or encode via features
- background and foreground mixed when bag covers whole image
- optimal vocabulary formation remains unclear

Adapted from K. Grauman
Summary: Inverted file index and bags of words similarity

Offline:
• Extract features in database images, cluster them to find words = cluster centers, make index

Online (during search):
1. Extract words in query (extract features and map each to closest cluster center)
2. Use inverted file index to find database images relevant to query
3. Rank database images by comparing word counts of query and database image

Adapted from K. Grauman
Additional references

• **Survey paper on local features**

• **Making Harris detection scale-invariant**

• **SIFT paper by David Lowe**
Summary

- Keypoint detection: repeatable and distinctive
 - Corners, blobs, stable regions
 - Laplacian of Gaussian, automatic scale selection
- Descriptors: robust and selective
 - Histograms for robustness to small shifts and translations (SIFT descriptor)
- Matching: cluster and index
 - Compare images through their feature distribution

Adapted from D. Hoiem, K. Grauman