HW3P post-mortem

• Matlab: 21% of you reviewed 0-33% of it
 – Please review the entire tutorial ASAP

• How long did HW3P take? (Answer on Socrative)
• What did you learn from it?
• What took the most time?
Plan for Today

• Feature detection (wrap-up)
• Matching features
• Indexing features
 – Visual words
• Application to image retrieval
Matching local features

- To generate **candidate matches**, find patches that have the most similar appearance (e.g., lowest feature Euclidean distance)
- Simplest approach: compare them all, take the closest (or closest k, or within a thresholded distance)
Robust matching

- At what Euclidean distance value do we have a good match?
- To add robustness to matching, can consider **ratio** : distance to best match / distance to second best match
- If low, first match looks good.
- If high, could be ambiguous match.

K. Grauman
Matching SIFT descriptors

- Nearest neighbor (Euclidean distance)
- Threshold ratio of nearest to 2nd nearest descriptor

Lowe IJCV 2004
Efficient matching

- So far we discussed matching across just two images
- What if you wanted to match a query feature from one image, to all frames in a video, or to a giant database?
- With potentially thousands of features per image, and hundreds to millions of images to search, how to efficiently find those that are relevant to a new image?

Adapted from K. Grauman
Indexing local features: Setup

- Each patch / region has a descriptor, which is a point in some high-dimensional feature space (e.g., SIFT)

Descriptor’s feature space
Indexing local features: Setup

- When we see close points in feature space, we have similar descriptors, which indicates similar local content.
Indexing local features:
Inverted file index

- For text documents, an efficient way to find all pages on which a word occurs is to use an index...
- We want to find all images in which a feature occurs.
- To use this idea, we’ll need to map our features to “visual words”.

K. Grauman
Visual words: main idea

- Extract some local features from a number of images …

 e.g., SIFT descriptor space: each point is 128-dimensional

D. Nister, CVPR 2006
Visual words: main idea
Visual words: main idea
Visual words: main idea
Each point is a local descriptor, e.g. SIFT feature vector.
“Quantize” the space by grouping (clustering) the features.
Note: For now, we’ll treat clustering as a black box.
Patches on the right = regions used to compute SIFT
If I group these, each group of patches will belong to the same “visual word”

Figure from Sivic & Zisserman, ICCV 2003

Adapted from K. Grauman
Visual words for indexing

• Map high-dimensional descriptors to tokens/words by quantizing the feature space.

 Each cluster has a center.

 Determine which word to assign to each new image region by finding the closest cluster center.

Adapted from K. Grauman
Inverted file index

- Database images are loaded into the index, by mapping words to image numbers
For a new query image, we can figure out which database images share a word with it, and retrieve those images as matches.

- We can call this retrieval process *instance recognition*.

Inverted file index

When will this indexing process give us a gain in efficiency?

<table>
<thead>
<tr>
<th>Word #</th>
<th>Image #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1, 2</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>2</td>
</tr>
</tbody>
</table>

New query image

Adapted from K. Grauman
Of all the sensory impressions proceeding to the brain, the visual experiences are the dominant ones. Our perception of the world around us is based essentially on the messages that reach the brain from our eyes. For a long time it was thought that the retinal image was transmitted point by point to visual centers in the brain; the cerebral cortex was a movie screen, so to speak, upon which the image in the eye was projected. Through the discoveries of Hubel and Wiesel we now know that behind the origin of the visual perception in the brain there is a considerably more complicated course of events. By following the visual impulses along their path to the various cell layers of the optical cortex, Hubel and Wiesel have been able to demonstrate that the message about the image falling on the retina undergoes step-wise analysis in a system of nerve cells stored in columns. In this system each cell has its specific function and is responsible for a specific detail in the pattern of the retinal image.

China is forecasting a trade surplus of $90bn (£51bn) to $100bn this year, a threefold increase on 2004’s $32bn. The Commerce Ministry said the surplus would be created by a predicted 30% jump in exports to $750bn, compared with a 18% rise in imports to $660bn. This is likely to further annoy the US, which has long argued that China’s exports are unfairly helped by a deliberately undervalued yuan. Beijing agrees the surplus is too high, but says the yuan is only one factor. Bank of China governor Zhou Xiaochuan said the country also needed to do more to boost domestic demand so more goods stayed within the country. China has increased the value of the yuan against the dollar by 2.1% in July and permitted it to trade within a narrow band, but the US wants the yuan to be allowed to trade freely. However, Beijing has made it clear that it will take its time and tread carefully before allowing the yuan to rise further in value.
Describing images w/ visual words

- Summarize entire image based on its distribution (histogram) of word occurrences.
- Analogous to bag of words representation commonly used for documents.

Feature patches:
Comparing bags of words

- Rank images by normalized scalar product between their occurrence counts—*nearest neighbor* search for similar images.

\[
\text{sim}(d_j, q) = \frac{\langle d_j, q \rangle}{\|d_j\| \|q\|}
\]

\[
= \frac{\sum_{i=1}^{V} d_j(i) \ast q(i)}{\sqrt{\sum_{i=1}^{V} d_j(i)^2} \ast \sqrt{\sum_{i=1}^{V} q(i)^2}}
\]

for vocabulary of \(V \) words
Bags of words: pros and cons

+ flexible to geometry / deformations / viewpoint
+ compact summary of image content
+ very good results in practice

- basic model ignores geometry – must verify afterwards, or encode via features
- background and foreground mixed when bag covers whole image
- optimal vocabulary formation remains unclear

Adapted from K. Grauman
Inverted file index and bags of words similarity

1. (offline) Extract features in database images, cluster them to find words, make index
2. Extract words in query (extract features and map each to closest cluster center)
3. Use inverted file index to find frames relevant to query
4. For each relevant frame, rank them by comparing word counts of query and frame

Adapted from K. Grauman
One more trick: *tf-idf* weighting

- **Term frequency** – **inverse document frequency**
- Describe image/frame by frequency of each word within it, but downweight words that appear often in the database
- (Standard weighting for text retrieval)

\[
t_i = \frac{n_{id}}{n_d} \log \frac{N}{n_i}
\]

- Number of occurrences of word \(i\) in document \(d\)
- Number of words in document \(d\)
- Total number of documents in database
- Number of documents in which word \(i\) occurs

Normalized bag-of-words

Adapted from K. Grauman
Bags of words for content-based image retrieval

Visually defined query

“Find this clock”

“Find this place”

“Groundhog Day” [Rammis, 1993]
Example
Video Google System

1. Collect all words within query region
2. Inverted file index to find relevant frames (skip for HW5P)
3. Compare word counts (BOW)
4. Spatial verification (skip)

Sivic & Zisserman, ICCV 2003

- Demo online at:
 http://www.robots.ox.ac.uk/~vgg/research/vgoogle/index.html
Both image pairs have many visual words in common.

Ondrej Chum
Only some of the matches are mutually consistent.
Example Applications

Mobile tourist guide
- Object/building recognition
- Self-localization
- Photo/video augmentation

[Quack, Leibe, Van Gool, CIVR’08]
Scoring retrieval quality

Database size: 10 images

Relevant (total): 5 images
(e.g. images of Golden Gate)

Results (ordered):

precision = \#relevant / \#returned
recall = \#relevant / \#total relevant

Ondrej Chum
Indexing and Retrieval: Summary

- **Bag of words** representation: quantize feature space to make discrete set of visual words
 - Summarize image by distribution of words
 - Index individual words

- **Inverted index**: pre-compute index to enable faster search at query time

- **Recognition of instances**: match local features
 - Optionally, perform spatial verification

Adapted from K. Grauman