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Abstract

The computer industry has turned to multicore processors as a power-efficient way to use the vast number of transis-
tors on a chip. Most current multicore processors are homogeneous (i.e., all the cores are identical), and scheduling 
them is similar, but not identical, to what operating systems have been doing for years. However, microarchitects are 
proposing heterogeneous core implementations, including systems in which heterogeneity is introduced at runtime. 
These processors will require schedulers that can adapt to heterogeneity. 

In this position paper, we discuss the trends that are leading to dynamic heterogeneity, and we show that schedulers 
must consider dynamic heterogeneity or suffer significant power-efficiency and performance losses. We present the 
challenges posed by dynamic heterogeneity, and we argue for research into hardware and software support for effi-
ciently scheduling such systems.
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1  Introduction
Moore’s Law provides computer architects with 

more transistors than they can effectively use to extract 
instruction level parallelism in a single core. Thus, all 
current and future high-performance processor chips are 
multicore processors (also known as chip multiproces-
sors or CMPs). These multicore processors include the 
Cell Broadband Engine [11], Intel’s CoreDuo and Quad-
Core Xeon, AMD’s Dual-Core Opteron, Sun Microsys-
tems’ Niagara [13], and IBM’s Power5 [12]. These pro-
cessors have between two and eight cores in a single 
chip package, with the expectation of greater numbers 
of cores in future generations.

At first glance, scheduling a multicore processor 
may not appear to present a substantially new problem 
for operating systems. There is a long history of OS 
scheduling for multithreaded microprocessors and tradi-
tional multi-chip multiprocessors. There has even been 
recent research [9, 8] into one aspect of scheduling that 
is unique to multicores, which is that processors often 
share L2 caches. Except for this issue of cache sharing, 
it might at first appear that scheduling of multicore pro-
cessors would be a straightforward extension of existing 
scheduling techniques, except future multicore proces-
sors are unlikely to be composed of homogeneous cores 
[15, 1]. Due to core specialization and runtime fault 
handling and power management, it is likely that multi-
core processors will feature heterogeneous cores. Fur-
thermore, this heterogeneity is likely to be both static (as 
an intentional design feature that does not change) and 
dynamic (as a response to run-time events such as phys-
ical faults or power management). In this position paper, 
we focus on dynamically heterogeneous multicore pro-
cessors (DHMPs), because they will present a greater 
challenge to future operating systems. 

In a DHMP, the OS scheduler has a significant 
impact on power efficiency and performance. The 
scheduler must decide which threads (or portions of 
threads) should run on which cores. A good schedule 
will match each thread with a core that can provide it 
with sufficient performance at an acceptable power cost. 
A poor schedule will match each thread with a core that 
either cannot run it at an acceptable performance (e.g., 
due to faults in that core) or that needlessly wastes 
power running it. A poor schedule can lead to shorter 
battery life for a laptop, slower response time for a gam-
ing console, greater power costs for small business com-
puting, or less computational throughput for a server 
farm. Scheduling a DHMP is a fundamentally different 
and more difficult problem than scheduling homoge-
neous systems. 

In the rest of this paper we further motivate and 
define the research challenges presented by DHMPs. 

Section 2 reviews multicore architecture to frame the 
issues related to scheduling these systems. In Section 3, 
we present the challenges we see for the efficient sched-
uling of DHMPs. In Section 4, we discuss the limited 
research that has been done in this area. We conclude in 
Section 5 with a call to action for scheduling research, 
outlining fruitful future areas of research.

2  Multicore Trends and Impact
With the increasing transistor budgets afforded by 

Moore’s Law, architects have sought ways to use all of 
them in a power-efficient manner. Until recently, archi-
tects have dedicated their transistor budget to extracting 
instruction level parallelism (ILP) out of single-threaded 
code. However, dedicating current transistor budgets 
strictly to ILP is not power-efficient, and thus architects 
have sought to use transistors to also exploit thread level 
parallelism. An initial approach was simultaneous mul-
tithreading (SMT) [18], such as in the Pentium4, in 
which multiple threads share a single core’s resources. 
Unfortunately, a single SMT processor is also limited in 
how many transistors it can use power-efficiently. Thus, 
the industry has begun placing multiple independent 
cores on each chip. Each of these cores may itself be 
multithreaded, providing a multiplicative number of 
schedulable contexts.

Homogeneous multicore processors are composed 
of identical cores that provide a consistent computing 
capability for each schedulable context. Homogeneity 
simplifies the job of the scheduler and allows us to use 
existing scheduling algorithms for multiprocessor sys-
tems. These algorithms may factor cache warmth and 
cache sharing into scheduling decisions, but they gener-
ally do not discriminate amongst cores, as they are all 
viewed as equally capable of performing computations.

2.1  Sources of Heterogeneity
The primary problem with homogeneous multicore 

processors is that naive replication of state-of-the-art 
single-core designs in a single package (or chip pack-
age) stress the power and cooling limits for the chip. 
There is a fixed amount of power that a chip can con-
sume before we cannot cool it (with air cooling). Given 
this power budget, a chip cannot contain dozens of 
Pentium4-like processors, even if each one is itself 
power-efficient. Nevertheless, for high-priority tasks, we 
still want the single-threaded performance provided by 
current high-performance cores. Thus, architects believe 
that (statically) heterogeneous multicore designs, such 
as the Cell Processor [11], will be prevalent in coming 
generations [15, 1]. As illustrated in Figure 1, a multi-
core design might consist of a small number of high-
power and high-performance cores, coupled with a 
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larger number of simpler, low-power cores. These low-
power cores will be tailored to providing computing 
power for the background tasks for which a user may 
tolerate greater latency. 

In addition to static heterogeneity, we also expect 
dynamic heterogeneity because of at least three techno-
logical issues. First, fabrication process variability is 
increasing [3] and it is highly likely that the cores will 
have different performance characteristics. Thus, it will 
be preferable to clock the cores at different frequencies, 
rather than derate the entire chip to the lowest-common 
operating frequency, particularly as core counts con-
tinue to increase. This form of heterogeneity is dynamic, 
in that it is not known at design-time, but it is fixed once 
the chip has been fabricated and tested.1

Second, with the increasing numbers of transistors 
per chip and the trends towards increasing physical fault 
rates per transistor [17], it is therefore likely that cores 
will have to be able to reconfigure themselves to tolerate 
faults. Our prior research [4, 5] has explored how to 
detect and diagnose permanent faults in a single core. In 
response to these faults, part of the core may be decon-
figured, resulting in the core moving to a lower-perform-
ing state, but still providing useful work to the system.2

This sort of deconfiguration is fairly rare and it can 
either occur at manufacturing time (to address manufac-
turing faults) or during the part’s lifetime (to address 
lifetime reliability issues). If we apply this approach or a 
similar technique to a multicore, even one that is 
designed to be homogeneous, it will lead to a DHMP.

Third, each core is likely to incorporate its own 
dynamic voltage and frequency scaling (DVFS). DVFS 
techniques are in use today, but are constrained to chip-
wide changes in voltage or frequency. Recent work [10] 
seeks to relax this constraint, moving the granularity of 
scaling to the individual core. We expect processors in 
which each core can have its voltage and frequency 
adjusted independently. This form of heterogeneity is 
not only dynamic, but it will change frequently during 
execution. 

Figure 2 summarizes the four sources of heterogene-
ity discussed in this section. 

2.2  Impact of Heterogeneity
In this section, we use a simple experiment to dem-

onstrate that smart OS scheduling of DHMPs can pro-
vide a great advantage—in terms of energy-efficiency 
and/or performance—over a scheduler that is unaware 
of the heterogeneity. The dynamic heterogeneity we 
consider in this experiment is due to faults that disable 
parts of cores. 

In this experiment, which we presented in our previ-
ous work on fault diagnosis [5], we deconfigured por-
tions of a single-core, SMT-enabled processor, similar to 
the Intel Pentium 4 [2]. Our hypothesis was that decon-
figuration of one out of multiple units present in a core 
would result in a tolerable performance loss, making it 
favorable to seek a design that supports fault diagnosis 
and deconfiguration on a fine granularity. Data collected 
for that work is shown in Figure 3. Indeed, we were able 
to show that the loss of a single instance of a replicated 

1.  The performance heterogeneity introduced by process vari-
ability is a function of temperature, and thus there might be an 
additional dynamic aspect to it that we will not pursue here.

Figure 1. Statically Heterogeneous Multicore

high-perf
high-power

low-perf
low-powerhigh-perf

high-power

2.  If the fault is in a singleton unit, such as a core’s only float-
ing point divider, then the core may not be salvageable. How-
ever, most components in a core are not singletons and we can 
thus tolerate deconfiguring them.

static dynamic

design
process 
variability and/or 
fabrication defects

run-time 
faults

voltage/frequency
scaling

Figure 2. Sources of Heterogeneity. We characterize sources of heterogeneity by how frequently they affect the 
processing capability of the core. Fully static designs have a fixed set of core capabilities that can be advertised 
via specification. At the fully-dynamic end of the spectrum, core capabilities may change every scheduling 
quantum, requiring scheduler adaptability in order to effectively exploit the heterogeneity.

(e.g., [15, 1])
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functional unit results in a very small (<10%) loss in 
performance for a single-threaded SPEC2000 workload.

Figure 4 shows per-benchmark results for a subset of 
the data presented in Figure 3. In this figure, we observe 
that certain benchmarks are more sensitive to the loss of 
a particular functional unit. If we consider this data in 
the context of a DHMP, it shows that an intelligent 
scheduler could adapt to this heterogeneity to provide 
performance nearly equal to the fault-free scenario. 
Consider a 2-core processor in which Core1 has a faulty 
ALU and Core2 has a faulty FPU. If the scheduler 
knows to schedule mgrid on Core1 and bzip2 on Core2, 
then the runtime would be close to the fault-free case. 
However, if the scheduler obliviously schedules them 
the other way, then the runtime will suffer greatly. Even 
if the performance impact is not user-visible, the energy 
impact is still significant. When a program takes longer 
to run, it consumes more processor energy and can 
reduce opportunities for energy-saving optimizations 
such as disk spindowns.

This simple experiment shows that we want a sched-
uler that can dynamically migrate workloads to the 
cores that can support them best. The question is how do 
we achieve this goal?

3  Challenges for OS and Architecture
There are three fundamentally new challenges for 

efficiently scheduling DHMPs. First, the OS must dis-
cover the dynamic status of each core in order to know 
how much computational capability each core can cur-
rently supply. Second, the OS must discover the 
dynamic resource demand of each thread. Third, given 
the knowledge about core “supply” and thread 
“demand,” the OS must match threads and cores as effi-
ciently as possible.

3.1  Core Supply
In any heterogeneous multicore processor (static or 

dynamic), the OS scheduler will require basic informa-
tion about the operational state of the present cores. For 
example, Core1 might be at its maximum supply (fully-
functional and at its highest voltage and frequency), 
Core2 might have a faulty ALU, and Core3 might be at 
a lower frequency to save power. As we saw in our case 
study in Section 2.2, an OS that was not aware of heter-
ogeneity in core supply (in that case, due to faults) may 
not schedule nearly as well as an OS with that knowl-
edge. 

For processors that rely on static scheduling of 
instructions, such as the Intel Itanium, the problems 
posed by dynamic heterogeneity are exacerbated. The 
compiler decides how to schedule the instructions, 
based on its (static) knowledge of the core’s supply. If 
the core’s supply changes, then this schedule may be 
obsolete and lead to degradations in power-efficiency 
and performance. Moreover, for statically scheduled 
cores with little or no hardware to adjust to run-time 
conditions, such as the Transmeta Crusoe [6], a change 
in the core supply can actually lead to incorrect execu-
tion. For multicore processors with cores like the Cru-
soe, we would want the OS to learn of supply changes in 
case re-compilation is preferable to moving the thread to 
a core with the expected supply. 

Communicating core supply information to the OS 
will require support from the hardware. Architects will 
need to provide this information in the form of hardware 
performance counters, operational state descriptors, or 
explicit signals to the OS. Whatever the form of infor-
mation exchange, it should be abstract enough to be uni-
form across a range of processor implementations. 
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Figure 3. Performance (runtime) Impact of a Fault 
Causing the Loss of a Component in an SMT-
Enabled Single-Core Processor.

Figure 4. Performance (runtime) Impact of a Fault 
Causing the Loss of an ALU or FPU for Selected 
SPEC2000 Benchmarks. 
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3.2  Thread Demand
In a homogeneous multicore processor, differences 

in thread behavior generally do not matter to the sched-
uler. Some schedulers [9, 8] consider a thread’s cache 
usage—whether the thread has warmed up its cache or 
is competing with another thread for a shared L2 
cache—but they generally do not consider other aspects 
of the thread’s behavior (e.g., whether it is memory 
bound, floating-point intensive, etc.). However, if cores 
are heterogeneous, then the scheduler would like to be 
aware of these differences in thread behavior. Our sim-
ple case study in Section 2.2 showed the importance of 
knowing the different resource demands of benchmarks 
such as mgrid and bzip. Moreover, each thread’s behav-
ior changes as it passes through phases of execution. 
Sherwood et al. [16] have studied programmatic phase 
behavior extensively, showing that demands on the 
underlying hardware change for periods on the order of 
ten million to hundreds of millions of instructions. Intu-
itively, in a DHMP, it will be desirable for a scheduler to 
react appropriately to changes in phase that negatively 
impact the performance of a given thread on a particular 
core. 

Communicating thread demand to the OS could be 
performed by either the hardware, compiler, or some 
combination of the two. Hardware performance 
counters or meta-data from the compiler can be used to 
provide thread demand characteristics, but we need to 
determine what information to provide and when to pro-
vide it. If feasible, the scheduler wants the most amount 
of information at the greatest frequency. However, pro-
viding a rich and highly-dynamic set of demand data 
may be costly—in terms of hardware, performance, and 
power—and it may also over-burden the scheduler that 
tries to assimilate all of this information. 

3.3  Scheduling
Once the OS and architecture communities define an 

interface for communicating supply and demand 
between the cores and the OS, the OS community must 
then develop scheduling algorithms that incorporate this 
information. Furthermore, these scheduling algorithms 
must also consider existing issues that are not related to 
dynamic heterogeneity, such as fairness, priority, real-
time requirements, etc.

The design space for such scheduling algorithms is 
immense, and it is not even clear what are the most 
appropriate metrics for evaluating such algorithms. We 
are currently in the early stages of developing schedul-
ing algorithms, and this process requires us to iterate 
with the development of supply and demand interfaces. 
We are also trying to exploit aspects of the vast amount 

of prior work in load balancing for traditional multi-chip 
multiprocessors and distributed systems. 

4  Current State of the Art
There has been some preliminary work in schedul-

ing for heterogeneous multicore processors, but it is far 
from solving all of the issues posed by dynamic hetero-
geneity. Ghiasi et al. [10] and Kumar et al. [14] con-
strained the heterogeneity to static configurations, such 
that the scheduler has a fixed, processor dependent 
knowledge of the underlying hardware capability. 
DeVuyst et al. [7] use a sampling interval to set schedul-
ing policy for a fixed epoch of time. This algorithm will 
not scale well as the number of cores continues to 
increase. Further, it fails to recognize phase changes 
when they occur, which may lead to performance loss. 
Much of this prior work has been developed by archi-
tects who needed a functional, but not necessarily effi-
cient, scheduler for purposes of evaluating their 
architectural ideas. These designs have been ad-hoc in 
nature, and there is significant opportunity for the OS 
community to apply their accumulated knowledge and 
experience to this problem. 

Some other recent work has explored how heteroge-
neity impacts the OS. Balakrishnan et al. [1] observe 
that an OS scheduler that is aware of (static) core hetero-
geneity can, in some cases, overcome performance 
unpredictability caused by heterogeneity. Wells et al. 
[19] use a VMM-like layer to tolerate intermittent hard-
ware faults by mapping multiple virtual cores to a single 
fault-free physical core.

For homogeneous multicore processors, Fedorova et 
al. [9, 8] have developed novel schedulers that consider 
the impact of L2 cache sharing among threads on the 
chip. This type of L2 sharing is unique to multicore 
chips, but it is orthogonal to the issue of dynamic heter-
ogeneity. 

5  Call to Action
Scheduling of tasks on DHMPs is a new problem. 

We believe that the OS community must develop sched-
ulers that can handle DHMPs. Such schedulers will 
require dynamic knowledge of core status and thread 
demand. We will need to develop an interface between 
the hardware and the OS that enables the communica-
tion of this information. Because of these requirements, 
we expect that collaboration between the OS and archi-
tecture communities will be vital to achieving this goal.
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