
For Review
 O

nly
The Impact of Dynamically Heterogeneous Multicore Processors on

Thread Scheduling

Journal: IEEE Micro

Manuscript ID: MicroSI-2008-01-0004

Manuscript Type:
Special Issue May/June 08 Interaction of Computer Architecture
and OS (submissions due 5 Jan 2008)

Date Submitted by the
Author:

04-Jan-2008

Complete List of Authors: Bower, Fred; Duke University, Computer Science
Sorin, Daniel J.; Duke University, ECE
Cox, Landon; Duke University, Computer Science

Keywords:

C.0.b Hardware/software interfaces < C.0 General < C Computer
Systems Organization, C.0.a Emerging technologies < C.0 General
< C Computer Systems Organization, C.1.2 Multiple Data Stream
Architectures (Multiprocessors) < C.1 Processor Architectures < C
Computer Systems Organization, C.1.4.e Multi-core/single-chip
multiprocessors < C.1.4 Parallel Architectures < C.1 Processor
Architectures < C Computer Systems Organization

http://www.computer.org/micro

IEEE Micro

For Review
 O

nly

1

The Impact of Dynamically Heterogeneous Multicore
Processors on Thread Scheduling

Fred A. Bower1,2, Daniel J. Sorin3, and Landon P. Cox2

bowerf@us.ibm.com, sorin@ee.duke.edu, lpcox@cs.duke.edu
1IBM Systems and Technology Group, System x Development

2Duke University, Department of Computer Science
3Duke University, Department of Electrical and Computer Engineering

Contact author: Daniel J. Sorin
PO Box 90291
Durham, NC 27708
phone: 919-660-5439
fax: 919-660-5293
sorin@ee.duke.edu

Abstract

The computer industry has turned to multicore processors as a power-efficient way to use the vast number of transis-
tors on a chip. Most current multicore processors are homogeneous (i.e., all the cores are identical), and scheduling
them is similar, but not identical, to what operating systems have been doing for years. However, microarchitects are
proposing heterogeneous core implementations, including systems in which heterogeneity is introduced at runtime.
These processors will require schedulers that can adapt to heterogeneity.

In this position paper, we discuss the trends that are leading to dynamic heterogeneity, and we show that schedulers
must consider dynamic heterogeneity or suffer significant power-efficiency and performance losses. We present the
challenges posed by dynamic heterogeneity, and we argue for research into hardware and software support for effi-
ciently scheduling such systems.

Page 1 of 6

http://www.computer.org/micro

IEEE Micro

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

2

1 Introduction
Moore’s Law provides computer architects with

more transistors than they can effectively use to extract
instruction level parallelism in a single core. Thus, all
current and future high-performance processor chips are
multicore processors (also known as chip multiproces-
sors or CMPs). These multicore processors include the
Cell Broadband Engine [11], Intel’s CoreDuo and Quad-
Core Xeon, AMD’s Dual-Core Opteron, Sun Microsys-
tems’ Niagara [13], and IBM’s Power5 [12]. These pro-
cessors have between two and eight cores in a single
chip package, with the expectation of greater numbers
of cores in future generations.

At first glance, scheduling a multicore processor
may not appear to present a substantially new problem
for operating systems. There is a long history of OS
scheduling for multithreaded microprocessors and tradi-
tional multi-chip multiprocessors. There has even been
recent research [9, 8] into one aspect of scheduling that
is unique to multicores, which is that processors often
share L2 caches. Except for this issue of cache sharing,
it might at first appear that scheduling of multicore pro-
cessors would be a straightforward extension of existing
scheduling techniques, except future multicore proces-
sors are unlikely to be composed of homogeneous cores
[15, 1]. Due to core specialization and runtime fault
handling and power management, it is likely that multi-
core processors will feature heterogeneous cores. Fur-
thermore, this heterogeneity is likely to be both static (as
an intentional design feature that does not change) and
dynamic (as a response to run-time events such as phys-
ical faults or power management). In this position paper,
we focus on dynamically heterogeneous multicore pro-
cessors (DHMPs), because they will present a greater
challenge to future operating systems.

In a DHMP, the OS scheduler has a significant
impact on power efficiency and performance. The
scheduler must decide which threads (or portions of
threads) should run on which cores. A good schedule
will match each thread with a core that can provide it
with sufficient performance at an acceptable power cost.
A poor schedule will match each thread with a core that
either cannot run it at an acceptable performance (e.g.,
due to faults in that core) or that needlessly wastes
power running it. A poor schedule can lead to shorter
battery life for a laptop, slower response time for a gam-
ing console, greater power costs for small business com-
puting, or less computational throughput for a server
farm. Scheduling a DHMP is a fundamentally different
and more difficult problem than scheduling homoge-
neous systems.

In the rest of this paper we further motivate and
define the research challenges presented by DHMPs.

Section 2 reviews multicore architecture to frame the
issues related to scheduling these systems. In Section 3,
we present the challenges we see for the efficient sched-
uling of DHMPs. In Section 4, we discuss the limited
research that has been done in this area. We conclude in
Section 5 with a call to action for scheduling research,
outlining fruitful future areas of research.

2 Multicore Trends and Impact
With the increasing transistor budgets afforded by

Moore’s Law, architects have sought ways to use all of
them in a power-efficient manner. Until recently, archi-
tects have dedicated their transistor budget to extracting
instruction level parallelism (ILP) out of single-threaded
code. However, dedicating current transistor budgets
strictly to ILP is not power-efficient, and thus architects
have sought to use transistors to also exploit thread level
parallelism. An initial approach was simultaneous mul-
tithreading (SMT) [18], such as in the Pentium4, in
which multiple threads share a single core’s resources.
Unfortunately, a single SMT processor is also limited in
how many transistors it can use power-efficiently. Thus,
the industry has begun placing multiple independent
cores on each chip. Each of these cores may itself be
multithreaded, providing a multiplicative number of
schedulable contexts.

Homogeneous multicore processors are composed
of identical cores that provide a consistent computing
capability for each schedulable context. Homogeneity
simplifies the job of the scheduler and allows us to use
existing scheduling algorithms for multiprocessor sys-
tems. These algorithms may factor cache warmth and
cache sharing into scheduling decisions, but they gener-
ally do not discriminate amongst cores, as they are all
viewed as equally capable of performing computations.

2.1 Sources of Heterogeneity
The primary problem with homogeneous multicore

processors is that naive replication of state-of-the-art
single-core designs in a single package (or chip pack-
age) stress the power and cooling limits for the chip.
There is a fixed amount of power that a chip can con-
sume before we cannot cool it (with air cooling). Given
this power budget, a chip cannot contain dozens of
Pentium4-like processors, even if each one is itself
power-efficient. Nevertheless, for high-priority tasks, we
still want the single-threaded performance provided by
current high-performance cores. Thus, architects believe
that (statically) heterogeneous multicore designs, such
as the Cell Processor [11], will be prevalent in coming
generations [15, 1]. As illustrated in Figure 1, a multi-
core design might consist of a small number of high-
power and high-performance cores, coupled with a

Page 2 of 6

http://www.computer.org/micro

IEEE Micro

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

3

larger number of simpler, low-power cores. These low-
power cores will be tailored to providing computing
power for the background tasks for which a user may
tolerate greater latency.

In addition to static heterogeneity, we also expect
dynamic heterogeneity because of at least three techno-
logical issues. First, fabrication process variability is
increasing [3] and it is highly likely that the cores will
have different performance characteristics. Thus, it will
be preferable to clock the cores at different frequencies,
rather than derate the entire chip to the lowest-common
operating frequency, particularly as core counts con-
tinue to increase. This form of heterogeneity is dynamic,
in that it is not known at design-time, but it is fixed once
the chip has been fabricated and tested.1

Second, with the increasing numbers of transistors
per chip and the trends towards increasing physical fault
rates per transistor [17], it is therefore likely that cores
will have to be able to reconfigure themselves to tolerate
faults. Our prior research [4, 5] has explored how to
detect and diagnose permanent faults in a single core. In
response to these faults, part of the core may be decon-
figured, resulting in the core moving to a lower-perform-
ing state, but still providing useful work to the system.2

This sort of deconfiguration is fairly rare and it can
either occur at manufacturing time (to address manufac-
turing faults) or during the part’s lifetime (to address
lifetime reliability issues). If we apply this approach or a
similar technique to a multicore, even one that is
designed to be homogeneous, it will lead to a DHMP.

Third, each core is likely to incorporate its own
dynamic voltage and frequency scaling (DVFS). DVFS
techniques are in use today, but are constrained to chip-
wide changes in voltage or frequency. Recent work [10]
seeks to relax this constraint, moving the granularity of
scaling to the individual core. We expect processors in
which each core can have its voltage and frequency
adjusted independently. This form of heterogeneity is
not only dynamic, but it will change frequently during
execution.

Figure 2 summarizes the four sources of heterogene-
ity discussed in this section.

2.2 Impact of Heterogeneity
In this section, we use a simple experiment to dem-

onstrate that smart OS scheduling of DHMPs can pro-
vide a great advantage—in terms of energy-efficiency
and/or performance—over a scheduler that is unaware
of the heterogeneity. The dynamic heterogeneity we
consider in this experiment is due to faults that disable
parts of cores.

In this experiment, which we presented in our previ-
ous work on fault diagnosis [5], we deconfigured por-
tions of a single-core, SMT-enabled processor, similar to
the Intel Pentium 4 [2]. Our hypothesis was that decon-
figuration of one out of multiple units present in a core
would result in a tolerable performance loss, making it
favorable to seek a design that supports fault diagnosis
and deconfiguration on a fine granularity. Data collected
for that work is shown in Figure 3. Indeed, we were able
to show that the loss of a single instance of a replicated

1. The performance heterogeneity introduced by process vari-
ability is a function of temperature, and thus there might be an
additional dynamic aspect to it that we will not pursue here.

Figure 1. Statically Heterogeneous Multicore

high-perf
high-power

low-perf
low-powerhigh-perf

high-power

2. If the fault is in a singleton unit, such as a core’s only float-
ing point divider, then the core may not be salvageable. How-
ever, most components in a core are not singletons and we can
thus tolerate deconfiguring them.

static dynamic

design
process
variability and/or
fabrication defects

run-time
faults

voltage/frequency
scaling

Figure 2. Sources of Heterogeneity. We characterize sources of heterogeneity by how frequently they affect the
processing capability of the core. Fully static designs have a fixed set of core capabilities that can be advertised
via specification. At the fully-dynamic end of the spectrum, core capabilities may change every scheduling
quantum, requiring scheduler adaptability in order to effectively exploit the heterogeneity.

(e.g., [15, 1])

Page 3 of 6

http://www.computer.org/micro

IEEE Micro

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

4

functional unit results in a very small (<10%) loss in
performance for a single-threaded SPEC2000 workload.

Figure 4 shows per-benchmark results for a subset of
the data presented in Figure 3. In this figure, we observe
that certain benchmarks are more sensitive to the loss of
a particular functional unit. If we consider this data in
the context of a DHMP, it shows that an intelligent
scheduler could adapt to this heterogeneity to provide
performance nearly equal to the fault-free scenario.
Consider a 2-core processor in which Core1 has a faulty
ALU and Core2 has a faulty FPU. If the scheduler
knows to schedule mgrid on Core1 and bzip2 on Core2,
then the runtime would be close to the fault-free case.
However, if the scheduler obliviously schedules them
the other way, then the runtime will suffer greatly. Even
if the performance impact is not user-visible, the energy
impact is still significant. When a program takes longer
to run, it consumes more processor energy and can
reduce opportunities for energy-saving optimizations
such as disk spindowns.

This simple experiment shows that we want a sched-
uler that can dynamically migrate workloads to the
cores that can support them best. The question is how do
we achieve this goal?

3 Challenges for OS and Architecture
There are three fundamentally new challenges for

efficiently scheduling DHMPs. First, the OS must dis-
cover the dynamic status of each core in order to know
how much computational capability each core can cur-
rently supply. Second, the OS must discover the
dynamic resource demand of each thread. Third, given
the knowledge about core “supply” and thread
“demand,” the OS must match threads and cores as effi-
ciently as possible.

3.1 Core Supply
In any heterogeneous multicore processor (static or

dynamic), the OS scheduler will require basic informa-
tion about the operational state of the present cores. For
example, Core1 might be at its maximum supply (fully-
functional and at its highest voltage and frequency),
Core2 might have a faulty ALU, and Core3 might be at
a lower frequency to save power. As we saw in our case
study in Section 2.2, an OS that was not aware of heter-
ogeneity in core supply (in that case, due to faults) may
not schedule nearly as well as an OS with that knowl-
edge.

For processors that rely on static scheduling of
instructions, such as the Intel Itanium, the problems
posed by dynamic heterogeneity are exacerbated. The
compiler decides how to schedule the instructions,
based on its (static) knowledge of the core’s supply. If
the core’s supply changes, then this schedule may be
obsolete and lead to degradations in power-efficiency
and performance. Moreover, for statically scheduled
cores with little or no hardware to adjust to run-time
conditions, such as the Transmeta Crusoe [6], a change
in the core supply can actually lead to incorrect execu-
tion. For multicore processors with cores like the Cru-
soe, we would want the OS to learn of supply changes in
case re-compilation is preferable to moving the thread to
a core with the expected supply.

Communicating core supply information to the OS
will require support from the hardware. Architects will
need to provide this information in the form of hardware
performance counters, operational state descriptors, or
explicit signals to the OS. Whatever the form of infor-
mation exchange, it should be abstract enough to be uni-
form across a range of processor implementations.

0.8

1.0

1.2
N

or
m

al
iz

ed
 ru

nt
im

e

Faulty Structures

SPECint 2000
SPECfp 2000

fa
ul

t-f
re

e

IF
etc

hQ
 en

try

Re
sS

tat
io

n

AL
U

Ld
St

Q
en

try

RO
B

en
try

Er
ro

r C
he

ck
er

Figure 3. Performance (runtime) Impact of a Fault
Causing the Loss of a Component in an SMT-
Enabled Single-Core Processor.

Figure 4. Performance (runtime) Impact of a Fault
Causing the Loss of an ALU or FPU for Selected
SPEC2000 Benchmarks.

Page 4 of 6

http://www.computer.org/micro

IEEE Micro

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

5

3.2 Thread Demand
In a homogeneous multicore processor, differences

in thread behavior generally do not matter to the sched-
uler. Some schedulers [9, 8] consider a thread’s cache
usage—whether the thread has warmed up its cache or
is competing with another thread for a shared L2
cache—but they generally do not consider other aspects
of the thread’s behavior (e.g., whether it is memory
bound, floating-point intensive, etc.). However, if cores
are heterogeneous, then the scheduler would like to be
aware of these differences in thread behavior. Our sim-
ple case study in Section 2.2 showed the importance of
knowing the different resource demands of benchmarks
such as mgrid and bzip. Moreover, each thread’s behav-
ior changes as it passes through phases of execution.
Sherwood et al. [16] have studied programmatic phase
behavior extensively, showing that demands on the
underlying hardware change for periods on the order of
ten million to hundreds of millions of instructions. Intu-
itively, in a DHMP, it will be desirable for a scheduler to
react appropriately to changes in phase that negatively
impact the performance of a given thread on a particular
core.

Communicating thread demand to the OS could be
performed by either the hardware, compiler, or some
combination of the two. Hardware performance
counters or meta-data from the compiler can be used to
provide thread demand characteristics, but we need to
determine what information to provide and when to pro-
vide it. If feasible, the scheduler wants the most amount
of information at the greatest frequency. However, pro-
viding a rich and highly-dynamic set of demand data
may be costly—in terms of hardware, performance, and
power—and it may also over-burden the scheduler that
tries to assimilate all of this information.

3.3 Scheduling
Once the OS and architecture communities define an

interface for communicating supply and demand
between the cores and the OS, the OS community must
then develop scheduling algorithms that incorporate this
information. Furthermore, these scheduling algorithms
must also consider existing issues that are not related to
dynamic heterogeneity, such as fairness, priority, real-
time requirements, etc.

The design space for such scheduling algorithms is
immense, and it is not even clear what are the most
appropriate metrics for evaluating such algorithms. We
are currently in the early stages of developing schedul-
ing algorithms, and this process requires us to iterate
with the development of supply and demand interfaces.
We are also trying to exploit aspects of the vast amount

of prior work in load balancing for traditional multi-chip
multiprocessors and distributed systems.

4 Current State of the Art
There has been some preliminary work in schedul-

ing for heterogeneous multicore processors, but it is far
from solving all of the issues posed by dynamic hetero-
geneity. Ghiasi et al. [10] and Kumar et al. [14] con-
strained the heterogeneity to static configurations, such
that the scheduler has a fixed, processor dependent
knowledge of the underlying hardware capability.
DeVuyst et al. [7] use a sampling interval to set schedul-
ing policy for a fixed epoch of time. This algorithm will
not scale well as the number of cores continues to
increase. Further, it fails to recognize phase changes
when they occur, which may lead to performance loss.
Much of this prior work has been developed by archi-
tects who needed a functional, but not necessarily effi-
cient, scheduler for purposes of evaluating their
architectural ideas. These designs have been ad-hoc in
nature, and there is significant opportunity for the OS
community to apply their accumulated knowledge and
experience to this problem.

Some other recent work has explored how heteroge-
neity impacts the OS. Balakrishnan et al. [1] observe
that an OS scheduler that is aware of (static) core hetero-
geneity can, in some cases, overcome performance
unpredictability caused by heterogeneity. Wells et al.
[19] use a VMM-like layer to tolerate intermittent hard-
ware faults by mapping multiple virtual cores to a single
fault-free physical core.

For homogeneous multicore processors, Fedorova et
al. [9, 8] have developed novel schedulers that consider
the impact of L2 cache sharing among threads on the
chip. This type of L2 sharing is unique to multicore
chips, but it is orthogonal to the issue of dynamic heter-
ogeneity.

5 Call to Action
Scheduling of tasks on DHMPs is a new problem.

We believe that the OS community must develop sched-
ulers that can handle DHMPs. Such schedulers will
require dynamic knowledge of core status and thread
demand. We will need to develop an interface between
the hardware and the OS that enables the communica-
tion of this information. Because of these requirements,
we expect that collaboration between the OS and archi-
tecture communities will be vital to achieving this goal.

References

[1] S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai. The

Page 5 of 6

http://www.computer.org/micro

IEEE Micro

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

6

Impact of Performance Asymmetry in Emerging
Multicore Architectures. In Proceedings of the 32nd
Annual International Symposium on Computer
Architecture, pages 506–517, June 2005.

[2] D. Boggs et al. The Microarchitecture of the Intel
Pentium 4 Processor on 90nm Technology. Intel
Technology Journal, 8(1), Feb. 2004.

[3] S. Borkar. Designing Reliable Systems from Unreliable
Components: The Challenges of Transistor Variability
and Degradation. IEEE Micro, 25(6):10–16, Nov/Dec
2005.

[4] F. A. Bower, S. Ozev, and D. J. Sorin. Autonomic
Microprocessor Execution via Self-Repairing Arrays.
IEEE Transactions on Dependable and Secure
Computing, 2(4):297–310, Oct-Dec. 2005.

[5] F. A. Bower, D. J. Sorin, and S. Ozev. A Mechanism for
Online Diagnosis of Hard Faults in Microprocessors. In
Proceedings of the 38th Annual IEEE/ACM International
Symposium on Microarchitecture, Nov. 2005.

[6] J. C. Dehnert, B. K. Grant, J. P. Banning, R. Johnson,
T. Kistler, A. Klaiber, and J. Mattson. The Transmeta
Code Morphing Software: Using Speculation, Recovery,
and Adaptive Retranslation to Address Real-Life
Challenges. In Proceedings of the International
Symposium on Code Generation and Optimization
(CGO), pages 15–24, Mar. 2003.

[7] M. DeVuyst, R. Kumar, and D. M. Tullsen. Exploiting
Unbalanced Thread Scheduling for Energy and
Performance on a CMP of SMT Processors. In
Proceedings of IEEE International Parallel and
Distributed Processing Symposium, Apr. 2006.

[8] A. Fedorova, M. Seltzer, C. Small, and D. Nussbaum.
Performance Of Multithreaded Chip Multiprocessors
And Implications For Operating System Design. In
Proceedings of USENIX 2005 Annual Technical
Conference, Apr. 2005.

[9] A. Fedorova, M. Seltzer, and M. D. Smith. Improving
Performance Isolation on Chip Multiprocessors via an
Operating System Scheduler. In Proceedings of the
International Conference on Parallel Architectures and
Compilation Techniques, Sept. 2007.

[10] S. Ghiasi, T. Keller, and F. Rawson. Scheduling for
Heterogeneous Processors in Server Systems. In
Proceedings of the 2nd Conference on Computing
Frontiers, May 2005.

[11] M. Gschwind et al. Synergistic Processing in Cell’s
Multicore Architecture. IEEE Micro, 26(2):10–24,
Mar/Apr 2006.

[12] R. Kalla, B. Sinharoy, and J. M. Tendler. IBM POWER5
Chip: A Dual-Core Multithreaded Processor. IEEE
Micro, 24(2):40–47, Mar/Apr 2004.

[13] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A
32-way Multithreaded SPARC Processor. IEEE Micro,
25(2):21–29, Mar/Apr 2005.

[14] R. Kumar, D. M. Tullsen, and N. P. Jouppi. Exploiting
Unbalanced Thread Scheduling for Energy and
Performance on a CMP of SMT Processors. In
Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques, Sept. 2006.

[15] R. Kumar, D. M. Tullsen, N. P. Jouppi, and
P. Ranganathan. Heterogeneous Chip Multiprocessors.
IEEE Computer, pages 32–38, Nov. 2005.

[16] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.
Automatically Characterizing Large Scale Program
Behavior. In Proceedings of the Tenth International
Conference on Architectural Support for Programming
Languages and Operating Systems, Oct. 2002.

[17] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. The
Impact of Technology Scaling on Lifetime Reliability. In
Proceedings of the International Conference on
Dependable Systems and Networks, June 2004.

[18] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L.
Lo, and R. L. Stamm. Exploiting Choice: Instruction
Fetch and Issue on an Implementable Simultaneous
Multithreading Processor. In Proceedings of the 23rd
Annual International Symposium on Computer
Architecture, pages 191–202, May 1996.

[19] P. M. Wells, K. Chakraborty, and G. S. Sohi. Adapting to
Intermittent Faults in Multicore Systems. In Proceedings
of the Thirteenth International Conference on
Architectural Support for Programming Languages and
Operating Systems, Mar. 2008.

Page 6 of 6

http://www.computer.org/micro

IEEE Micro

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

