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Abstract. Speed scaling is a power management technique that involves dynamically changing the
speed of a processor. We study policies for setting the speed of the processor for both of the goals of
minimizing the energy used and the maximum temperature attained. The theoretical study of speed
scaling policies to manage energy was initiated in a seminal paper by Yao et al. [1995], and we
adopt their setting. We assume that the power required to run at speed s is P(s) = sα for some
constant α > 1. We assume a collection of tasks, each with a release time, a deadline, and an arbitrary
amount of work that must be done between the release time and the deadline. Yao et al. [1995] gave
an offline greedy algorithm YDS to compute the minimum energy schedule. They further proposed
two online algorithms Average Rate (AVR) and Optimal Available (OA), and showed that AVR is
2α−1αα-competitive with respect to energy. We provide a tight αα bound on the competitive ratio of
OA with respect to energy.

We initiate the study of speed scaling to manage temperature. We assume that the environment
has a fixed ambient temperature and that the device cools according to Newton’s law of cooling.
We observe that the maximum temperature can be approximated within a factor of two by the
maximum energy used over any interval of length 1/b, where b is the cooling parameter of the
device. We define a speed scaling policy to be cooling-oblivious if it is simultaneously constant-
competitive with respect to temperature for all cooling parameters. We then observe that cooling-
oblivious algorithms are also constant-competitive with respect to energy, maximum speed and
maximum power. We show that YDS is a cooling-oblivious algorithm. In contrast, we show that
the online algorithms OA and AVR are not cooling-oblivious. We then propose a new online al-
gorithm that we call BKP. We show that BKP is cooling-oblivious. We further show that BKP is
e-competitive with respect to the maximum speed, and that no deterministic online algorithm can
have a better competitive ratio. BKP also has a lower competitive ratio for energy than OA for
α ≥ 5.
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Finally, we show that the optimal temperature schedule can be computed offline in polynomial-time
using the Ellipsoid algorithm.
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1. Introduction

1.1. MOTIVATION. The energy consumption rate of computing devices has in-
creased exponentially for several decades. Since the early 1970s, power densities
in microprocessors have doubled every three years [Skadron et al. 2003]. This
increased power usage poses two types of difficulties:

Energy Consumption. As energy is power integrated over time, supplying the
required energy may become prohibitively expensive, or even technologically in-
feasible. This is a particular difficulty in devices that rely on batteries for energy,
and will will become even more critical since battery capacities are increasing at a
much slower rate than energy consumption.

Temperature. The energy used in computing devices is in large part converted
into heat. Cooling costs are rising exponentially along with energy consumption
and threaten the computer industry’s ability to deploy new systems [Skadron et al.
2003]. In fact, in May 2004 Intel publicly acknowledged that it had hit a “thermal
wall” on its microprocessor line. Intel scrapped the development of its Tejas and
Jayhawk chips in order to rush to the marketplace a more power efficient chip
technology. Designers said the escalating heat problems were so severe that they
threatened to cause chips to fracture [Markoff 2004]. Apple was unable to develop a
G5 laptop due to inadequate heat management in the IBM PowerPC chips, and in the
summer of 2005 Apple announced that it was switching to cooler Intel chips [Apple
2005].

These factors have resulted in power becoming a first-class design constraint
for modern computing devices [Mudge 2001]. There is an extensive literature on
power management in computing devices. Overviews have been given by Brooks
et al. [2000], Mudge [2001], and Tiwari et al. [1998].

Both in academic research and practice, voltage/frequency/speed scaling is the
dominant technique for power management. Speed scaling involves dynamically
changing the speed of the processor. Current microprocessors from AMD, Intel
and Transmeta allow the speed of the microprocessor to be set dynamically. Some
modern processors are able to sense their own temperatures. Such a device can
be slowed down or shut down so that its temperature will stay below its thermal
threshold [Skadron et al. 2003].

There is an inherent tradeoff between power reduction and performance; in gen-
eral, when more power is available, better performance can be achieved. As a result,
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it is generally proposed that power reduction techniques be preferentially applied
during times when performance is less critical. It is likely that in the future these
policies will necessarily incorporate information provided by applications and high-
level resource managers in operating systems [Ellis 1999]. This will require policies
to determine how essential performance is at any given time, and how to apply a
particular power reduction technique.

Our goal here is to make a formal study of a particular power reduction technique,
namely speed scaling, in a specific setting, namely scheduling tasks with deadlines,
to manage either temperature or energy.

1.2. BACKGROUND. The starting point for our investigations is the seminal
paper by Yao et al. [1995], in which the authors proposed formulating speed scaling
problems as scheduling problems. That is, the setting is a collection of tasks, and
a schedule specifies not only which task to run at each time, but also the speed at
which to run the selected task. Each task i has a release time ri at which it enters the
system, a deadline di , and an amount of work wi that must be performed between
times ri and di to complete the task.

In some settings, for example, the playing of a video or other multimedia presen-
tation, there may be natural deadlines for the various tasks imposed by the applica-
tion. In other settings, the system may impose deadlines to better manage tasks or
insure a certain quality of service to each task [Buttazzo 1997]. Yao et al. [1995]
assumed that tasks can be preempted, that is, the device can suspend the execution
of a task, and later resume the task from the point of suspension. Preemption is
a necessary feature to obtain reasonable performance in a system with tasks with
widely varying work.

Yao et al. [1995] assumed the existence of a function P(s) that specifies the
power used when the device is run at speed s. They assumed that P(s) = sα for
some α > 1. The key fact about such a function is that it is strictly convex, that
is, the slower a task is run, the less energy is used to complete that task. This
is a generalization of the well-known cube-root rule for CMOS devices, which
states that the speed s is roughly proportional to the cube-root of the power P , or
equivalently, P(s) = s3. CMOS is likely to remain the dominant technology for the
near-term future. Power in CMOS devices has three components: switching loss,
leakage loss, and short circuit loss [Brooks et al. 2000; Mudge 2001]. Switching loss
is the energy consumption due to charging and discharging gates. The switching
loss is roughly proportional to sV 2, where s is the speed (clock frequency), and V
is the voltage. V and s are not independent; there is a minimum voltage required
to drive the microprocessor at a desired frequency, and this minimum voltage is
approximately proportional to the frequency [Brooks et al. 2000]. Hence, one can
conclude that switching loss is roughly proportional to the cube of the speed.
Currently, switching loss is responsible for the majority of the energy used by
computing devices [Mudge 2001].

Yao et al. [1995] then studied the problem of minimizing the total energy used
subject to the deadline feasibility constraints. This is always possible under the
assumption that the processor can run at any speed. They gave an optimal offline
greedy polynomial-time algorithm, which we call YDS. The YDS schedule is si-
multaneously optimal for all strictly convex speed-to-power functions. The YDS
schedule can also be seen to minimize the maximum speed and hence the maxi-
mum power. Yao et al. [1995] also proposed two simple online algorithms. In the
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online version of the problem, the scheduler learns about a task only at its release
time. At this time, the scheduler also learns the exact work requirement and the
deadline of the task. The online algorithm Average Rate (AVR) runs each task i
at speed wi/(di − ri ). The online algorithm Optimal Available (OA) schedules the
unfinished work optimally (say using YDS) under the assumption that no more
tasks will arrive. Yao et al. [1995] state a lower bound of αα on the competitive
ratio for AVR and OA. They prove, using a rather complicated spectral analysis,
that the competitive ratio of AVR is at most 2α−1αα. They also show that an on-
line algorithm cannot in general construct an optimal energy schedule, even for an
instance that contains only two tasks.

1.3. OUR CONTRIBUTIONS. Yao et al. [1995] did not explicitly prove that the
YDS algorithm produces the most energy efficient feasible schedule. To the best of
our knowledge, no such proof has appeared in the literature. We show in Section
2 that the correctness of YDS is an elegant consequence of the well-known KKT
optimality conditions for convex programs. This illustrates the utility of the KKT
optimality conditions in power management problems.

In Section 3, we extend the results Yao et al. [1995] on online algorithms for
energy minimization. We give explicit instances that show that the competitive
ratios of AVR and OA are at least αα. We then provide a tight αα bound on the
competitive ratio of OA using a potential function argument.

We then turn our attention to speed scaling to manage temperature. To our knowl-
edge, this is the first theoretical investigation of this area. We first need to model
the cooling behavior of a device. Cooling is a complex phenomenon that cannot be
captured completely accurately by any simple model [Sergent and Krum 1998]. For
tractability, we require a simple first-order approximation. Our key assumptions are
that heat is lost via conduction, and the ambient temperature of the environment
surrounding the device is constant. This is likely a reasonable first-order approxi-
mation in some, but certainly not all, settings. Then we appeal to Newton’s law of
cooling, which states that the rate of cooling is proportional to the difference in tem-
perature between the object and the ambient environmental temperature. Without
loss of generality, we may assume that the temperature scale is translated so that the
ambient temperature is zero. If we assume that the net change in temperature is the
sum of the decrease due to cooling as described above and an increase proportional
to the electrical power applied to the device, a first-order approximation for rate of
change T ′(t) of the temperature T (t) at time t is then given by the equation:

T ′(t) = a P(t) − bT (t),

where P(t) is the supplied power at time t , and a and b are constants [Sergent and
Krum 1998; Crusoe 2002]. We call b ≥ 0 the cooling parameter of the device.

We then consider the relationship between temperature and energy. Temperature
and energy are physical variables with quite different properties. If the processor in
a mobile device exceeds its energy bound, then the battery is exhausted. If a proces-
sor exceeds it thermal threshold, it is destroyed. Power management schemes for
conserving energy focus on reducing cumulative power, while power management
schemes for reducing temperature must focus more on instantaneous power. Power
management schemes designed to conserve energy may not perform well when the
goal is to reduce temperature. In fact, many low-power techniques are reported to
have little or no effect on temperature [Skadron et al. 2003]. Temperature-aware
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design is therefore an area of study distinct from, albeit related to, energy aware
design [Skadron et al. 2003].

In Section 2, we consider the relationship between temperature and energy. One
consequence of Newton’s law is that an un-powered device cools by a constant
fraction every 1

b time units. This leads us to observe that the maximum temperature
is within a factor of two of a times the maximum energy used over any interval
of length 1

b . If b = 0, then no energy is ever dissipated from the device and the
maximum temperature is the final temperature, which is a times the energy used.
Thus, when b = 0, the temperature minimization problem is equivalent to the energy
minimization problem. In the limit as the cooling parameter b approaches +∞,
the maximum temperature is essentially determined by the maximum energy over
an infinitesimal interval, and thus the minimization problem intuitively becomes
equivalent to the problem of minimizing the maximum power (or equivalently
minimizing the maximum speed). The energy minimization problem, when the
speed-to-power parameter α is ∞, is also equivalent to minimizing the maximum
power.

Because of this exponential cooling, it seems difficult to reason about tempera-
ture. However, the above observation about approximating temperature by energy
used over some interval makes reasoning about approximate temperature much
easier than reasoning about exact temperature. This observation also motivates us
to define what we call a cooling-oblivious speed scaling algorithm, which is an
algorithm that is simultaneously O(1)-approximate for minimizing the maximum
temperature for all cooling parameters b ≥ 0. Thus, a cooling-oblivious algorithm
is O(1)-approximate for total energy. Further, if the schedule produced by a cooling
oblivious algorithm does not depend on the value of α and the cooling parameter
b, as is the case for all the algorithms that we consider, then the algorithm is also
O(1)-approximate for minimizing the maximum speed.

In Section 2, we show that while the YDS schedule may not be optimal for temper-
ature, it is cooling-oblivious. More precisely, we show that YDS is 20-approximate
with respect to temperature for all cooling parameters b. This constructively shows
that there are schedules that are O(1)-approximate with respect to both of the dual
criteria of temperature and energy.

We then turn to online speed scaling to minimize the maximum temperature that
a device ever reaches, again subject to the constraint that all tasks finish by their
deadlines. In Section 3, we show that online algorithms OA and AVR, proposed by
Yao et al. [1995] in the context of energy management, are not O(1)-competitive
with respect to temperature. That is, these algorithms are not cooling-oblivious.
Recall that both OA and AVR are O(1)-competitive with respect to energy. This
demonstratively illustrates the observation from practice that power management
techniques that are effective for managing energy may not be effective for tem-
perature. One intuitive speed scaling algorithm to manage temperature is to run at
the minimum constant speed that will allow all tasks to finish by their deadline.
Surprisingly, we show that this algorithm is also not O(1)-competitive with respect
to temperature.

We propose a new online speed scaling algorithm that we call BKP. In
Section 4, we show that BKP is cooling-oblivious. That is, BKP is simultane-
ously O(1)-competitive for total energy, maximum temperature, maximum power,
and maximum speed. We show that the competitive ratio for BKP with respect to
energy is at most 2(α/(α − 1))α exp(α). Note that for α ≥ 2, this competitive ratio
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is at most 8 exp(α). The competitive ratio of BKP is better than the competitive
ratios of OA and AVR for α ≥ 5. We show that the competitive ratio of BKP
with respect to temperature is at most 2α+1 exp(α)(6(α/(α − 1))α + 1). We show
that BKP is e-competitive with respect to maximum speed, or equivalently, that
BKP is exp(α)-competitive with respect to maximum power. We further show that
BKP is optimally competitive with respect to both maximum speed and maximum
power, that is, no deterministic algorithm can have better competitive ratios. As a
consequence of this, one can conclude that if a deterministic online algorithm is
O(kα)-competitive with respect to energy, then the value of the constant k has to
be at least e. Thus, the competitive ratio of BKP, with respect to energy, is optimal
up to a multiplicative constant for deterministic online algorithms.

We finally turn our attention to offline temperature management. We show in
Section 5 that this problem can be posed as a convex optimization problem. Convex
optimization problems can be solved arbitrarily precisely in polynomial time using
the Ellipsoid algorithm if one can compute a separating hyperplane for a violated
constraint in polynomial time. To accomplish this for our temperature problem,
we show that the key subproblem is determining the maximum work that can be
accomplished during a fixed time period with a fixed starting and a fixed ending
temperature. We show how to use techniques from calculus of variations to solve
this subproblem. As a consequence of this, we reveal some structure of the optimal
temperature schedule: during any maximal time period which contains no release
time or deadline, the temperature curve is either (1) an Euler–Lagrange curve, or (2)
rises to the thermal threshold along an Euler–Lagrange curve, stays at the thermal
threshold for some amount of time, and then falls along an Euler–Lagrange curve.

1.4. RELATED RESEARCH. A naive implementation of YDS runs in time O(n3).
This can be improved to O(n2) if the intervals have a tree structure [Li et al. 2006a].
Recently, Li et al. [2006b] gave an O(n2 log n) implementation for the general
case. For hard real-time tasks with fixed priorities, Yun and Kim [2003] show
that it is NP-hard to compute a minimum-energy schedule. They also give a fully
polynomial time approximation scheme for the problem. Kwon and Kim [2003]
give a polynomial time algorithm for the case of a processor with discrete speeds.
Li and Yao [2005] give an algorithm with running time O(d · n log n) where d is
the number of speeds.

Irani et al. [2003] study online speed scaling algorithms to minimize energy
usage for a device that also has a sleep state. They give an offline polynomial-time
2-approximate algorithm. Irani et al. [2003] also give an online algorithm A that
uses, as a subroutine, an algorithm B for pure speed scaling. If B is additive and
monotone (as AVR, OA and BKP are) then A is max(α(R +1)+2, 4)-competitive,
where R is the competitive ratio of B. Thus, our analysis of OA and BKP improve
the best known competitive ratio for this problem.

A survey on algorithmic problems in power management was given by Irani and
Pruhs [2005].

1.5. DEFINITIONS. In this Section, we recap the definitions introduced so far,
and introduce some definitions that we will use throughout the article. We also
make some observations about these definitions.

A problem instance consists of n tasks. Task i has a release time ri , a deadline
di > ri , and work wi > 0. In the online version of the problem, the scheduler
learns about a task only at its release time; at this time, the scheduler also learns
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the exact work requirement and the deadline of the task. We assume that time is
continuous. A schedule specifies for each time a task to be run and a speed at which
to run the task. The speed is the amount of work performed on the task per unit
time. A task with work w run at a constant speed s thus takes w

s time to complete.
More generally, the work done on a task during a time period is the integral over
that time period of the speed at which the task is run. A schedule is feasible if for
each task i , work at least wi is done on task i during [ri , di ]. Note that the times at
which work is performed on task i do not have to be contiguous. If a task is run at
speed s, then the power is P(s) = sα for some constant α > 1.

The energy used during a time period is the integral of the power over that time
period. In the energy version of our problem, the objective is to minimize the total
energy E[S] used by the schedule S.

We now turn to temperature. We assume without loss of generality that the initial
temperature is 0. We assume that the temperature T (t) at time t is then given by
the cooling equation:

T ′(t) = a P(t) − bT (t), (1)

where P(t) is the power at time t , and a and b are nonnegative constants. If T is a
temperature function, then T ′ will always refer to the derivative of T with respect
to time. We make observations about this cooling equation. Note that by rescaling
temperature, or energy, one could assume that a = 1. Thus, a will not play much of
a role in our analysis, and the key parameter is the cooling parameter b. Note that
the temperature function will be continuous, even if the power function is not. If we
want to maintain a constant temperature Tz , then as T ′ will equal 0, it is sufficient
to run at power bTz/a once temperature Tz is reached. Solving the cooling equation
for P(t) yields:

P(t) = T ′(t) + bT (t)
a

. (2)

Thus, one can specify a power function, and hence a speed function, by specifying
a temperature function. By Eq. (2), the energy used during an interval [x, y] is:∫ y

x
P(t)dt =

∫ y

x

T ′(t) + bT (t)
a

dt

= 1

a

∫ y

x
T ′(t)dt + b

a

∫ y

x
T (t)dt

= T (y) − T (x)

a
+ b

a

∫ y

x
T (t)dt. (3)

Since P(s) = sα, the work done during a time interval [x, y] is∫ y

x

(
T ′(t) + bT (t)

a

)1/α

dt. (4)

In the temperature version of our problem, the objective is to minimize the
maximum temperature T [S] reached during the schedule S. Let c = ln 2

b . Call a
time interval of length c a c-interval. As we will see, the problem of minimizing
the maximum temperature is related to the problem of minimizing the maximum
energy C[S] used in any c-interval during the schedule S.
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In the maximum speed version of our problem, the objective function is to min-
imize the maximum speed reached during the schedule. In the maximum power
version of our problem, the objective function is to minimize the maximum power
reached during the schedule.

If A is a scheduling algorithm, then A(I ) denotes the schedule output by A
on input I . E[A(I )] will denote the energy of A(I ), and T [A(I )] the maximum
temperature. For convenience, we will use OPT(I ) to represent an optimal schedule
for the objective under consideration. E[OPT(I )] will denote the optimal energy,
and T [OPT(I )] the optimal temperature. When I is clearly understood from context,
we may drop it from the notation.

A schedule is R-competitive, or R-approximate, for a particular objective func-
tion if the value of that objective function on the schedule is at most R times the value
of the objective function on an optimal schedule. An online scheduling algorithm
A is R-competitive, or has competitive ratio R, if A(I ) is R-competitive for all in-
stances. An offline scheduling algorithm A is R-approximate, or has approximation
ratio R, if A(I ) is R-approximate for all instances.

An online algorithm A is cooling-oblivious if A is O(1)-competitive with respect
to temperature for all cooling parameters b ≥ 0.

We now define the algorithms that we consider in this paper, along with related
concepts. We start with the offline speed scaling algorithm YDS proposed by Yao
et al. [1995]. Let w(t1, t2) denote the work that has release time at least t1 and has
deadline at most t2. The intensity I (t1, t2) of the time interval [t1, t2] is defined to
be w(t1, t2)/(t2 − t1).

Algorithm YDS: The algorithm repeats the following steps until all jobs are scheduled:

(1) Let [t1, t2] be the maximum intensity time interval.
(2) The processor will run at speed I (t1, t2) during [t1, t2] and schedule all the jobs comprising

w(t1, t2), always running the released, unfinished task with the earliest deadline.
(3) Then the instance is modified as if the times [t1, t2] didn’t exist. That is, all deadlines di > t1 are

reduced to max(t1, di − (t2 − t1)), and all release times ri > t1 are reduced to max(t1, ri −(t2 − t1)).

It is easy to see that the YDS algorithm is optimal with respect to maximum
speed, and hence, maximum power, by noting that the maximum speed of any
schedule must be at least the intensity of the maximum-intensity interval found
by YDS at the very beginning (i.e., when no jobs have been scheduled), and the
intensity of the maximum-intensity interval (and hence the speed at which YDS
schedules jobs) only decreases as YDS proceeds. Note that the YDS schedule has
the property that each task is run at a fixed speed. However, this speed may be
different for different tasks. Let y(t) be the speed of YDS at time t .

We now define the online speed scaling algorithms OA and AVR proposed by
Yao et al. [1995].

Algorithm OA: Maintain the invariant that at all times t , the task with the earliest deadline is run
at speed maxt w(t)/t , where w(t) is the unfinished work that has deadline within the next t units of
time.

An alternative description is that OA’s schedule for the future is always the
optimal energy YDS schedule based on the current state.

Algorithm AVR: Maintain the invariant that at all times t , the earliest-deadline task is run at speed∑
i∈J (t)

wi
di −ri

, where J (t) is the collection of tasks i with ri ≤ t ≤ di .
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Intuitively, AVR runs each task at the optimal speed under the assumption that
it is the only task in the system.

We now turn to defining our proposed online speed scaling algorithm [Bansal
et al. 2004]. For t1 ≤ t ≤ t2, let w(t, t1, t2) denote amount of work that has release
time at least t1 and deadline at most t2 and that has already arrived by time t . We
define three more terms q(t), p(t) and v(t), which will be useful in the description
and analysis of our new online algorithm BKP. Let q(t) be the maximum intensity
of an interval containing t , that is,

q(t) = max
t1,t2

I (t1, t2) such that t1 < t ≤ t2.

Intuitively, q(t) can be viewed as YDS’s speed at time t . (Note that this statement
is not exactly true, but q(t) is an upper bound on YDS’s speed at time t .) Let p(t)
be defined by:

p(t) = max
t1,t2

w(t, t1, t2)

(t2 − t1)
such that t1 < t ≤ t2.

Intuitively, p(t) is the online algorithm’s estimate of the speed at which YDS would
work at time t , based on the knowledge of tasks that have arrived by time t . Let
v(t) be defined by:

v(t) = max
t ′>t

w(t, et − (e − 1)t ′, t ′)
e(t ′ − t)

. (5)

We are now ready to define the online algorithm BKP.

Algorithm BKP: At time t , work at speed e v(t) on the unfinished task with the earliest deadline.

Note that w(t, t1, t2), p(t) and v(t) may be computed by an online algorithm at
time t . It is a matter of taste whether we define BKP to run at speed e v(t) or e p(t).
All of our results hold for both variations. The following lemma, which we use
frequently, relates v(t), p(t), and q(t).

LEMMA 1.1. For all instances I , and for all times t, v(t) ≤ p(t) ≤ q(t).

PROOF. The speed v(t) is equivalent to a restricted variant of p(t) where instead
of considering the maximum over all t1, t2 such that t1 < t ≤ t2, we require that t1
and t2 to be related such that t − t1 = (e − 1)(t2 − t). Thus, v(t) ≤ p(t). Finally, it
is obvious that p(t) ≤ q(t) since w(t, t1, t2) ≤ w(t1, t2) for any t1 ≤ t ≤ t2.

2. Properties of the YDS Schedule

2.1. ENERGY. We show that the energy optimality of the YDS schedule follows
as a direct consequence of the well-known KKT optimality conditions for convex
programs.

THEOREM 2.1. YDS is optimal with respect to energy.

PROOF. We start by stating the KKT conditions. Next we show how to express
the energy problem as a convex program, and then show the result of applying the
KKT conditions to this convex program.
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Consider a convex program

min f0(x)
fi (x) ≤ 0 i = 1, . . . , n

Assume that this program is strictly feasible, that is, there is some point x where
fi (x) < 0 for i = 1, . . . , n. Assume that the fi are all differentiable. Let λi ,
i = 1, . . . , n be a variable (Lagrangian multiplier) associated with the function
fi (x). Then, the necessary and sufficient KKT conditions for solutions x and λ to
be feasible primal and dual solutions are Boyd and Vandenberghe [2004]:

fi (x) ≤ 0 i = 1, . . . , n (6)
λi ≥ 0 i = 1, . . . , n (7)

λi fi (x) = 0 i = 1, . . . , n (8)

∇ f0(x) +
n∑

i=1

λi∇ fi (x) = 0. (9)

To state the energy minimization problem as a convex program, we break time
into intervals t0, . . . tm at release times and deadlines of the tasks. Note that because
the set of available jobs does not change over any such interval and because of the
convexity of the speed-to-power function, we may assume that the processor runs at
constant speed throughout any such interval. Let J (i) be the tasks that can feasibly
be executed during the time interval Ii = [ti , ti+1], and J−1( j) be intervals during
which task j can be feasibly executed. We introduce a variable wi, j , for j ∈ J (i),
that represents the work done on task j during time [ti , ti+1]. Our (interval indexed)
program is then:

min E (10)

w j ≤
∑

i∈J−1( j)

wi, j j = 1, . . . , n (11)

m∑
i=1

(∑
j∈J (i) wi, j

ti+1 − ti

)α

(ti+1 − ti ) ≤ E (12)

wi, j ≥ 0 i = 1, . . . , m j ∈ J (i) (13)

It is easy to verify that the program is convex. We now apply the KKT conditions
to this program. We associate a dual variable δ j with inequality j in line 11, a dual
variable β with the inequality in line 12, and a dual variable γi, j with inequality i, j
in line 13. We now evaluate line 9 of the KKT conditions for our convex program.
We have

∇E +
n∑

j=1

δ j∇
⎛
⎝w j −

∑
i∈J−1( j)

wi, j

⎞
⎠

+ β ∇
((

m∑
i=1

∑
j∈J (i) wi, j

ti+1 − ti

)α

(ti+1 − ti ) − E

)

−
m∑

i=1

n∑
j=1

γi, j∇wi, j = 0.
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Considering the component of this equation corresponding to the variable E , we
have β − 1 = 0, or equivalently β = 1. Considering the component corresponding
to the variable wi, j , we have

−δ j + βα

(∑
k∈J (i) wi,k

ti+1 − ti

)α−1

− γi, j = 0. (14)

Consider a wi, j such that wi, j > 0. We know that by complementary slackness (Eq.
(8)) that it must be the case that γi, j = 0. Hence,

δ j = α

(∑
k∈J (i) wi,k

ti+1 − ti

)α−1

. (15)

Hence, the interpretation of the dual variable δ j is α times the speed at which the
processor runs during interval i raised to the power of (α − 1). This quantity, and
hence the speed of the processor, must be the same for each i such that wi, j > 0,
that is, during each interval i in which task j is run.

Now consider a wi, j such that wi, j = 0. Rearranging Eq. (14), we find that

γi, j = α

(∑
k∈J (i) wi,k

ti+1 − ti

)α−1

− δ j . (16)

Since γi, j is nonnegative, the processor runs at least as fast during interval i as
during the intervals where task j is run.

Thus, we can conclude that necessary conditions for a primal feasible solution
to be optimal are:

—For each task j , the processor runs at the same speed, say s j , in all intervals i in
which task j is run.

—The processor runs at speed no less than s j during intervals i such that j ∈ J (i)
and task j is not run.

The YDS schedule clearly has these properties. We can use Eqs. (15) and (16) to
find a dual feasible solution satisfying the KKT conditions, and thus we have found
optimal primal and dual solutions. The YDS schedule corresponding to the primal
solution is thus optimal.

2.2. THE RELATIONSHIP BETWEEN ENERGY AND TEMPERATURE. We show in
Theorem 2.2 that the maximum temperature T [S] of a schedule S is within a factor
of two of a ·C[S]. Recall the parameter a in the cooling equation 1 and our definition
of a c-interval where c = ln 2

b , and that C[S] is the maximum energy expended over
any c-interval. Further, recall that we assume that the initial temperature is zero.
We show in Theorem 2.7 that the energy optimal YDS schedule is 20-approximate
with respect to temperature for all cooling parameters b ≥ 0, that is, YDS is
cooling-oblivious. Given Theorem 2.2, to prove Theorem 2.7, it is sufficient to
show that YDS is 5-approximate with respect to the objective of the maximum
energy expended over any c-interval.

THEOREM 2.2. For any schedule S, and for any cooling parameter b ≥ 0,

a C[S]

2
≤ T [S] ≤ 2a C[S].
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PROOF. If b = 0, then a · C[S] = T [S] = a · E[S], and the result holds.
So assume from now on that b > 0. We rewrite our cooling equation dT (t)

dt =
a P(t) − bT (t) as

d(exp(bt)T (t))
dt

= a exp(bt)P(t).

Integrating this equation over a c-interval that ends at some time t0 we get

T (t0) exp(bt0) − T (t0 − c) exp(bt0 − cb) = a
∫ t0

t0−c
exp(bt)P(t)dt, (17)

(note T (x) = 0 for x ≤ 0).
We first show that T [S] ≤ 2a C[S]. Suppose that the temperature T [S] is

achieved at time t0. We simplify Eq. (17) as follows. Since exp(bt) is increasing in
t , we have that

∫ t0
t0−c exp(bt)P(t)dt ≤ exp(bt0)

∫ t0
t0−c P(t)dt. Thus,

T (t0) ≤ T (t0 − c) exp(−cb) + a
∫ t0

t0−c
P(t)dt.

As T (t0 − c) ≤ T (t0) = T [S], it follows that

T [S](1 − exp(−cb)) ≤ a
∫ t0

t0−c
P(t)dt ≤ a C[S],

and as cb = ln 2, it follows that

T [S] ≤ a C[S]

1 − exp(−cb)
= 2a C[S].

We now show that T [S] ≥ a C[S]/2. Let [t0 − c, t0] be a c-interval where C[S]
energy is used. Again we start with Eq. (17). Using the fact that the temperature
at any time is nonnegative (as the environmental temperature is 0) and hence in
particular that T (t0 − c) ≥ 0, and that exp(bt) is an increasing function of t , it
follows that

T (t0) exp(bt0) ≥ a
∫ t0

t0−c
exp(bt)P(t)dt ≥ a exp(bt0 − cb)

∫ t0

t0−c
P(t)dt

= exp(bt0 − cb)a C[S].

Thus,

T [S] ≥ T (t0) ≥ exp(−cb)a C[S] = a C[S]

2
.

Note that YDS is not optimal for minimizing the maximum temperature, nor for
minimizing the maximum total energy in any c-interval. The fact that YDS is not
optimal for temperature can be seen on single-task instances where the optimal-
temperature schedule must run at a speed that follows some non-constant Euler–
Lagrange temperature curve (see Theorem 3.6 for more details). That YDS is not
optimal for minimizing the maximum energy used in any c-interval can be seen
from the following instance. Without loss of generality we can normalize so that
c = 2. There are two tasks with work 1 each, both arriving at time 0, with deadlines
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1 and 3, respectively. If the first task is run at speed 1 from time 0 to 1 and the
second at speed 1 from 2 to 3, the maximum energy in any interval of length 2
is 1. YDS runs the first task at speed 1 from time 0 to 1 and the second at speed
1/2 from 1 to 3. The energy used from time 0 to 2, for instance, is larger than 1.
Note that this holds for any speed to power function of the form P(s) = sα, with
α ≥ 0.

2.3. ENERGY IN A c-INTERVAL. For the rest of this section we only consider the
objective of minimizing the maximum energy in any c-interval. This will culminate
in Lemma 2.6, which states that the YDS schedule is 5-approximate with respect
to this objective.

We first require some preliminary definitions and observations. Let CY (I ) denote
a c-interval in YDS(I ) that uses energy C[YDS(I )], a maximum-energy c-interval
YDS(I ). Let ε be a small positive constant that we will define precisely later. Let
the speed s0 be defined as

s0 = (εC[YDS(I )]/c)1/α

We call a task in I slow if it runs at a speed strictly less than s0 in YDS(I ). This
notion is well defined because each task runs at constant speed in the YDS schedule.
The rest of the tasks are called fast. Let s(t) denote the speed at time t in YDS(I ).
Define an island to be a maximal interval of time where s(t) ≥ s0.

We now give some simple but useful properties of the schedule YDS(I ).

CLAIM 2.3. Let G = [t1, t2] be an island. YDS schedules within G exactly
those tasks k such that t1 ≤ rk ≤ dk ≤ t2.

PROOF. It is trivial that all such tasks must be executed wholly in G. To see that
only such tasks are executed in G, observe that if a task can feasibly be executed
outside G and is (partially or wholly) executed in G, we would have a contradiction
to the energy optimality of YDS(I ) since work could be shifted from an interval of
higher speed to an interval of lower speed.

CLAIM 2.4. For any island G of length no more than c in any instance I ,
C[OPT(I )] is at least the energy consumed in G by YDS.

PROOF. Follows from Claim 2.3 and the energy optimality of YDS, since OPT
must execute in G at least the tasks executed by YDS in G.

We now show that most of the energy in CY (I ) is contained in fast tasks.

LEMMA 2.5. Let H (I ) denote the set of islands that intersect CY (I ), and let
E[H (I )] denote the energy consumed under YDS in the islands H (I ). Then, we
have that E[H (I )] ≥ (1 − ε)C[YDS(I )].

PROOF. Consider the times in CY (I ) where s(t) ≥ s0. Those periods are
contained in H (I ), so C[YDS(I )] − E[H (I )] is at most the energy used by
the YDS(I ) during the times t in the c-interval CY (I ) when s(t) < s0. Thus,
C[YDS(I )] − E[H (I )] ≤ csα

0 , which is at most εC[YDS(I )] by the definition of
s0. The claimed inequality then follows.

We now show that YDS is 5-approximate with respect to minimizing the maxi-
mum energy used over any c-interval.
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LEMMA 2.6. For any instance I ,

C[OPT(I )] ≥ min

(
ε C[YDS(I )]

2
,

(1 − ε)C[YDS(I )]

3

)
Choosing ε = 2/5, it follows that C[OPT(I )] ≥ C[YDS(I )]/5.

PROOF. Consider an island G of I and let |G| be the length of G. As the YDS
schedule for I runs at speed at least s0 during G, the total energy consumed by
YDS is at least |G|sα

0 . By Claim 2.3, all the tasks in I that YDS runs in G must
also be run in G in any feasible schedule, so it must be the case that the total energy
consumed by any feasible schedule for I during G has to also be at least |G|sα

0 . If
|G| ≥ c, then by a simple averaging argument, for any feasible schedule there is
some c-interval that is totally contained in G with the property that the energy used
during this c-interval is at least |G|sα

0 /	|G|/c
. In turn, this is at least csα
0 /2, which

by the definition of α equals ε C[YDS(I )]/2. Thus, C[OPT(I )] ≥ ε C[YDS(I )]/2
if |G| ≥ c.

If all the islands have length no more than c, then consider the islands that intersect
CY (I ). If some such island G has energy at least (1 − ε)C[YDS(I )]/3, the result
follows by Claim 2.4. Now suppose that all islands that intersect CY (I ) have energy
less than (1 − ε)C[YDS(I )]/3. By Lemma 2.5, we know that in YDS(I ) the total
energy during the islands intersecting CY (I ) is at least (1 − ε)C[YDS(I )]. As at
most two islands can lie partially in CY (I ), at least (1 − ε)C[YDS(I )]/3 energy is
in islands that are totally contained inside CY (I ), and hence the result follows by
Claim 2.4.

We can now conclude that YDS is cooling-oblivious.

THEOREM 2.7. The energy optimal algorithm YDS is a 20-approximation with
respect to maximum temperature.

PROOF. By Lemma 2.6, we know that C[OPT(I )] ≥ C[YDS(I )]/5. By The-
orem 2.2, we know that 2 T [OPT(I )]

a ≥ C[OPT(I )], and C[YDS(I )] ≥ T [YDS(I )]
2a .

Combining these three inequalities gives that 20 T [OPT(I )] ≥ T [YDS(I )].

3. The OA, AVR, and Constant Temperature Algorithms

In this section we consider the online algorithms AVR and OA proposed by Yao
et al. [1995], and the class of constant temperature algorithms. Recall the definitions
of AVR and OA in Section 1.5. We show that both AVR and OA have a competitive
ratio of at least αα with respect to energy. We then show that OA is in fact exactly
αα-competitive. We show that both AVR and OA are not O(1)-competitive with
respect to temperature. We also show that another natural algorithm, that we call the
constant temperature algorithm, is not O(1)-competitive with respect to temperature
under a natural definition of competitiveness for this class of algorithms.

3.1. ENERGY. Before giving an explicit lower bound instance for the competi-
tive ratio of OA and AVR with respect to energy, we need the following technical
lemma.

LEMMA 3.1. If α > 1 and x ≥ y > 0, then

(x − y)α ≥ xα − αxα−1 y.
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PROOF. Setting t = y/x and dividing through by xα, the inequality above is
equivalent to (1 − t)α ≥ 1 − αt or (1 − t)α − 1 + αt ≥ 0, which we need to
show holds when 0 < t ≤ 1. Note that the left-hand side is 0 when t = 0. Now
differentiating the left-hand side with respect to t gives −α(1 − t)α−1 + α, which
is always positive when 0 < t ≤ 1. Thus, (1 − t)α − 1 + αt is increasing and thus
positive when 0 < t < 1.

LEMMA 3.2. The competitive ratio of AVR and OA with respect to energy is at
least αα.

PROOF. The instance is defined as follows: All tasks have the same deadline n.
For i = 0, 1, . . . , n − 1, a task of work (1/(n − i))1/α arrives at time i . Observe
that for instances with a common deadline, as is the case here, AVR and OA behave
identically.

The optimal energy algorithm YDS completes the task that arrives at time i by
time i + 1 running at speed (1/(n − i))1/α during the time interval (i, i + 1). The
resulting energy usage for YDS is then

∑n−1
i=0 (1/(n − i)1/α)α = ∑n−1

i=0 1/(n − i) =
Hn , where Hn is the nth Harmonic number.

We now analyze the energy usage of OA and AVR. Let s(i) be the speed of AVR
during the time interval (i, i + 1). Then, for i = 0, . . . , n − 1,

s(i) =
i∑

j=0

1/(n − j)1/α

n − j

=
i∑

j=0

1

(n − j)(1+1/α)

≥
∫ j=i−1

j=0
1/(n − j)1+1/αd j

= α(n − i + 1)−1/α − αn−1/α. (18)

The first equality above is by the definition of AVR. Then, the energy used by
AVR is

E[AVR(I )] =
n−1∑
i=0

s(i)α

≥
n−1∑
i=1

(
α(n − i + 1)−1/α − αn−1/α

)α

= αα
n−1∑
i=1

(
(n − i + 1)−1/α − n−1/α

)α

≥ αα
n−1∑
i=1

(
1

(n − i + 1)
− α

(
1

(n − i + 1)

)(α−1)/α

n−1/α

)

= αα

(
n−1∑
i=1

1

(n − i + 1)
− αn−1/α

n−1∑
i=1

(
1

(n − i + 1)

)(α−1)/α
)
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= αα
(
(Hn − 1) − α2n−1/α�(n1/α)

)
= αα(Hn − �(1)).

The first equality above is by the definition of YDS. The first inequality comes from
the lower bound on s(i) from Eq. (18). The second inequality comes from applying
Lemma 3.1 with x = (n − i + 1)−1/α and y = n−1/α. Choosing n large enough,
the competitive ratio can be made arbitrarily close to αα.

We now turn to the main result of this section, that the competitive ratio of
OA with respect to energy is exactly αα. Before we begin, we need the following
algebraic fact.

LEMMA 3.3. Let q, r, δ ≥ 0 and α ≥ 1. Then, (q + δ)α−1(q −αr − (α −1)δ)−
qα−1(q − αr ) ≤ 0.

PROOF. We need to show that

(q + δ)α−1(q − αr ) − (q + δ)α−1(α − 1)δ − qα−1(q − αr ) ≤ 0

or equivalently that,

(q − αr )[(q + δ)α−1 − qα−1] − (q + δ)α−1(α − 1)δ ≤ 0.

Since [(q + δ)α−1 − qα−1] ≥ 0, it suffices to show that

q[(q + δ)α−1 − qα−1] − (q + δ)α−1(α − 1)δ ≤ 0.

Substituting δ = zq, the left-hand side of the above can be written

qα[(1 + z)α−1 − 1] − qα[(1 + z)α−1(α − 1)z].

Thus, it will be enough to show that for z ≥ 0,

(1 + z)α−1 − 1 − (1 + z)α−1(α − 1)z ≤ 0.

Differentiating this with respect to z, we get

((α − 1)(1 + z)α−2[1 − (α − 1)z] + (1 + z)α−1(−α + 1))
= ((α − 1)(1 + z)α−2[1 − (α − 1)z − (1 + z)]
= −α(α − 1)z(1 + z)α−2

≤ 0,

where the last inequality holds since α > 1 and z ≥ 0. Thus, the maximum of this
expression is attained at z = 0, where it has value 0. This implies the result.

THEOREM 3.4. The algorithm Optimum Available is αα-competitive with re-
spect to energy.

PROOF. Let sOA(t) denote the speed at which OA works at time t and sOPT(t)
denote the speed that the optimal algorithm YDS works at time t . At any time t ,
either a task arrives or finishes, or else an infinitesimal interval of time dt elapses
and OA consumes sOA(t)αdt units of energy. We will define a potential function φ(t)
that satisfies the following properties:

—The potential function φ(t) does not increase as a result of any of the following
events: the arrival of a task, the completion of a task by OA, the completion of a
task by OPT.
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—At any time t between arrivals,

sOA(t)α + dφ(t)
dt

≤ ααsOPT(t)α. (19)

—The potential function φ(t) has value 0 before any tasks arrive, and also has value
0 after the last deadline.

Integrating Eq. (19) over time and using the other two stated properties, we can
conclude that E[OA(I )] ≤ αα E[OPT(I )]. For more information on the potential
function method, see Cormen et al. [2001].

Before we can define the potential function, we need to introduce some notation.
Let s(t) denote the speed at which OA would be working at time t if no new tasks
were to arrive after the current time. Since OA simply computes the YDS schedule
based on the current knowledge of tasks, the speeds s(t) are computed as follows.
Let wOA(t, t ′) denote the unfinished work under OA that is currently available with
deadlines in (t, t ′]. We will refer to wOA(t, t ′)/(t ′− t) as the density of interval (t, t ′].
Consider a sequence of times defined inductively as follows. Let t0 always denote
the current time. Let ti , i > 0, denote the smallest time such that

wOA(ti−1, ti )/(ti − ti−1) = max
t ′>ti−1

wOA(ti−1, t ′)/(t ′ − ti−1). (20)

Thus, t1 is the smallest time when the density of tasks with deadlines between t0
and t1 is maximized, and so on. It is easy to see that for all i ≥ 0, s(t) = s(ti )
for ti < t ≤ ti+1. We will call the interval (ti , ti+1], a critical interval and denote
it by Ii . Note that these intervals are those scheduled in successive steps of the
YDS algorithm, assuming that ties are broken by choosing the smallest interval
with maximum intensity. We now note that s(ti ) is a nonincreasing sequence. If
s(ti+1) > s(ti ), then this contradicts that s(ti ) is the critical density for time ti , since
in this case

wOA(ti , ti+2)/(ti+2 − ti ) > wOA(ti , ti+1)/(ti+1 − ti ) = s(ti ).

Analogously, let wOPT(t, t ′) denote the unfinished work under the optimal offline
algorithm at the current time that has deadline in (t, t ′].

We define the potential function φ(t) as follows:

φ(t) = α
∑
i≥0

s(ti )α−1(wOA(ti , ti+1) − αwOPT(ti , ti+1)). (21)

Note that (by the definition of t0) OA is always working at speed s(t0). If no new
task arrives, the algorithm continues to work at the same speed until the current
critical interval finishes. When the current critical interval finishes, the algorithm
enters the next critical interval. The indices of the critical deadlines shift by one,
and the new speed s(t0) is that which was previously s(t1). Also note that the
potential is continuous as a critical interval finishes and we move to the next one.
This follows because as the current critical interval finishes t1 − t0 approaches 0 and
both wOA(t0, t1) and wOPT(t0, t1) approach 0, since both algorithms have to finish
this work by time t1. Thus, the contribution of the first term approaches 0 as the
current interval is about to finish.

We now consider the various cases as time progresses, and prove that the potential
function satisfies the properties claimed above. It is easy to see that at any time, OA
is running some task if and only if the optimal energy algorithm YDS is running
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some task, and thus we may assume that all times in our arguments that each of OA
and YDS is running some task.

Working Case. We first consider the case that no task arrives and no task is
completed during the next dt units of time. Thus, each s(ti ) remains fixed (including
s(t0)) during the dt time units. We have to show that

s(t)α − ααsOPT(t)α + dφ(t)
dt

≤ 0 (22)

or equivalently,

s(t0)α − ααsOPT(t0)α + d
dt

(
α

∑
i≥0

s(ti )α−1(wOA(ti , ti+1) − αwOPT(ti , ti+1))

)
≤ 0.

(23)

As OA works, wOA(t0, t1) is decreasing at rate s(t0), and wOA(ti , ti+1) remains fixed
for all i ≥ 1. Let k be the smallest index ≥ 0 such that wOPT(tk, tk+1) �= 0. Assuming
the optimal energy schedule YDS always executes the task with the earliest deadline,
we have that wOPT(tk, tk+1) decreases at rate sOPT(t0), and wOPT(ti , ti+1) is fixed for
i �= k.

Thus, evaluating the left-hand side of Eq. (23), we see that it is equivalent to

s(t0)α − ααsOPT(t0)α + (−αs(t0)α−1s(t0) + α2s(tk)α−1sOPT(t0)) ≤ 0. (24)

Since s(tk) ≤ s(t0), Eq. (24) would be implied by

(1 − α)s(t0)α + α2s(t0)α−1sOPT(t0) − ααsOPT(t0)α ≤ 0. (25)

Let z = s(t0)/sOPT(t0). By substitution, Eq. (25) is equivalent to

(1 − α)zα + α2zα−1 − αα ≤ 0. (26)

for z ≥ 0. Let u(z) be the polynomial on the left-hand side of inequality (26). Note
that u(0) = −αα, and u(+∞) = −∞. Differentiating u(z) with respect to z, we
get

u′(z) = α(1 − α)zα−1 + α2(α − 1)zα−2. (27)

Solving for u′(z) = 0, we get the unique value z = α. Because α ≥ 1, u′(z) ≥ 0 for
z ≤ α and u′(z) ≤ 0 for z ≥ α, u(z) is maximized at z = α, and u(α) = 0. Hence,
u(z) is nonpositive for nonnegative z. Thus, we have established inequality (22).

Arrival Case. Consider the arrival of a task of work x with deadline t . Let i be
such that ti < t ≤ ti+1. We must show that the change in potential caused by this
arrival is nonpositive.

First, we consider the simplest case when the critical intervals are unchanged,
that is, only the values of the critical densities change. Hence, the only effect the
new task has is to increase the density s(ti ) of the interval Ii = (ti , ti + 1] to

(wOA(ti , ti+1) + x)

(ti+1 − ti )
,
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and the quantity (wOA(ti , ti+1) − αwOPT(ti , ti+1)) decreases by (α − 1)x . Thus, the
change in the potential function is then


φ = α

(
wOA(ti , ti+1) + x

ti+1 − ti

)α−1

((wOA(ti , ti+1) + x) − α(wOPT(ti , ti+1) + x))

−α

(
wOA(ti , ti+1)

ti+1 − ti

)α−1

(wOA(ti , ti+1) − αwOPT(ti , ti+1)). (28)

Substituting q = wOA(ti , ti+1), δ = x and r = wOPT(ti , ti+1) and rearranging, we
can write


φ = α · ((q + δ)α−1(q − αr − (α − 1)δ) − qα−1(q − αr ))

(ti+1 − ti )α−1

which is nonpositive by Lemma 3.3.
We now consider the more interesting case when the arrival of a task might change

the critical intervals. While this new task may radically change the structure of the
critical intervals, we show that we can think of this change as a sequence of smaller
changes, where each smaller change affects only two critical intervals. Moreover,
each change is essentially equivalent to that in the previous case where the structure
of the critical intervals remains unchanged. To explain how to accomplish this,
imagine the work of the new task increasing starting from 0. For some amount of
work x ′ ≤ x , one of the following three events must occur:

—The interval Ii remains a critical interval and its density becomes equal to that
of Ii−1. In particular, x ′ is such that s(ti−1) = (wOA(ti , ti+1) + x ′)/(ti+1 − ti ).

—The interval Ii splits into two critical intervals I ′
i = (ti , t ′] and I ′′

i = (t ′, ti+1] for
some ti ≤ t ′ < ti+1. Since x ′ is the smallest such work, the densities of I ′

i and
I ′′
i are identical and equal to (wOA(ti , ti+1) + x ′)/(ti+1 − ti ).

—A sequence I0, . . . , Ii of critical intervals merge into one new critical interval.
We can think of this event as a sequence of pairwise merges, each of which
combines I0 with I1 to form a new interval I ′

0. In this case, it must be that x ′ = 0.

For each of these events, we can imagine the original task of work x as consisting
of two tasks, such that both arrive at the same time and have the same deadline t ,
but one has work x ′ and the other has work x − x ′. We can then first analyze the
change in potential as the result of the arrival of the work x ′, and then repeat this
procedure recursively for x − x ′. Thus, we only need to consider the change in
potential for a task of work x ′ that causes one of the three events described above.

For the first type of event, the only change in the potential function is due to the
change of density of Ii . This change is identical to Eq. (28) with x replaced by x ′,
and again the non-positivity of 
φ follows by Lemma 3.3.

For the second type of event, the change in the potential function is only due
to Ii being replaced by I ′

i and I ′′
i . Since the densities of I ′

i and I ′′
i are identical,

these intervals can still be considered together as far as the potential function is
concerned. Hence, the change in the potential function is again given by Eq. (28)
with x replaced by x ′, and again the non-positivity of 
φ follows by Lemma 3.3.

For the third type of event, the change in the potential function is only due to I0
and I1 being replaced by I ′

0. Since the densities of I0, I1, and I ′
0 are all identical,

these intervals can still be considered together as far as the potential function is
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concerned. Hence, the change in the potential function is again given by Eq. (28)
with x replaced by x ′ = 0, and again the nonpositivity of 
φ follows by Lemma 3.3.

We can repeat this process until we have used up all of the x work in the arriving
task.

3.2. TEMPERATURE. We start this subsection by showing that AVR and OA
are not O(1)-competitive with respect to temperature. In the reasonable case that
the thermal threshold Tmax of the device is known, the most obvious temperature
management strategy is to run at a speed that leaves the temperature fixed at Tmax.
In particular, whenever there is work to do, the algorithm works at a speed that
maintains the temperature Tmax, and otherwise it cools according to Newton’s law
of cooling. We call such a strategy O(1)-competitive if on any instance I on which
this constant temperature algorithm misses a deadline, every feasible schedule
reaches a temperature of �(Tmax) at some point in time. We then show that staying
at the thermal threshold is not an O(1)-competitive strategy.

LEMMA 3.5. The online algorithms AVR and OA are not O(1)-competitive with
respect to temperature. More precisely, the competitive ratios of these algorithms
must depend on either the number of tasks or the cooling rate b.

PROOF. We use a variation of an instance from Yao et al. [1995]. Choose an
arbitrarily large integer n and consider an instance with n tasks, where task i is
released at time ri = ic, has work wi = c and deadline di = nc for 0 ≤ i ≤ n − 1.
Again note that since all tasks have a common deadline, AVR and OA behave
identically. The YDS schedule runs tasks at a constant speed of 1 and thus uses
total energy n and energy c in any c-interval. Using Theorem 2.2, it is sufficient
to show that there is some c-interval where the energy used by OA and AVR is
ω(c). As AVR runs task i at speed 1/(n − i) during the interval (ic, nc], during
the c-interval [c(n − 1), cn] AVR and OA run at a speed of Hn = �(log n), where
Hn is the nth harmonic number, and thus the energy used during this c-interval is
�(c logα n).

THEOREM 3.6. The speed scaling algorithm that runs at such a speed that the
temperature remains constant at the thermal threshold Tmax is not O(1)-competitive.

PROOF. Suppose at time 0 a task with work x (which will be specified later)
and deadline ε arrives. We will consider the behavior as ε goes to 0. Suppose
the temperature at time 0 is 0. We choose x such that it is equal to the maximum
work that the adversary can get done by time ε while keeping the temperature below
Tmax/k for some constant k. Using Eq. (50) from Section 5 for this maximum work,
and substituting α = 3, we get x = �(( bTmax

ka )1/3ε2/3). The crucial fact is that the
maximum work that the adversary can do depends on ε as ε2/3. On the other hand,
the constant temperature algorithm at temperature Tmax has power P = bTmax/a,
and hence speed (bTmax/a)1/3 and work �((bTmax/a)1/3ε), which depends linearly
on ε. Thus, for any constant k, the ratio of the work completed by the adversary
to the work completed by the constant temperature algorithm goes to infinity as ε
goes to 0.
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4. The BKP Algorithm

Recall the definition of our newly introduced algorithm BKP in Section 1.5. We will
show that it is cooling-oblivious. That is, BKP is O(1)-competitive with respect to
energy, maximum power/speed, and temperature. We analyze BKP separately for
each of these objectives.

4.1. PRELIMINARIES. Recall that at any time t , BKP works at speed e · v(t) on
the unfinished job with the earliest deadline, where v(t) is defined by Eq. (5). In
this section, we first prove that BKP always produces a feasible schedule. We then
give four inequalities that will allow us to relate BKP to the optimal schedule.

THEOREM 4.1. The BKP algorithm always outputs a feasible schedule.

PROOF. Assume for the sake of contradiction that BKP misses some deadline
for some problem instance. Of these infeasible instances, consider one with the
fewest number of tasks, and let d denote the first deadline that is missed in this
instance. We claim that on this instance BKP always works on tasks with deadline
no more than d during the interval (0, d]. To see this, first observe that if BKP is
idle at some time t during (0, d], then we can replace the instance by a smaller one
by removing all jobs that finish before t . Similarly, as BKP always works on the
job with the earliest deadline, if it worked on a task with deadline greater than d
at some time t ∈ (0, d], then BKP must have finished all work with deadline no
more than than d that arrived by time t . Thus, one could obtain another infeasible
instance with fewer tasks by considering only those tasks released after the time t .

This implies that if BKP misses the deadline at time d, it must be that the total
work done by BKP during [0, d] is strictly less than w(0, d), the total work in the
instance with deadline no more than d. Our proof will be to show that this cannot
happen.

By choosing t ′ = d in the definition of v(t), it follows trivially that

v(t) ≥ w(t, et − (e − 1)d, d)

e(d − t)
.

Thus, the work done by BKP during the time period [0, d] is∫ d

0
e v(t)dt ≥

∫ d

0

w(t, et − (e − 1)d, d)

(d − t)
dt.

We now expand the right hand side of this inequality. Let b(x) denote the rate at
which work arrives at time x . Thus, if no work arrives at time x , then b(x) = 0.
If w units of work arrives at time x , then b(x) is w times the Dirac delta function.
Thus, for example

∫ b
a b(x)dx is just the work that arrives during the interval [a, b].∫ d

0

w(t, et − (e − 1)d, d)

(d − t)
dt =

∫ d

0

1

(d − t)

(∫ t

et−(e−1)d
b(x)dx

)
dt

=
∫ d

0

(∫ (x+(e−1)d)/e

x

b(x)

(d − t)
dt

)
dx

=
∫ d

0
b(x)

(∫ (x+(e−1)d)/e

x

1

(d − t)
dt

)
dx
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=
∫ d

0
b(x) ln

(
d − x

d − ((x + (e − 1)d)/e)

)
dx

=
∫ d

0
b(x)dx

= w(0, d).

The second equality follows by interchanging the integrals and observing that for
each x ∈ [0, d), the work b(x) contributes to w(t, et − (e − 1)d, d)/(d − t) if and
only if x ∈ (et − (e − 1)d, t) or equivalently that t ∈ [x, (x + (e − 1)d)/e].

Thus BKP does at least w(0, d) work during the interval [0, d], which is the
contradiction we need.

We now state two inequalities from Hardy et al. [1952] that are critical in our
further analysis of BKP.

FACT 4.2 (HARDY’S INEQUALITY, THEOREM 327 [HARDY ET AL. 1952]). If it
is the case that α > 1, f (x) ≥ 0, and F(x) = ∫ x

0 f (t)dt, then∫ ∞

0

(
F(x)

x

)α

dx <

(
α

α − 1

)α ∫ ∞

0
f α(x)dx .

The following fact was first proved by Hardy and Littlewood [1930], and later
simplified by Gabriel [1931]. It can also be found in Hardy et al. [1952, Theorem
384 and 385].

FACT 4.3. Suppose that f (x) is nonnegative and integrable in a finite interval
(0, a) and that f̄ (x) is the rearrangement of f (x) in decreasing order. Let

M(x) = M(x, f ) = max
0≤y<x

1

x − y

∫ x

y
f (t)dt.

Suppose s(y) is any increasing function of y defined for y ≥ 0. Then,∫ a

0
s(M(x))dx ≤

∫ a

0
s
(

1

x

∫ x

0
f̄ (t)dt

)
dx . (29)

Roughly, if we think of f (x) as the work arriving at time x , then the definition of
M(x) resembles the way we define r (x) in our algorithm. This allows us to argue
about the function M in terms of f . We use these two facts to prove the following
two lemmas. Lemma 4.4 shows how to relate the work in an arbitrary schedule,
which will be the optimal schedule in our arguments, to the speed q(t) that upper
bounds the speed v(t) used in the definition of BKP. Lemma 4.5 then shows that the
energy used by running at speed q(t) is less than some constant times the energy
used by an arbitrary schedule.

LEMMA 4.4. Let z(t) be the speed at time t for some feasible schedule Z. Then

q(t) ≤ max
t1<t≤t2

1

t2 − t1

∫ t2

t1
z(t)dt.
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PROOF. Since Z is feasible, for any times t1 and t2, we have that
∫ t2

t1
z(t)dt ≥

w(t1, t2). Thus

q(t) = max
t1<t≤t2

I (t1, t2) ≤ max
t1<t≤t2

1

t2 − t1

∫ t2

t1
z(t)dt.

LEMMA 4.5. Let q(t) ≥ 0 and y(t) ≥ 0 be functions such that

q(t) ≤ max
t1<t≤t2

1

t2 − t1

∫ t2

t1
y(t)dt.

Then, it must be the case that∫
t
q(t)αdt ≤ 2

(
α

α − 1

)α ∫
t

y(t)αdt.

PROOF. We split q(t) into two parts. Let

l(t) = max
t1

1

t − t1

∫ t

t1
y(x)dx such that t1 < t .

Similarly, let

v(t) = max
t2

1

t2 − t

∫ t2

t
y(x)dx such that t ≤ t2.

Clearly, q(t) ≤ max(l(t), v(t)), and hence q(t)α ≤ l(t)α + v(t)α. Thus, to bound∫
t q(t)αdt it suffices to show that both

∫
t l(t)αdt and

∫
t v(t)αdt are upper bounded

by the quantity ( α
α−1 )α

∫
t y(t)αdt.

Let us first consider
∫

t l(t)αdt. Consider Fact 4.3, with f (t) = y(t), and s(x) =
xα. Note that the definition of M(t) exactly corresponds to that of l(t). Let ȳ(t)
denote the rearrangement of y(t) in nonincreasing order. Then, by Fact 4.3, it
follows that ∫

t
l(t)αdt ≤

∫
t

(
1

t

∫ t

x=0
ȳ(x)dx

)α

dt. (30)

Now using Fact 4.2 with f (x) = ȳ(x),∫
t

(
1

t

∫ t

x=0
ȳ(x)dx

)α

dt ≤
(

α

α − 1

)α ∫
x

ȳ(x)αdx . (31)

The desired bound on
∫

t l(t)αdt follows by Eqs. (30) and (31) and observing that(
α

α − 1

)α ∫
x

ȳ(x)αdx =
(

α

α − 1

)α ∫
x

y(x)αdx .

as ȳ is a rearrangement of y.
The analysis of

∫
t v(t)αdt is similar.

4.2. ENERGY. In this section, we show that the BKP algorithm is O(1)α-
competitive with respect to energy.

THEOREM 4.6. The BKP algorithm is 2( α
α−1 )α exp(α)-competitive with respect

to energy.
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PROOF. We first note that

E[BKP] ≤
∫

t
(e v(t))αdt ≤

∫
t
(e q(t))αdt = exp(α)

∫
t
q(t)αdt.

The first inequality follows by the definition of BKP. The second inequality follows
by Lemma 1.1. Setting y(t) to be the speed at which YDS works at time t , by Lemma
4.4, it is the case that

q(t) ≤ max
t1<t<t2

1

t2 − t1

∫ t2

t1
y(t)dt.

Finally, ∫
t
q(t)αdt ≤ 2

(
α

α − 1

)α ∫
t

y(t)αdt = 2

(
α

α − 1

)α

E[OPT].

The first inequality is by Lemma 4.5. The last equality follows since YDS is the
optimal energy schedule.

4.3. MAXIMUM SPEED AND MAXIMUM POWER. It is not hard to see that our
online algorithm BKP is e-competitive with respect to the maximum speed (or
equivalently exp(α)-competitive for maximum power). We show this formally in
Lemma 4.7. We then show in Lemma 4.8 that this is the best possible competitive
ratio for the maximum speed.

Consider an online deterministic algorithm A with the property that the schedule
produced by A is identical for all values of α > 1. We call such an algorithm
α-independent. Note all online algorithms considered in this article (BKP, OA and
AVR) are α-independent. Given any fixed schedule produced by an α-independent
algorithm A, we can choose α large enough such that the total energy for this
schedule is essentially determined by the maximum power used by A. Thus the
lower bound of e for maximum speed implies that for any arbitrarily small constant
ε > 0, there is some α large enough, such that A cannot be (e − ε)α-competitive
with respect to total energy (when power varies as speed raised to α). This implies
that restricted to the class of α-independent algorithms, the base of the exponent in
the competitive ratio of BKP cannot be improved.

LEMMA 4.7. The online algorithm BKP is e-competitive with respect to maxi-
mum speed.

PROOF. YDS is the optimum offline algorithm with respect to maximum speed.
The maximum speed at which YDS ever works is exactly equal to maxt q(t). At
any time the BKP algorithm works at speed at most e v(t) at time t , which is at
most e q(t) by Lemma 1.1.

LEMMA 4.8. For every deterministic online algorithm A that maintains dead-
line feasibility, there is some input that causes A at some time to run e times faster
than the maximum speed of YDS.

PROOF. Assume A has a competitive ratio R. We show that it must be the case
that R ≥ e. Let ε > 0 be an arbitrarily small constant. Let a(x) = −1

(ln ε)(1−x) . The
adversary adopts the following strategy: It releases work at the rate of a(x) until
some time t ≤ (1 − ε), and then after time t no more work is released. The value
of t depends on the behavior of the online algorithm. All work has deadline 1.
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The adversary will make t = 1 − ε unless A works at too great a speed at some
time before 1 − ε. So assume for the moment that t = 1 − ε.

The work that is released between time f and time g is∫ g

f

−1

(ln ε)(1 − x)
dx = 1

ln ε
ln

1 − g
1 − f

. (32)

Let I (t, t1, t2) = w(t, t1, t2)/(t2−t1) denote the intensity of interval [t1, t2] restricted
to the work that has arrived by time t . Note that for t ≤ 1 − ε,

w(t, 0, 1) = 1

ln ε
ln(1 − t). (33)

In particular, if t = 1 − ε, then w(t, 0, 1) = 1. For some time t ≤ 1 − ε and some
k < t , by Eq. (32)

I (t, k, 1) = 1

(1 − k) ln ε
ln

1 − t
1 − k

. (34)

Given a fixed t , we will be interested in the value of k ∈ [0, t] that maximizes
I (t, k, 1). Let k∗(t) denote this value of k. To determine the value of k∗(t), we
differentiate I (t, k, 1) with respect to k. We get

d
dk

I (t, k, 1) = 1

(1 − k)2 ln ε
ln

1 − t
1 − k

+ 1

(1 − k)2 ln ε
. (35)

Setting I ′(t, k, 1) = 0 and solving for k, we have k = et − (e − 1). Also note that
I ′(t, k, 1) is positive when k < et − (e − 1), and negative when k > et − (e − 1).
Also note that et − (e − 1) is always less than t , and is nonnegative when t ≥ e−1

e .
We can then conclude that if t ≥ e−1

e then k∗(t) = et − (e − 1), and if t < e−1
e then

k∗(t) = 0.
Recall that the YDS schedule is optimal with respect to maximum speed. Suppose

the adversary stops bringing in more work at time t . Then, the first interval chosen
by YDS on this instance will be [k∗(t), 1], and hence (t, k∗(t), 1) is the maximum
speed that YDS will run.

If t < (e − 1)/e, then k∗(t) = 0, and YDS will run at a constant speed of

I (t, k∗(t), 1) = I (t, 0, 1) = ln(1 − t)
ln ε

,

during the time interval [0, 1]. Thus, for each time x ∈ [0, e−1
e ], A cannot work at

a greater speed than R ln(1−x)
ln ε

. If it did so, then A would not be R-competitive in
the case that adversary stops bringing in work at time x .

If t ∈ [ e−1
e , 1 − ε], then k∗(t) = et − (e − 1), and YDS will run at maximum

speed of

I (t, k∗(t), 1) = I (t, et − (e − 1), 1) = −1

e(1 − t) ln ε
.

Thus, for each time x ∈ [ e−1
e , 1 − ε], A cannot work at a greater speed than

R −1
e(1−x) ln ε

. If it did so, then A would not be R-competitive in the case that t = x .
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If t = 1 − ε, then YDS will run at a maximum speed of

I (1 − ε, k∗(1 − ε), 1) = −1

eε ln ε
.

Thus, during the time period [1 − ε, 1], A cannot work faster than R −1
eε ln ε

. If it did
so, then A would not be R-competitive in the case that t = 1 − ε.

Now consider the case that t = 1 − ε. By the arguments above, the most work
that A can get done is

R
∫ (e−1)/e

0

ln(1 − t)
ln ε

dt + R
∫ 1−ε

(e−1)/e

−1

e(1 − t) ln ε
dt + R

∫ 1

1−ε

−1

eε ln ε
dt

= R
ln ε

(
2

e
− 1

)
+ R

e ln ε
(ln ε + 1) + −R

e ln ε

= R
e

+
(

2 − e
e

) (
R

ln ε

)
.

Now as ε approaches 0, the term ( 2−e
e )( R

ln ε
) approaches 0. Thus, the maximum work

that A can get done approaches R
e , which must be at least w(0, 1) = 1. Thus we

conclude that R cannot be less than e.

4.4. TEMPERATURE. We show in Theorem 4.9 that BKP is O(1)-competitive
with respect to temperature.

THEOREM 4.9. The online algorithm BKP is exp(α)2α+1(6( α
α−1 )α + 1)-

competitive with respect to temperature for all cooling parameters b satisfying
0 < b < ∞.

PROOF. Let X be an arbitrary c-interval. As X is arbitrary, by Theorem 2.2, it is
sufficient to show that BKP uses at most a factor of exp(α)2α−1(6( α

α−1 )α + 1) times
as much energy as C[OPT] during the interval X . Here, we use z(t) to denote the
speed at time t of a fixed arbitrary schedule OPT that uses energy at most C[OPT]
in every c-interval. Let Xk

− (respectively, Xk
+) denote the kth c-interval immediately

to the left (respectively, right) of X . That is, the left endpoint of Xk
− is kc units to

the leftmost point of X . Let the interval Z be defined to be X ∪ X1
− ∪ X1

+.
As in the proof of Theorem 4.6, we will assume that BKP runs at speed e q(t)

even if there is no work to do. Thus, we are left to show that∫
t∈X

q(t)αdt ≤ 2α−1

(
6

(
α

α − 1

)α

+ 1

)
C[OPT].

Since OPT is feasible, we have by Lemma 4.4

q(t) ≤ max
t1<t<t2

1

t2 − t1

∫ t2

t1
z(t)dt.

We decompose z(t) as follows: Let z1(t) = z(t) if t ∈ Z and 0 at all other times.
Let z2(t) = z(t) − z1(t) for all t . Let

q1(t) = max
t1<t≤t2

1

t2 − t1

∫ t2

x=t1
z1(x)dx
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and

q2(t) = max
t1<t≤t2

1

t2 − t1

∫ t2

x=t1
z2(x)dx .

Note that q(t) ≤ q1(t)+q2(t) since z(t) = z1(t)+ z2(t) for all each t . By convexity
of the speed-to-power function P(s), it follows that

q(t)α ≤ (q1(t) + q2(t))α ≤ 2α−1 (q1(t)α + q2(t)α)

and thus ∫
t∈X

q(t)αdt ≤ 2α−1

(∫
t∈X

q1(t)αdt +
∫

t∈X
q2(t)αdt

)
.

We first upper bound
∫

t∈X q1(t)αdt. In fact we will upper bound
∫ ∞

t=0 q1(t)αdt.
Note that z1(t) is identically 0 at all points not in Z . Moreover, as Z is an interval
of length 3c, by the definition of C[OPT] it follows that∫

t∈Z
z1(t)αdt ≤ 3C[OPT]. (36)

Now we have ∫ ∞

t=0
q1(t)αdt ≤ 2

(
α

α − 1

)α ∫ ∞

0
z1(t)αdt

= 2

(
α

α − 1

)α ∫
t∈Z

z1(t)αdt

≤ 6

(
α

α − 1

)α

C[OPT]. (37)

The first inequality follows from Lemma 4.5. The equality follows from the defi-
nition of z1. The final inequality follows from Eq. (36).

We now bound the term
∫

t∈X q2(t)αdt. By the definition of C[OPT], and the con-
vexity of the function sα for α ≥ 1, any c-interval contains at most c(C[OPT]/c)1/α

amount of work in OPT. Our next step is to upper bound q2(t) for any t ∈ X . In
particular, we claim that for any t1 and t2 such that t ∈ X and t1 < t < t2,

q2(t) = max
t1<t<t2

1

t2 − t1

∫ t2

t1
z2(x)dx ≤ (C[OPT]/c)1/α.

To see this, the crucial observation is that z2(t) = 0 for t ∈ Z . As Z = X ∪
X1

− ∪ X1
+, if t1 ∈ Xk

− for k ≥ 1, then the interval [t1, t] can contain at most
(k − 1) · c(C[OPT]/c)1/α work from z2. Similarly, if t2 ∈ Xk

+, then the interval
[t, t2] can contain at most (k −1) ·c(C[OPT]/c)1/α work from z2. Thus, any interval
[t1, t2] containing t , and with (k − 1)c ≤ t2 − t1 ≤ kc, can contain at most (k − 1) ·
c(C[OPT]/c)1/α work from z2. The bound on q2(t) follows as the integral is just
the work from z2 over the time interval [t1, t2].

Thus∫
t∈X

q2(t)αdt ≤
∫

t∈X

((
C[OPT]

c

)1/α
)α

dt =
∫

t∈X

C[OPT]

c
dt = C[OPT]. (38)
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Combining Eqs. (37) and (38), we have that for any c-interval X∫
t∈X

q(t)αdt ≤
∫

t∈X
2α−1(q1(t)α + q2(t)α)dt ≤ 2α−1

(
6

(
α

α − 1

)α

+ 1

)
C[OPT].

This accomplishes our goal.

5. Computing the Optimal Offline Temperature Schedule

In this section, we consider the offline problem of speed scaling to minimize the
maximum temperature. We show how to solve this problem in polynomial time
with arbitrary precision using the Ellipsoid algorithm. For basic information on
the use of the Ellipsoid algorithm to solve convex problems, see, for example,
Nestorov [2003]. We assume a constant Tmax that is the thermal threshold for the
device. The problem is then to determine whether there is a schedule that is feasible
and maintains the invariant that the temperature stays below Tmax. By binary search,
we can then solve the problem of minimizing Tmax.

Before giving the convex program, we need to make a few definitions. Let
MaxW(tx , ty, Tx , Ty) be the maximum work that can be done starting at time tx
at temperature Tx and ending at time ty at temperature Ty subject to the temperature
constraint T ≤ Tmax throughout the interval [tx , ty]. Strictly speaking, MaxW is
a function of Tmax but we suppress this in the notation as we assume throughout
that Tmax is fixed and given a priori. In order to understand MaxW, we will first
need to understand the unconstrained problem UMaxW(tx , ty, Tx , Ty), defined as
the maximum possible work that can be done during the interval [tx , ty] subject to
the boundary constraints that T (tx ) = Tx and T (ty) = Ty . In particular, the temper-
ature at any time is allowed to exceed Tmax. In Lemma 5.1, we prove the intuitive
fact that MaxW and UMaxW are well defined if and only if it is possible to cool as
quickly as specified.

LEMMA 5.1. Suppose that Tx and Ty are at most Tmax. Each of the quanties
MaxW(tx , ty, Tx , Ty) and UMaxW(tx , ty, Tx , Ty) are well defined if and only if
Ty ≥ Tx exp(b(tx − ty)).

PROOF. We wish to show that if Ty < Tx exp(b(tx − ty)), then there is no feasi-
ble solution. Consider the case that the power is zero throughout the interval [tx , ty].
Then throughout this interval it is the case that T ′(t) = −bT (t). Solving this differ-
ential equation, we get T (t) = Tx exp(b(tx − t)) for t ∈ [tx , ty]. So in particular, if
Ty < Tx exp(b(tx − ty)), then there is no feasible solution to either the constrained
problem or unconstrained problem since the power must be nonnegative.

We now wish to show that if Ty ≥ Tx exp(b(tx − ty)), then there is a feasible
solution for the constrained problem, and hence trivially, for the unconstrained
problem. If Ty = Tx exp(b(tx − ty)), then running with power equal to zero is a
feasible solution. So assume that Ty > Tx exp(b(tx − ty)). Let tz be some time just
after tx . One feasible solution for the constrained problem is for the temperature
to rise to Tmax at time tz , then stay at temperature Tmax until the time tv that solves
Ty = Tmax exp(b(tv − ty)), and then run with power equal to zero until time ty .

We are now ready to give the convex program. We divide time into intervals
demarcated by the list t0, . . . tm of all release times and deadlines. We introduce
a variable Ti that represents T (ti ), the temperature at time ti . Let J (i) be the set
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of tasks j that can feasibly be executed during the time interval [ti , ti+1], that is,
r j < ti+1 and d j > ti . We introduce a variable wi, j , for j ∈ J (i), that represents
the work done on task j during [ti , ti+1]. We can then express our problem as a
mathematical program C P in a relatively straightforward way:

p j ≤
∑

i : j∈J (i)

wi, j 1 ≤ j ≤ n (39)

∑
j∈J (i)

wi, j ≤ MaxW(ti , ti+1, Ti , Ti+1) 1 ≤ i ≤ m − 1 (40)

Ti+1 ≥ exp(b(ti − ti+1)) · Ti 0 ≤ i ≤ m − 1 (41)
Ti ≤ Tmax 0 ≤ i ≤ m (42)
0 ≤ Ti 0 ≤ i ≤ m (43)
0 ≤ wi, j 0 ≤ i ≤ m − 1, 1 ≤ j ≤ n. (44)

Constraint (39) ensures that enough work is done to finish each job. Constraint
(40) ensures that it is feasible to complete the claimed work within an interval.
By Lemma 5.1, constraint (41) ensures that the quantity MaxW(ti , ti+1, Ti , Ti+1) is
well defined.

LEMMA 5.2. The mathematical program C P is convex, that is, the feasible
region described in C P is convex.

PROOF. To see that the feasible region is convex, let T̃ , and T̂ be the temperature
curves corresponding to two feasible solutions to this problem. Let T̄ = (T̃ + T̂ )/2.
The speed curve corresponding to T̄ is S̄ = ((T̄ ′ + bT̄ )/a)1/α = ((T̃ ′ + T̂ ′ + bT̃ +
bT̂ )/(2a))1/α. Then, since x1/α is a concave function for α ≥ 1, S̄ ≥ (S̃ + Ŝ)/2,
that is, the average of the two underlying feasible solutions is feasible.

To apply the Ellipsoid algorithm one needs to give a procedure to determine
whether an arbitrary point is feasible, and if not, to determine a separating hyper-
plane. In particular, if G ≤ 0 is a violated constraint, then the separating hyperplane
for us will be the hyperplane whose normal is the gradient of G evaluated at the cur-
rent point. The only constraints for which this is not straightforward are the MaxW
constraints. So we assume for the rest of this section that all constraints, other than
the MaxW constraints, are not violated by the current point, as this is the only
interesting case. Our goal is then to explain how to take the gradient of the MaxW
function, so that we may compute a separating hyperplane. To better understand
MaxW, we first need to understand the unconstrained function UMaxW.

5.1. THE UNCONSTRAINED MAXIMUM WORK PROBLEM. We consider the un-
constrained problem UMaxW(ti , Ti , ti+1, Ti+1), where the times and temperatures
are arbitrary, other than that we require that Ti+1 ≥ Ti exp(b(ti − ti+1)) so that a
feasible solution exists. Let UMaxT(t) = UMaxT(ti , ti+1, Ti , Ti+1)(t) denote the
temperature as a function of the time t that solves UMaxW(ti , Ti , ti+1, Ti+1) That
is, UMaxT(t) is the temperature curve T that maximizes the quantity∫ ti+1

ti
P(t)1/αdt =

∫ ti+1

ti

(
T ′(t) + bT (t)

a

)1/α

dt,
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subject to the constraints that P(t) ≥ 0, T (ti ) = Ti and T (ti+1) = Ti+1. This
problem falls under the rubric of calculus of variations. We refer the reader to
Smith [1974] for the basics on calculus of variations. For notational simplicity, we
usually translate time so that t0 = 0. Since temperature is always a function of time,
we will drop t in future references to temperature functions.

Let F be the functional

F =
(

T ′ + bT
a

) 1
α

and let

FT = b
αa1/α

(T ′ + bT )
1
α
−1

be the partial derivative of F with respect to T , and let

FT ′ = 1

αa1/α
(T ′ + bT )

1
α
−1

be the partial derivative of F with respect to T ′. Any weak extremum T must satisfy
the Euler–Lagrange equation (see, e.g., Smith [1974, page 117]):

FT − d
dt

FT ′ = 0.

We call a temperature function T that satisfies the Euler–Lagrange equation an
Euler–Lagrange curve. We have that

d
dt

FT ′ = 1 − α

α2a1/α
(T ′ + bT )

1
α
−2(T ′′ + bT ′).

Thus, the Euler–Lagrange equation gives that

b
αa1/α

(T ′ + bT )
1
α
−1 − 1 − α

α2a1/α
(T ′ + bT )

1
α
−2(T ′′ + bT ′) = 0.

Eliminating common factors and multiplying by (T ′ + bT )2−1/α gives

b2T +
(

2 − 1

α

)
bT ′ +

(
1 − 1

α

)
T ′′ = 0.

Using the standard Laplace transform technique, we find that the solution to the
above differential equation is

UMaxT = T = c exp(−bt) + d exp(−btα/(α − 1)), (45)

where the constants c and d are determined by the boundary conditions. Alterna-
tively, one can verify the correctness of this solution by plugging it back into the
differential equation.

We now compute the values of c and d. Setting t = 0 and T = T0 in Eq. (45),
we get c + d = T0. Setting t = t1 and T = T1 in Eq. (45), we get c exp(−bt1) +
d exp(−bαt1/(α − 1)) = T1. Using c = T0 − d, we have (T0 − d) exp(−bt1) +
d exp(−bt1α/(α − 1)) = T1 or

d = T0 exp(−bt1) − T1

exp(−bt1) − exp(−bt1α/(α − 1))
(46)
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And therefore,

c = T0 − T0 exp(−bt1) − T1

exp(−bt1) − exp(−bt1α/(α − 1))
(47)

This gives a complete description of the curve UMaxT. In particular, the tem-
perature values at two times completely determine the curve UMaxT that passes
through these points. Since T1 ≥ T0 exp(−bt1), we can conclude that d ≤ 0, and
hence c = T0 −d ≥ 0. We must check that our curve UMaxT is indeed a maximum
and not a minimum. This is easily seen by substituting T0 − d for c in Eq. (45).
We have UMaxT = T0 exp(−bt) + d(exp(−btα/(α − 1)) − exp(−bt)). Since d
and the term in parentheses are both non-positive, their product is non-negative and
thus UMaxT is at least as great as the nopower curve T = T0 exp(−bt). Note that
UMaxT is well defined for all times t ≥ t0, not just for t ∈ [t0, t1]. We will argue
about properties of UMaxT on this larger domain.

We now turn our attention to evaluating the work UMaxW done by the curve
UMaxT. Differentiating Eq. (45) gives

UMaxT′ = T ′ = −bc exp(−bt) − bdα

α − 1
exp(−btα/(α − 1)) (48)

Adding Eq. (48) to b times Eq. (45), the term bc exp(−bt) cancels out, leaving just

T ′ + bT = − bd
α − 1

exp(−btα/(α − 1)) (49)

By Eq. (2), the power function corresponding to the temperature curve UMaxT is
then

T ′ + bT
a

= − bd
a(α − 1)

exp(−btα/(α − 1)).

Hence, by Eq. (4),

UMaxW =
∫ t1

0

(
T ′ + bT

a

)1/α

dt

=
∫ t1

0

1

a1/α

( −bd
α − 1

)1/α

exp(−bt/(α − 1))dt

=
(−d

a

)1/α (
b

α − 1

)(1/α)−1

(1 − exp(−bt1/(α − 1))), (50)

We now state several intuitive, but technical, properties of the UMaxT. When the
property is not obvious, we will give some explanation why the property holds. In
Fact 5.3, we observe that it is obvious from Eq. (45) for UMaxT that the temperature
approaches zero as time goes to infinity. Lemma 5.5 observes that UMaxT has
a unique maximum, and characterizes where this maximum occurs. Lemma 5.6
observes that, if T0 = T1, then the temperature will always stay above T0. Lemma
5.7 observes that the maximum temperature is a nondecreasing function of t1. And
finally Lemma 5.8 observes that the maximum temperature will exceed Tmax for
sufficiently large t1.

FACT 5.3. For any t0, t1, T0 and T1, the curve UMaxT(t0 = 0, T0, t1, T1)(t)
approaches 0 as t approaches infinity.
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LEMMA 5.4. Let U1 = UMaxT(t0, T0, t1, T1) and U2 = UMaxT(t̂0, T̂0, t̂1, T̂1)
be the two curves that intersect at distinct points (ta, Ta) and (tb, Tb), where [ta, tb] ⊆
[max(t0, t̂0), min(t1, t̂1)]. Let U3 = UMaxT(ta, Ta, tb, Tb). Then, U1(t) = U2(t) =
U3(t) for all t ≥ ta.

PROOF. Follows immediately from the uniqueness of the maximum determined
by two points.

LEMMA 5.5. Consider the curve UMaxT = UMaxT(ti , ti+1, Ti , Ti+1).

—The curve UMaxT has at most one point where UMaxT′, the derivative of UMaxT
with respect to time t, is 0.

—If UMaxT′(x) = 0 for some time x, then UMaxT′(t) < 0 for all t > x.
—If UMaxT′(0) ≤ 0, then the maximum of UMaxT is at t = 0.
—If UMaxT′(t1) ≥ 0, then the maximum of UMaxT is at t = t1.
—If UMaxT′(0) > 0 and UMaxT′(t1) < 0, then the maximum of UMaxT is at the

unique point tx ∈ [0, t1] where UMaxT′(tx ) = 0.

PROOF. If d = 0, it follows from Eq. (48) that T ′ = −bc exp(−bt) =
−bT0 exp(−bt) and hence that UMaxT′ ≤ 0 everywhere, and it is easy to see that
the above claims hold. Now assume that d < 0. Using c = T0 − d and multiplying
by exp(bt)/b, Eq. (48) can be rewritten as

exp(bt)UMaxT′

b
= −T0 + d − dα

α − 1
exp(−bt/(α − 1)).

Note that since exp(bt)/b > 0 for all t , the sign of UMaxT′ is the same as the sign
of the right hand side of the above equation, which is a strictly decreasing function
of t . In particular, observe that this implies that UMaxT′ cannot go from negative to
positive. All the above claims are then simple consequences of this observation.

LEMMA 5.6. Consider two points (0, T0) and (t1, T0). Let L1 denote the constant
temperature curve between (0, T0) and (t1, T0). Let L2 denote a temperature curve
such that L2(0) = L2(t1) = T0 and L2(t) ≤ L1(t) for t ∈ [0, t1]. Then at least as
much work is completed by following L1 as by following L2.

PROOF. Consider a temperature curve T such that T (0) = T (t1) = T0. Apply-
ing Eq. (3), the energy used during [0, t1] by following T is:

b
a

∫ t1

0
T (t)dt

Under the temperature constraint T (t) ≤ T0, this integral is maximized with T (t) =
T0 throughout, and thus the total energy E2 of L2 is at most the total energy E1 of
L1. By convexity, for a given energy budget, working at constant power maximizes
the work done; that is, the maximum work that can be done by any curve L with
energy at most E is t1(E/t1)1/α and is achieved by staying at constant power. As L1
stays at constant temperature, and hence constant power, it follows that the work
completed by following the curve L2 is no more than that of L1.

LEMMA 5.7. Let T0 and T1 be fixed, and consider the class of unconstrained
curves UMaxT(t0 = 0, T0, t1, T1) for t1 ≥ 0. In particular, for t1 < t2, let U1 and U2
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denote the curves UMaxT(t0 = 0, T0, t1, T1)(t) and U MaxT (t0 = 0, T0, t2, T1)(t),
respectively. Then,

—If T0 ≥ T1, we have that for all times t ≥ 0, U1(t) ≤ U2(t).
—If T0 ≤ T1, then for all t such that 0 ≤ t ≤ t1, U1(t) ≤ U2(t + t2 − t1).

In particular, this implies the following:

—The maximum temperature reached by the curve UMaxT(t0 = 0, T0, t1, T1) in
the interval [0, t1] is a nondecreasing function of t1.

—If T0 ≥ T1, then UMaxT′(t0 = 0, T0, t1, T1)(0) is a nondecreasing function of t1.
—If T0 ≤ T1, then UMaxT′(t0 = 0, T0, t1, T1)(t1) is a nonincreasing function of t1.

PROOF. We first consider the case that T0 ≥ T1. As U1(0) = U2(0), it must be
true that either U1(t) = U2(t) for all t ≥ 0 or one of these temperature curves is
always larger than the other, since by Lemma 5.4, if they intersect at two points
they are the same. By the mean value theorem, there must be a time t̃ ∈ [0, t1]
where U ′

1(t̃) ≤ 0. By Lemma 5.5, this implies that U ′
1(x) < 0 for all x > t̃ . In

particular, since t2 > t1 ≥ t̃ , this implies that U1(t2) < U1(t1) = T1 = U2(t2).
Hence, U1(t) ≤ U2(t). It is then obvious that the maximum temperature must be a
nondecreasing function of the ending time, and the derivative at time 0 must be a
nondecreasing function of the ending time.

We now consider the case that T0 ≤ T1. Instead of U1, it will be more convenient
to work with the curve U3 = UMaxT(t0 = t2 − t1, T0, t2, T1), which is just the curve
U1 translated to the right by t2 − t1 time units. Now since U3(t2) = U2(t2) = T1,
either U3 and U2 are identical or one these temperature curves is always larger than
the other. If U3(t) > U2(t), then this would in particular mean that U2(t2 − t1) <
U3(t2 − t1) = U1(0) = T0. But, by Lemma 5.5, it is clear that U2(t) ≥ T0 for all
t ∈ [0, t2]. Thus, it must be the case that U3(t) ≤ U2(t) for all t ∈ [t2 − t1, t2]. It
is then obvious that the maximum temperature must be a nondecreasing function
of the ending time and the derivative at the ending time must be a nonincreasing
function of the ending time.

LEMMA 5.8. Consider the temperature curve UMaxT(t0 = 0, T0, t1, T1) as
T0 ≤ Tmax and T1 ≤ Tmax are fixed, and t1 is varied. Then, there is a finite time t̃
such that the maximum temperature reached by the curve UMaxT(t0 = 0, T0, t1, T1)
is at least Tmax for all t1 ≥ t̃ .

PROOF. Consider the curve U = UMaxT(0, T0, 1, Tmax). As U (t) approaches
0 as t approaches infinity, there exists a finite time t̂ ≥ 1 such that U (t̂) = T1.
Consider the curve U2 = UMaxT(0, T0, t̂, T1). As U and U2 share the points (0, T0)
and (t̂, T1), U and U2 must be identical. Thus, U2 = UMaxT(0, T0, t̂, T1) attains
a maximum temperature of at least Tmax and hence by Lemma 5.7, the maximum
temperature reached by UMaxT(0, T0, t1, T1) is at least Tmax for all t1 ≥ t̂ .

5.2. THE TEMPERATURE CONSTRAINED MAXIMUM WORK PROBLEM. We now
turn our attention to MaxW(t0 = 0, T0, t1, T1) and MaxT(t0 = 0, T0, t1, T1), again
requiring that T1 ≥ T0 exp(−bt1) so that a feasible solution exists. Also we now
require that both T0 and T1 are at most Tmax. That is, we assume the existence of
a temperature constraint T ≤ Tmax. It is known that when such a global constraint
is added the solution can be decomposed into subcurves, where each subcurve is
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either an Euler–Lagrange curve corresponding to some unconstrained problem, or
else follows the boundary [Smith 1974, page 240]. We are fortunate in our case that
the portion of MaxT, for which MaxT = Tmax, is a single line segment. This is an
immediate consequence of Lemma 5.6.

We now know that either MaxT = UMaxT, or MaxT consists of three parts: an
Euler–Lagrange curve up to Tmax, a line segment at Tmax, and an Euler–Lagrange
curve down to T1. Note that either or both of the Euler–Lagrange curves may have
length zero. The Euler–Lagrange curve up to Tmax is of length zero if and only if
T0 = Tmax. The Euler–Lagrange curve down from Tmax is of length zero if and only
if T1 = Tmax.

Before we characterize the curve MaxT in Lemma 5.11, we define some notation.
Let t̃ denote the supremum of values of t1 for which the curve UMaxT(0, T0, t1, T1)
does not exceed temperature Tmax at any time. The time t̃ is well defined and finite
by Lemma 5.8. Note that t̃ is a function of T0 and T1. Define γ to be the time
(unique by Lemma 5.5) at which the maximum temperature is attained on the curve
UMaxT(0, T0, t̃, T1). Define β = t̃ −γ . We now provide alternate characterizations
of γ and β, and show that these points occur where the derivative of UMaxT is zero.

LEMMA 5.9. γ is the largest value of t1 for which the maximum temperature
attained by the curve UMaxT(0, T0, t1, Tmax) during the interval [0, t1) is no more
than Tmax. Similarly, β is the largest value of t1 for which the maximum temperature
attained by the curve UMaxT(0, Tmax, t1, T1) in (0, t1] is no more than Tmax.

PROOF. By Lemma 5.4, UMaxT(0, T0, t̃, T1) = UMaxT(0, T0, γ, Tmax);
call this curve U1(t). Let γ ′ > γ and consider the curve U2(t) =
UMaxT(0, T0, γ

′, Tmax). We know that U1(γ ′) < U2(γ ′) = Tmax, so using
Lemma 5.4, again we know that U2(γ ) > U1(γ ) = Tmax. The proof for β is
similar.

LEMMA 5.10. UMaxT(0, T0, γ, Tmax)′(γ ) = 0 and UMaxT(0, Tmax, β, T1)′
(0) = 0.

PROOF. Again using UMaxT(0, T0, t̃, T1) = UMaxT(0, T0, γ, Tmax), we see
that the derivative must be 0 at t = γ since the maximum is attained there.

The argument for β is similar.

LEMMA 5.11. Consider the curve MaxT(0, T0, t1, T1). Let γ and β be defined
as above. If t1 ≤ γ +β, then MaxT = UMaxT. If t1 > γ +β, then the curve MaxT
travels along the curve UMaxT(0, T0, γ, Tmax), then stays at Tmax until time t1 −β,
and finally travels along the curve UMaxT(t1 − β, Tmax, t1, T1).

PROOF. Assume first that t1 ≤ t̃ = γ + β. By Lemma 5.7, the maximum tem-
perature reached by UMaxT(0, T0, t1, T1) during [0, t1] is a nondecreasing function
of t1. Hence, by the definition of t̃ , at no time can the function UMaxT(0, T0, t1, T1)
exceed Tmax. Therefore, MaxT = UMaxT.

Now consider the case that t1 > γ + β. Let tx and ty denote the first and last
times, respectively, at which MaxT equals Tmax. We will show that tx = γ and
ty = t1 − β.

By definition of tx and ty , the curve MaxT restricted to [0, tx ] is identical to the
curve UMaxT(0, T0, tx , Tmax) and the curve MaxT restricted to [ty, t1] is identical
to the curve UMaxT(0, Tmax, t1 − ty, T1). If tx > γ then, by Lemma 5.7 and Lemma
5.9, this contradicts the definition of γ . A similar argument shows that ty ≥ t1 −β.
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Now, suppose for contradiction that tx < γ . Since ty ≥ t1 − β ≥ γ , it follows
that the point (γ, Tmax) lies on MaxT. Hence, for the non-zero length time interval
[tx , γ ], it must be the case that MaxT = Tmax. This contradicts the work optimality
of UMaxT(0, T0, γ, Tmax), and hence the work optimality of MaxT(0, T0, t1, T1).
Again, in a similar manner, we can obtain a contradiction from the assumption that
ty > t1 − β.

We now explain how to explicitly compute γ and β. Consider the curve U =
UMaxT(0, T0, γ, Tmax). Recall from Lemma 5.10 that U ′(γ ) = 0. Setting U ′(γ ) =
0 in Eq. (48) gives

c + dα

α − 1
exp(−bγ /(α − 1)) = 0.

Plugging in the values of c and d from Eqs. (46) and (47), we have that γ is the
unique solution of the equation(

T0 − T0 exp(−bt1) − T1

exp(−bt1) − exp(−bt1α/(α − 1))

)

+ α

α − 1
exp(−bγ /(α − 1))

(
T0 exp(−bt1) − T1

exp(−bt1) − exp(−bt1α/(α − 1))

)
= 0.

By multiplying through by (exp(−bt1) − exp(−bt1α/(α − 1))), and aggregating
like terms, this is equivalent to

T0 exp(−bγα/(α − 1)) + (α − 1)Tmax − αTmax exp(−bγ /(α − 1)) = 0. (51)

Similarly, the curve U = UMaxT(0, Tmax, β, T1) satisfies U ′(0) = 0. We can see
from Eq. (48) that U ′(0) = 0 is equivalent to

c + dα

α − 1
= 0.

Plugging in the values of c and d by Eqs. (46) and (47), we have that β is the unique
solution of the equation(

T0 − T0 exp(−bt1) − T1

exp(−bt1) − exp(−bt1α/(α − 1))

)

+
(

T0 exp(−bt1) − T1

exp(−bt1) − exp(−bt1α/(α − 1))

) (
α

α − 1

)
= 0.

By multiplying through by (exp(−bt1) − exp(−bt1α/(α − 1))), and aggregating
like terms, this is equivalent to

Tmax exp(−bβα/(α − 1)) + (α − 1)T1 − αT1 exp(−bβ/(α − 1)) = 0 (52)

5.3. COMPUTING A SEPARATING HYPERPLANE. We are now finally ready to
explain how to compute a separating hyperplane for a violated MaxW constraint.
Consider an arbitrary point where each Ti takes the value T̂i , and each wi, j takes the
value ŵi, j . Assume that the i th MaxW constraint is violated. Given the values of
ti , ti+1, T̂i and T̂i+1, we can compute the values γ and β by binary search using the
Eqs. (51) and (52). Note that the left-hand sides of these equations are monotone
functions of γ and β respectively.
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First, consider the case that ti+1 − ti ≤ γ + β. Then we know the maximum
temperature constraint is not relevant here. Now Eq. (50) gives that

MaxW = −(d/a)1/α

(
b

α − 1

)1/α−1

(1 − exp(−b(ti+1 − ti )/(α − 1))),

where by Eq. (46)

d = (Ti exp(−b(ti+1 − ti )) − Ti+1)
× (exp(−b(ti+1 − ti )) − exp(−b(ti+1 − ti )α/(α − 1))).

We can then determine whether the i th MaxW constraint is violated. If this constraint
is violated, to compute a separating hyperplane let G be a function of Ti , Ti+1, and
wi, j for j ∈ J (i) defined as

G =
∑

j∈J (i)

wi, j − UMaxW(ti , ti+1, Ti , Ti+1).

The i th MaxW constraint is then equivalent to G ≤ 0. A separating hyperplane is
then the plane whose normal is the gradient of G evaluated at the current point.
Note that one can easily differentiate G with respect to all variables.

Now consider the case that ti+1 − ti ≥ γ + β. MaxW is given by the work
done by the Euler–Lagrange curve between (ti , Ti ) and (ti +γ, Tmax), plus the work
done on the constant temperature curve at Tmax between time (ti + γ ) and time
(ti+1 − β), plus the work done by the Euler–Lagrange curve from (ti+1 − β, Tmax)
to (ti+1, Ti+1). Using Eq. (4) to compute the work done by a constant temperature
curve and Eq. (50) to compute the work done by the two Euler–Lagrange curves,
we have

MaxW = − (d1/a)1/α

(
b

α − 1

)1/α−1

(1 − exp(−bγ /(α − 1)))

+ (ti+1 − ti − γ − β)

(
bTmax

a

)1/α

−
(

d2

a

)1/α (
b

α − 1

)1/α−1

(1 − exp(−bβ/(α − 1))) ,

where, by Eq. (46)

d1 = Ti exp(−bγ ) − Tmax

exp(−bγ ) − exp(−bγα/(α − 1))

and

d2 = Tmax exp(−bβ) − Ti+1

exp(−bβ) − exp(−bβα/(α − 1))

We can determine whether this MaxW constraint is violated. If this constraint is
violated, to compute a separating hyperplane let G be a function of Ti , Ti+1, and
wi, j for j ∈ J (i) defined as

G =
∑

j∈J (i)

wi, j − MaxW(ti , Ti , ti+1, Ti+1).
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The i th MaxW constraint is then equivalent to G ≤ 0. A separating hyperplane is
then the plane whose normal is the gradient of G evaluated at the current point.
Computing the gradient of G, though tedious, is straightforward with the possible
exceptions of differentiating γ with respect to Ti and differentiating β with respect
to Ti+1. These partial derivatives can be computed using the Eqs. (51) and (52) that
define γ and β, respectively.

Consider Eq. (51) where T0 is replaced by Ti , namely,

Ti exp(−bγα/(α − 1)) + (α − 1)Tmax − αTmax exp(−bγ /(α − 1)) = 0.

Differentiating this equation with respect to Ti yields

exp

(
− bαγ

α − 1

)
− Ti

(
bα

α − 1

)
exp

(
− bαγ

α − 1

)
dγ

dTi

+ αTmaxb
α − 1

exp

(
− bγ

α − 1

)
dγ

dTi
= 0.

Solving for dγ

dTi
yields

dγ

dTi
= −(α − 1) exp(−bγ )

αb(Tmax − Ti exp(−bγ ))
.

Consider Eq. (52) where T1 is replaced by Ti+1, namely,

Tmax exp(−bβα/(α − 1)) + (α − 1)Ti+1 − αTi+1 exp(−bβ/(α − 1)) = 0.

Differentiating Eq. (52) with respect to Ti+1 yields

Tmax · −bα

α − 1
exp

(−bβα

α − 1

)
dβ

dTi+1
+ (α − 1)

− α exp

( −bβ
α − 1

)
+ αbTi+1

α − 1
exp

( −bβ
α − 1

)
dβ

dTi+1
= 0.

Solving for dβ

dTi+1
yields

dβ

dTi+1
= (α − 1)2 − α(α − 1) exp(−bβ/(α − 1))

αb(Tmax exp(−αbβ/(α − 1)) − Ti+1 exp(−bβ/(α − 1)))

6. Conclusion

In this article, we have initiated the theoretical study of speed scaling to manage
temperature. We assumed a fixed ambient temperature, and that the device cools
according to Newton’s law of cooling. We have observed that the maximum tem-
perature is within a factor of two of the energy used over an interval with length
inversely proportional to the cooling parameter in Newton’s law. We have identi-
fied the concept of a cooling-oblivious algorithm as an algorithm that is simulta-
neously O(1)-competitive with respect to temperature for all cooling parameters,
and observed that cooling-oblivious algorithms are also O(1)-competitive with re-
spect to energy and maximum power. We showed that the optimal energy schedule
YDS is cooling-oblivious and introduced the first known online cooling-oblivious
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algorithm BKP. Further, we have shown that BKP is optimally competitive with
respect to maximum power.

We believe that speed scaling to manage energy and temperature is an area
deserving further research attention. This area is both academically interesting
and has practical applications. The most obvious way to proceed is to consider
speed scaling versions of other scheduling problems. We can take essentially any
scheduling problem, and consider an energy management version, or a temperature
management version. We would then get a dual-criteria optimization problem, in
which the first objective is the original quality of service objective for the scheduling
problem, and the second objective is either energy or temperature. By solving many
such problems, the hope would be that it would be possible to build up a better
understanding of speed scaling, and to build an algorithmic toolkit of analysis and
design techniques that are useful for speed scaling problems.
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