W[1]-hardness

Dániel Marx

Recent Advances in Parameterized Complexity
Tel Aviv, Israel, December 3, 2017
Lower bounds

So far we have seen positive results: basic algorithmic techniques for fixed-parameter tractability.

What kind of negative results we have?

- Can we show that a problem (e.g., \textsc{Clique}) is \textbf{not} FPT?
- Can we show that a problem (e.g., \textsc{Vertex Cover}) has \textbf{no} algorithm with running time, say, $2^{o(k)} \cdot n^{O(1)}$?

This would require showing that $P \neq NP$: if $P = NP$, then, e.g., k-\textsc{Clique} is polynomial-time solvable, hence FPT.

Can we give some evidence for negative results?
Lower bounds

So far we have seen positive results: basic algorithmic techniques for fixed-parameter tractability.

What kind of negative results we have?

- Can we show that a problem (e.g., Clique) is not FPT?
- Can we show that a problem (e.g., Vertex Cover) has no algorithm with running time, say, $2^{o(k)} \cdot n^{O(1)}$?

This would require showing that $P \neq NP$: if $P = NP$, then, e.g., k-Clique is polynomial-time solvable, hence FPT.

Can we give some evidence for negative results?
Goals of this talk

Two goals:

1. Explain the theory behind parameterized intractability.
2. Show examples of parameterized reductions.
Classical complexity

Nondeterministic Turing Machine (NTM): single tape, finite alphabet, finite state, head can move left/right only one cell. In each step, the machine can branch into an arbitrary number of directions. Run is successful if at least one branch is successful.

NP: The class of all languages that can be recognized by a polynomial-time NTM.

Polynomial-time reduction from problem P to problem Q: a function ϕ with the following properties:

- $\phi(x)$ is a yes-instance of $Q \iff x$ is a yes-instance of P,
- $\phi(x)$ can be computed in time $|x|^{O(1)}$.

Definition: Problem Q is NP-hard if any problem in NP can be reduced to Q.

If an NP-hard problem can be solved in polynomial time, then every problem in NP can be solved in polynomial time (i.e., $P = NP$).
Parameterized complexity

To build a complexity theory for parameterized problems, we need two concepts:

- An appropriate notion of reduction.
- An appropriate hypothesis.

Polynomial-time reductions are not good for our purposes.

Example:

Graph G has an independent set k if and only if it has a vertex cover of size n_k.

Transforming an Independent Set instance (G, k) into a Vertex Cover instance (G, n_k) is a correct polynomial-time reduction.

However, Vertex Cover is FPT, but Independent Set is not known to be FPT.
Parameterized complexity

To build a complexity theory for parameterized problems, we need two concepts:

- An appropriate notion of reduction.
- An appropriate hypothesis.

Polynomial-time reductions are not good for our purposes.

Example: Graph G has an independent set k if and only if it has a vertex cover of size $n - k$.

\Rightarrow Transforming an **Independent Set** instance (G, k) into a **Vertex Cover** instance $(G, n - k)$ is a correct polynomial-time reduction.

However, **Vertex Cover** is FPT, but **Independent Set** is not known to be FPT.
Parameterized reduction

Definition

Parameterized reduction from problem P to problem Q: a function ϕ with the following properties:

- $\phi(x)$ is a yes-instance of Q \iff x is a yes-instance of P,
- $\phi(x)$ can be computed in time $f(k) \cdot |x|^{O(1)}$, where k is the parameter of x,
- If k is the parameter of x and k' is the parameter of $\phi(x)$, then $k' \leq g(k)$ for some function g.

Fact: If there is a parameterized reduction from problem P to problem Q and Q is FPT, then P is also FPT.
Parameterized reduction

Definition

Parameterized reduction from problem P to problem Q: a function ϕ with the following properties:

- $\phi(x)$ is a yes-instance of $Q \iff x$ is a yes-instance of P,
- $\phi(x)$ can be computed in time $f(k) \cdot |x|^{O(1)}$, where k is the parameter of x,
- If k is the parameter of x and k' is the parameter of $\phi(x)$, then $k' \leq g(k)$ for some function g.

Fact: If there is a parameterized reduction from problem P to problem Q and Q is FPT, then P is also FPT.

Non-example: Transforming an Independent Set instance (G, k) into a Vertex Cover instance $(G, n - k)$ is not a parameterized reduction.

Example: Transforming an Independent Set instance (G, k) into a Clique instance (\overline{G}, k) is a parameterized reduction.
Multicolored Clique

A useful variant of *Clique*:

Multicolored Clique: The vertices of the input graph G are colored with k colors and we have to find a clique containing one vertex from each color.

(or **Partitioned Clique**)

![Diagram of multicolored clique]

Theorem

There is a parameterized reduction from *Clique* to **Multicolored Clique**.
Multicolored Clique

Theorem

There is a parameterized reduction from **Clique** to **Multicolored Clique**.

Create G' by replacing each vertex v with k vertices, one in each color class. If u and v are adjacent in the original graph, connect all copies of u with all copies of v.

k-clique in G \iff multicolored k-clique in G'.
Multicolored Clique

Theorem
There is a parameterized reduction from Clique to $\text{Multicolored Clique}$.

Create G' by replacing each vertex v with k vertices, one in each color class. If u and v are adjacent in the original graph, connect all copies of u with all copies of v.

k-clique in $G \iff$ multicolored k-clique in G'.

Similarly: reduction to $\text{Multicolored Independent Set}$.
Dominating Set

Theorem

There is a parameterized reduction from **Multicolored Independent Set** to **Dominating Set**.

Proof: Let \(G \) be a graph with color classes \(V_1, \ldots, V_k \). We construct a graph \(H \) such that \(G \) has a multicolored \(k \)-clique iff \(H \) has a dominating set of size \(k \).

The dominating set has to contain one vertex from each of the \(k \) cliques \(V_1, \ldots, V_k \) to dominate every \(x_i \) and \(y_i \).
Theorem

There is a parameterized reduction from Multicolored Independent Set to Dominating Set.

Proof: Let G be a graph with color classes V_1, \ldots, V_k. We construct a graph H such that G has a multicolored k-clique iff H has a dominating set of size k.

- The dominating set has to contain one vertex from each of the k cliques V_1, \ldots, V_k to dominate every x_i and y_i.
- For every edge $e = uv$, an additional vertex w_e ensures that these selections describe an independent set.
Variants of **Dominating Set**

- **Dominating Set**: Given a graph, find k vertices that dominate every vertex.
- **Red-Blue Dominating Set**: Given a bipartite graph, find k vertices on the red side that dominate the blue side.
- **Set Cover**: Given a set system, find k sets whose union covers the universe.
- **Hitting Set**: Given a set system, find k elements that intersect every set in the system.

All of these problems are equivalent under parameterized reductions, hence at least as hard as **Clique**.
Basic hypotheses

It seems that parameterized complexity theory cannot be built on assuming $P \neq NP$ – we have to assume something stronger.

Let us choose a basic hypothesis:

Engineers’ Hypothesis

k-CLIQUE cannot be solved in time $f(k) \cdot n^{O(1)}$.
Basic hypotheses

It seems that parameterized complexity theory cannot be built on assuming $P \neq NP$ – we have to assume something stronger.

Let us choose a basic hypothesis:

Engineers’ Hypothesis

k-Clique cannot be solved in time $f(k) \cdot n^{O(1)}$.

Theorists’ Hypothesis

k-Step Halting Problem (is there a path of the given NTM that stops in k steps?) cannot be solved in time $f(k) \cdot n^{O(1)}$.
Basic hypotheses

It seems that parameterized complexity theory cannot be built on assuming $P \neq NP$ – we have to assume something stronger. Let us choose a basic hypothesis:

Engineers’ Hypothesis

k-Clique cannot be solved in time $f(k) \cdot n^{O(1)}$.

Theorists’ Hypothesis

k-Step Halting Problem (is there a path of the given NTM that stops in k steps?) cannot be solved in time $f(k) \cdot n^{O(1)}$.

Exponential Time Hypothesis (ETH)

n-variable $3SAT$ cannot be solved in time $2^{o(n)}$.

Which hypothesis is the most plausible?
Basic hypotheses

It seems that parameterized complexity theory cannot be built on assuming $P \neq NP$ – we have to assume something stronger.

Let us choose a basic hypothesis:

Engineers’ Hypothesis

k-CLIQUE cannot be solved in time $f(k) \cdot n^{O(1)}$.

Theorists’ Hypothesis

k-STEP HALTING PROBLEM (is there a path of the given NTM that stops in k steps?) cannot be solved in time $f(k) \cdot n^{O(1)}$.

Exponential Time Hypothesis (ETH)

n-variable 3SAT cannot be solved in time $2^{o(n)}$.

Which hypothesis is the most plausible?
Summary

- **Independent Set** and **k-Step Halting Problem** can be reduced to each other \Rightarrow Engineers’ Hypothesis and Theorists’ Hypothesis are equivalent!

- **Independent Set** and **k-Step Halting Problem** can be reduced to **Dominating Set**.

Is there a parameterized reduction from **Dominating Set** to **Independent Set**? Probably not. Unlike in NP-completeness, where most problems are equivalent, here we have a hierarchy of hard problems.

Does not matter if we only care about whether a problem is FPT or not!
Summary

- **Independent Set** and **k-Step Halting Problem** can be reduced to each other ➞ Engineers’ Hypothesis and Theorists’ Hypothesis are equivalent!
- **Independent Set** and **k-Step Halting Problem** can be reduced to **Dominating Set**.
- Is there a parameterized reduction from **Dominating Set** to **Independent Set**?
 - Probably not. Unlike in **NP**-completeness, where most problems are equivalent, here we have a hierarchy of hard problems.
 - **Independent Set** is **W[1]**-complete.
 - **Dominating Set** is **W[2]**-complete.
- Does not matter if we only care about whether a problem is **FPT** or not!
Boolean circuit

A **Boolean circuit** consists of input gates, negation gates, AND gates, OR gates, and a single output gate.

Circuit Satisfiability: Given a Boolean circuit C, decide if there is an assignment on the inputs of C making the output true.
Boolean circuit

A **Boolean circuit** consists of input gates, negation gates, AND gates, OR gates, and a single output gate.

Circuit Satisfiability: Given a Boolean circuit C, decide if there is an assignment on the inputs of C making the output true.

Weight of an assignment: number of true values.

Weighted Circuit Satisfiability: Given a Boolean circuit C and an integer k, decide if there is an assignment of weight k making the output true.