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Abstract—Load shedding is a technique that aims to ameliorate
the consequences of the Velocity and the Volume of Big Data
stream processing. When temporal input spikes appear, tuples
are shed until a Stream Processing Engine’s (SPE) processing
capacity is not overwhelmed and results are produced in a timely
fashion. Existing load shedding techniques have become obsolete
and are not applicable to modern use-cases which require the
extraction of patterns from continuously evolving (i.e., Variable)
voluminous streams.

In this work, we identify the shortcomings of existing load
shedding techniques when applied to streams with concept drift.
We propose Concept-Driven load shedding (CoD), which aims at
limiting the data volume imposed on the SPE while producing
high accuracy results. On top of that, we designed CoD for
modern SPEs and made its overhead negligible. Our experiments
indicate that CoD can deliver more than 10x more accurate
results compared to the state of the art in load shedding.
Also, CoD can offer up to 2.25x better performance compared
to normal processing and reduce the processed data volume
significantly.

I. INTRODUCTION

Real-time data analysis is becoming prevalent in various
sectors, which depend on online pattern identification. Some
examples include social network analysis, targeted advertising,
click-stream analysis, urban analytics, etc. In order to cope
with the continuous and voluminous data production, stream
processing has been deemed as the most suitable processing
model, since it requires a single pass over stream data as they
arrive.

Stream Processing Engines (SPEs) [1]–[20] have been
developed to meet the aforementioned requirements. SPEs
receive a continuous query (CQ), having data from one or
more data sources, and an output destination. Then, their
responsibility is to produce results that match the CQ until
they are requested to stop. A typical use-case for SPEs is when
users require real-time insights for online decision making.
For instance, an analyst in a ride-sharing company might be
interested in the latest trending routes in a city. Trends will
help the analyst adjust operational plans in order to decrease
costs and increase revenue. Such adjustments could be manual
or automated, through a machine learning module the analyst
designed. Towards this, she could utilize the CQ shown in
Fig. 1 (in functional notation); the output of this CQ could be
the input to the automated decision module.

According to this query, tuples are coming from the rides
input stream, and each one is assigned a timestamp, which

query = rides
.time(x -> x.time)
.windowSize(15, MINUTES)
.windowSlide(5, MINUTES)
.mean(x -> x.fare)
.group(x -> x.route)
.order()
.limit(10);

Fig. 1: Motivating Example Query.

comes from its own time field. In turn, this timestamp is used
to assign each tuple to the time windows that it belongs in
(with sliding windows each tuple participates in more than one
window). For each window, the ten most profitable routes are
extracted, by calculating the mean fare value for each route,
ordering tuples based on the mean fare, and retrieving the ten
routes with the highest average fares.

Considering the volatile nature of the input, the workload
imposed on the SPE might become exorbitant and lead to a
violation of the CQ’s Service Level Objectives (SLOs). In our
example, a temporal event might increase the Volume and the
Velocity of the rides stream, and in turn delay the production of
results. To address this problem, a lot of work has been done
to enhance SPEs’ adaptability. The most popular solution,
involves elastically adding more resources to accommodate
processing demands [21], [7], [22], [23], [24]. This solution
has been shown to achieve the expected results in the long
run, but causes significant performance overhead when used
for short-lived input spikes.

A more suitable technique for short-term bursts is load
shedding, which dictates dropping input tuples to produce
results in a timely fashion at the expense of the results’
accuracy [25]–[31]. This accuracy drop is in agreement with
data analyst’s needs, which often focus on the qualitative
relationships among groups rather on the exact numerical
result [32]. For example, in the query of Fig. 1 the analyst is
mostly interested in the order of the top routes, rather than the
average fare per route. The main challenge of load shedding
is to downsample input without deteriorating the accuracy of
a result.

Existing load shedding techniques require either (a) user
input regarding individual tuples’ utilities [25] or (b) historical
data accumulated over time [26], [31], [33]. The first require-
ment is impractical for CQs that require extracting patterns
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Fig. 2: Real-world datasets feature varying concept drift char-
acteristics, in terms of both inter-window concept distance and
overlap.

in real time. For instance, in the query of Fig. 1 expecting
the user to provide a tuple’s utility based on the route is
equivalent to requesting the top routes of each window. The
second requirement is impractical due to the fact that real-
world streams evolve over time.

A data stream’s evolution over time is called concept drift
and is a frequent phenomenon in the real world. As evidence,
we produced the results of the example query presented in
Fig. 1 on a real-world dataset. This dataset consists of taxi
data from a New York City Taxi Company, which along
with the CQ of Fig. 1 were part of the ACM DEBS 2015
Challenge [34]. We ran this query on the whole dataset
and produced the result for each window. Fig. 2 illustrates
the mean set difference (i.e., “concept distance”) and mean
set intersection (i.e., “concept overlap”) among consecutive
window results. It is apparent that the top routes (i.e., “con-
cept”) change among consecutive windows by up to 50%.
This indicates that load shedding techniques, which rely on
historical information to prioritize shedding, are destined to
deteriorate. As a result, uniform load shedding is the only
applicable technique in current SPEs, which is also stated in
the work of Fu et al. [35].

Contributions: Motivated by the lack of a better solution
for load shedding in modern SPEs that accounts for concept
drift, we developed a new algorithm that can significantly
improve the accuracy of load shedding. To reduce the run-
time complexity of our proposed algorithm, we leverage the
architecture of modern SPEs and present a design with almost
zero overhead during processing. In detail, our contributions
can be summarized as:
• Proposed a novel load shedding algorithm named

Concept-Driven load shedding (CoD), which treats con-
cept drift as a first-class characteristic. It is widely
applicable to a variety of CQ types, and does not require
user input for windows’ concepts.

• Designed CoD for modern SPEs, so that no additional
performance overhead is introduced.

• Performed experimental analysis on real data with vary-
ing concept drift characteristics to evaluate the perfor-
mance of our proposed load shedding techniques in terms
of error, data volume reduction, and runtime performance.

TABLE I: Symbol Index

Symbol Overview

Q submitted CQ
Si input streams, 1 ≤ i ≤ N

e1, . . . , e∞ tuples of Si

Xi = (τ, k, p) schema of Si

WQ : Si → {S1
i , . . . , S

∞
i } window function of Q

Rw result of window w (i.e., Sw
i )

Cw concept of window w

R̂w result of window w after load shedding
εQ(Rw, R̂w) accuracy metric for Q’s result

Outline: Section II presents the framework of our work.
Section III introduces the concepts related to load shedding,
followed by Section IV with existing algorithms. Next, in
Section V we present our proposed algorithm, and in Sec-
tion VI we present CoD’s design on modern SPEs. Section VII
presents our experimental results, followed by related work in
Section VIII. Section IX concludes our work.

II. PREREQUISITES - BACKGROUND

In this section we establish the framework on which our
work is based, by describing the System, Query, and Data
Models. Table I outlines the symbols we use in our formu-
lation. Our work targets SPEs working both on multi-node
(scale-out) and single-node (scale-up) environments. Examples
of target SPEs are Storm [11], Heron [12], Apache Flink [15],
and Spark Streaming [9].

A. Query Model

A user submits a CQ Q, which is a transformation of input
tuples to the output result. Q can contain one or more opera-
tions that can be either stateless (e.g., filter, map etc.) or state-
ful (e.g., window, aggregate, join etc.). The main difference
among those two operator types is that the former produces
zero or more output tuples for each input tuple, whereas the
latter produces zero or more result(s) for a number of input
tuples. The SPE turns Q into a logical execution plan, which
is modeled by a directed acyclic graph (DAG). The DAG’s
vertices denote operations and the edges data transfers. Next,
the SPE transforms the DAG to a physical execution plan, a
process which entails instantiating execution workers for each
operation (i.e., threads, processes etc.), creating the physical
communication channels among different stages of execution
(i.e., I/O buffers, network sockets etc.), initiating monitoring
and reliability mechanisms, and commencing synchronization
components. In this stage, tuple distribution operators are
created, which transfer data among parallelized steps of the
execution (see [36]). For simplicity, we will abstract Q as
a single stateful operation. However, our model is able to
accommodate queries with more than one stateful operations
in its DAG.

The example query of Fig. 1 features a stateful operation,
which is the group average per route, on a window of 15
minutes with a five minutes slide. In most SPEs, the window-
ing operation, the group aggregation, and the sort operation



are fused together, in order to avoid unnecessary network
hops (Storm, Heron, and Flink do this). Depending on the
parallelism degree defined for this query, the limit operation
can be fused as well. If the aggregation takes place in parallel,
then the limit needs to take place in a different operation.

B. Data Model

Data appear in the form of input streams Si, where 1 ≤ i ≤
N , and each Si is a sequence of tuples e1, . . . , e∞ having a
predefined schema Xi. Depending on Q, the schema can be
represented as a triplet Xi = (τ, k, p). In the event that window
operations are defined in Q, τ is (are) the attribute(s) used to
assign the tuple to (a) window(s). In turn, a window can be
time-, count-, or session-based and can either be tumbling or
sliding. Windows can be modeled as functions of the form
WQ : Si → {S1

i , . . . , S
∞
i }. The example query of Fig. 1

features a sliding time-based window: τ is the time field of
each input tuple, the window’s size is 15 minutes, and its slide
is 5 minutes. This type of window is called sliding due to the
fact that consecutive windows are overlapping. In a tumbling
window, the size is equal to the slide. As far as k is concerned,
it represents a set of attributes that work as an identifier for
each tuple, given Q [36]. In the example query of Fig. 1,
k is the route attribute of each input tuple and is used to
group tuples together. Finally, p is the payload of a tuple and
indicates attributes that are used neither in window assignment
nor grouping. In the example of Fig. 1, fare is part of p, since
it is used in the calculation of the aggregation’s result. We
have to mention that there are types of CQs, whose k = ∅.
Those types can be scalar aggregations, or a combination of
selection and/or projection queries.

C. Concept and Concept Drift

In the past, various definitions have been given to the
concept of a stream. The most prevalent defines concept either
as the underlying mechanism generating stream data, or the
concept that is learned by applying Q to an input stream [37].
Naturally, concept drift describes the phenomenon when data
are produced by non-stationary distributions [38] and evolve
over time. Previous work on identifying concept drift in con-
tinuous streams, perceives the stream Si as a continuous signal
of information, without leveraging the windowing properties
of Q [37], [39]. This constitutes the concept drift identification
process difficult, because it requires the segmentation of Si to
“drift periods”, which is a computationally heavy process.

We follow a more practical approach to concept drift, which
leverages the windowing semantics of Q, whose goal is to
transform the input stream to the desired output. Therefore, an
input stream Si can be broken down to its window segments
Sw
i and concept drift can be monitored on the window

boundary. Thus, given a Q and its window definition WQ,
we define the concept of a window w as Cw (i.e., leverage
the window boundary). As such, each window Sw

i will have its
own concept Cw. The query shown in Fig. 1, exhibits concept
drift of 30% on average on every window as shown in Fig. 2.

TABLE II: Examples of concept per query type

Operation Concept Utility for Load Shed
Aggregation (µ, σ2) Sampling Rate (b)
Group Aggr. Group Frequencies Group Sampling Rate (bg)
Equi-Join Group Frequencies Group Sampling Rate per stream

Concept drift can be quantified using two dimensions. First,
concept overlap is the fraction of common elements among Cw

and Cw+1. Second, concept distance is the similarity of Cw

and Cw+1 in terms of higher-level characteristics other than
concept overlap.

Our query-driven definition of concept indicates that among
different stateful operations, the notion of concept differs.
Table II provides an overview of three of the most popular
stateful operations in SPEs 1, our definition of concept Cw,
and the utility of the former in load shedding. Starting from
a mean-like aggregation (e.g., mean, count, variance etc.),
Cw is determined by the measures of central tendency of
the distribution followed by the participating attributes in the
computation. Babcock et al. [26] has shown that when Q is
a scalar aggregation, measuring the mean value (µ) and the
variance (σ2) of the distribution can provide useful insights
for approximating its value: identify the proper sampling rate
b for window Sw

i . Turning to grouped aggregations, like
the one appearing in the example query of Fig. 1, Cw is
the frequency of appearance of each group. This provides
information about the distribution of groups in Sw

i and can be
used to create a stratified sample for Sw

i when tuples need to be
shed. This technique has been previously used in Approximate
Query Processing for Data Warehouses [40], [41] so that an
approximate value appears of each group. In order to build
a representative stratified sample, the concept determines the
sampling rate bg for every group g in a window Sw

i . When Q
is an equality join, the group frequency on each of the input
streams can indicate the size of the result and the number of
tuples per matched key [42]. Similar to a grouped aggregation,
the concept is the frequency of each group appearing on each
stream. This can be used during load shedding to identify the
sampling rate of each group on each stream.

III. LOAD SHEDDING

In this section, we will present load shedding and formalize
it as a minimization problem. A SPE enhanced with a load
shedding mechanism comes with a load detection component.
When the former detects that load exceeds the available
processing capacity, it commences shedding tuples [3], [25],
[26]. An end-to-end load shedding solution has to decide (a)
when, (b) where, (c) how much, and (d) what to shed [25].

Decision (a) locates the point(s) in time most beneficial
to commence load shedding, or can be a manual command
given by the user. More often than not, this decision is
independent with the rest of the operations and has to do
with the monetary budget or available resources. Decision

1Those operations are the stateful operations offered by Storm, Heron,
Flink, and Spark Streaming.



(b) finds the position in the execution DAG of Q to place
shed operations. In previous work, load shedding took place
in the source operators only [35]. This approach benefits from
the fact that results produced are easier to justify, especially
when they are enhanced with information from other sources.
However, their accuracy is difficult to justify when sliding
windows are used. For instance, in the query of Fig. 1 dropping
a tuple might cause different windows to be produced. In turn,
this will lead to missed window results. On the other hand,
if load shedding takes place in a stateful operator of Q, then
results are produced based on the window boundaries of the
CQ [28]. In our work, we follow this approach because we
target applications that require production of results on every
window. Finally, Decision (c), is related with the available
processing capacity, the runtime complexity of Q, and the
input rate of source streams. In this paper, we consider this an
expert’s decision, and assume that the shedding rate is given to
the SPE by the user. Currently, we are investigating dynamic
methods for determining the shed rate in an online fashion.

Previously-proposed load shedding techniques aimed at
maintaining results accuracy and focused on what to shed.
Semantic load shedding prioritizes tuples for shedding [25].
Similarly, the system presented in [43] chooses a different
shedding rate for classes of CQs with varying SLOs. When
tuples are shed, the accuracy of the result is affected and
there are various metrics for measuring error. For a given Q
and a Sw

i , we will represent the result after processing all
tuples as Rw. With load shedding in place, which we will
represent as S, a subset of tuples is processed. Therefore,
an approximate answer for Sw

i is produced, which we will
illustrate it as R̂w. Depending on the stateful operation of
Q, there are various metrics of quantifying R̂w’s error with
respect to Q. In our formulation, we will represent the error
metric as εQ : Rw, R̂w → [0, 1]. In essence, the lower the
error, the more effective S is.

A. Focal point of this work: what to shed

In this work, we focus on what to shed and our goal is to
improve load shedding’s accuracy by prioritizing shedding of
tuples based on their contents. In order to improve accuracy,
a SPE needs to be aware of each window’s concept Cw.
Concretely, this is equivalent to knowing the utility QoS graph
required by Semantic load shedding [25]. This way, load
shedding would be prioritized based on tuples’ importance
according to Cw. We codify the problem of what to shed as
the following minimization problem:

minimize
Cw

εQ(Rw, R̂w)

where Rw = Q(Sw
1 , . . . , S

w
l ),

R̂w = Q(S(Sw
1 , . . . , S

w
l , Cw))

(1)

In Equation 1, εQ is the error metric for the result of Q, Rw

represents the result for Sw
i without shedding any tuples, and

R̂w represents the result for Sw
i when tuples are shed. S is the

load shedding operation and Cw is the window’s concept. In
essence, Equation 1 states that “what to shed” is the search

Algorithm 1 Uniform Shedding

1: procedure UNIFORMSHED(Sw
i , b)

2: T ′w ← Sample(Sw
i , b)

3: return T ′w

for Cw on every window, which can be a hard problem due to
the uncharted future inputs and the existence of concept drift
(Fig. 2).

IV. EXISTING SHEDDING ALGORITHMS

Modern SPEs offer strict delivery semantics, which lead
to applying the processing logic into ordered windows [9],
[12], [13], [15], [44]. As mentioned in Section II, tuples are
assigned to windows according to WQ, and the processing
logic of Q is applied to a complete window. For simplicity,
we present load shedding algorithms on complete windows
(similar to the approach of [28]) instead of single tuples at a
time (in Section VI we show the internal operations of forming
a window in a SPE).

A. Normal Execution (Baseline)

In order to approach the minimization problem of Eq. 1, we
establish normal execution as our Baseline. This would repre-
sent normal execution on Sw

i without shedding any tuples (i.e.,
S : Sw

i → Sw
i in Eq. 1). The Baseline features zero shedding

runtime overhead since the whole window is processed, and
maximum accuracy (i.e., εQ = 0). With Baseline there is no
need to estimate Cw and its drawback is that the data volume
sent for processing will be the whole window.

B. Uniform Shedding (State of the Art)

As discussed in Sections I and III, when Cw is unavailable
and input streams(s) feature concept drift, only Uniform load
shedding can be applied. Recent work presented in [35]
explains that Uniform load shedding is used in industrial
setups. Therefore, in this work we consider Uniform load
shedding as the state of the art.

Uniform load shedding materializes by extracting a uniform
sample from Sw

i and sending it for processing. Algorithm 1
presents an outline of Uniform load shedding which receives
two arguments: Sw

i and a shed parameter b. The latter can
either represent a shed bias (i.e., probability) or a percentage
of Sw

i that will be processed. In Algorithm 1, a call to method
Sample (line 2) creates a uniform sample (e.g., binomial,
reservoir etc.).

Uniform load shedding makes no effort in estimating Cw.
As a result, the error εQ is sensitive to the sampling rate b.
Uniform’s runtime cost is O(c|Sw

i |), where c is the cost of the
random process. Finally, the data volume sent for processing is
proportional to the bias parameter b: the higher the bias, the
higher the processing cost. Uniform load shedding presents
an error-agnostic approach and focuses solely on reducing the
processing load imposed to the SPE.



Algorithm 2 Concept-driven load shedding

1: procedure CODSHED(Sw
i , b, Q)

2: Tw ← Sample(Sw
i , b)

3: Cw ← Q(Tw)
4: T ′w ← ∅
5: for all t ∈ Sw

i do
6: if ¬Shed(t, Cw) then
7: T ′w ← T ′w + t

8: return T ′w

V. CONCEPT-DRIVEN LOAD SHEDDING ALGORITHM

In order to improve accuracy, a SPE needs to be able
to estimate Cw on every window w. Our proposed load
shedding technique is named Concept-Driven (CoD) and
estimates Cw by applying Q on a uniform sample of Sw

i .
Concretely, CoD decouples sampling from shedding to get
insights for improving accuracy. CoD is motivated by work
done on approximate query processing, such as Aqua [45] and
BlinkDB [40]. Those run queries on samples extracted from
the dataset and provide approximate answers. In contrast, CoD
uses a sample to estimate Cw, which in turn is utilized for
shedding tuples.

Algorithm 2 outlines CoD, whose input consists of a win-
dow Sw

i , a load shedding percentage b, and Q. b controls
the size of uniform sample Tw, to which Q will be executed
for retrieving Cw. Alg. 2’s output consists of T ′w ⊂ Sw

i ,
which is forwarded for processing. In Alg. 2, Q is required so
that an estimation of the window’s concept is extracted (see
Sec. II-C): Depending on the query type, Table II presents
the information extracted to improve result’s accuracy. For
example, in the query of Fig. 1, Cw will be the frequency of
each group route appearing in Sw

i . Then, depending on b, each
route would be assigned a portion of b (i.e., br). In essence,
Cw = {b1, . . . , br} is the sampling rate for each route. By
the time Cw is established, the tuples of Sw

i are scanned once
more, and each tuple t is passed to a Shed method along with
Cw (line 6). Shed is responsible for deciding whether to shed
a tuple, by examining whether tuple t’s extracted attributes are
part of Cw. If not, the tuple is shed; otherwise it is included
in Tw.

CoD requires two passes over Sw
i and has a runtime

complexity of O(c|Sw
i | + b|Sw

i | + c|Sw
i |). The first operand

denotes the cost of creating the sample, the second operand
is the cost of executing Q on a sample of size b|Sw

i |, and the
third operand is the cost of applying load shedding to Sw

i . In
essence, CoD’s runtime cost is two times the runtime cost of
Uniform (since the dominant factor is the scan of the window
and not applying Q on the sample). This can be a very high
cost and in the next Section we present an efficient design that
turn’s CoD runtime cost equal to that of Uniform’s.

VI. DESIGNING COD TO ELIMINATE OVERHEAD

The design of modern SPEs provides an opportunity to
avoid incurring additional overhead when CoD is applied.

Multiple buffers

Single buffer

newly arrived tuple:

ts: 47ts: 51ts: 53ts: 55ts: 62ts: 71ts: 72

ts: 70

ts: 70

(45, 60)

(50, 65)

(55, 70)

(60, 75)

active windows
ts: 47

ts: 51 ts: 53 ts: 55 ts: 62

ts: 55 ts: 62 ts: 70

ts: 62 ts: 71 ts: 72

ts: 70

ts: 51 ts: 53 ts: 55

ts: 70

Fig. 3: Tuple arrival: Single and Multiple Buffer(s) design
operations.

Single buffer

watermark:

process:

evict:
oldnew

Triggers processing of window (50, 65):

ts: 51ts: 53ts: 55ts: 62

ts: 47

ts: 69

Multiple buffers

(45, 60)

(50, 65)

(55, 70)

(60, 75)

ts: 47

ts: 51 ts: 53 ts: 55 ts: 62

ts: 55 ts: 62 ts: 70

ts: 62 ts: 71 ts: 72

ts: 51 ts: 53 ts: 55

ts: 70

process:

evicted

Fig. 4: Watermark arrival: Single and Multiple Buffer(s) design
operations.

In this section, we present the details of event time window
processing in modern SPEs, CoD’s implementation, and CoD’s
implementation details for stateful queries.

A. Event time processing on modern SPEs

When a tuple arrives at a stateful operator, it is stored
in the operator’s internal buffer(s). Fig. 3 illustrates the two
widely used designs among existing SPEs: (a) Single Buffer
dictates that all tuples are stored in a single buffer based on
their order of appearance. This design is followed by Storm
and Heron and its advantage is that each tuple is stored only
once. (b) Multiple Buffer design dictates that a copy of the
input tuple is stored to all the buffers of the corresponding
windows. Flink uses the Multiple Buffer design and its merit
is that when the time comes for processing, the window is
ready. In the example of Fig. 3, a tuple with timestamp
70 arrives and participates in windows: (55, 70), (60, 75),
(65, 80), and (70, 85). With the Single Buffer design, the tuple
is appended to the buffer and the operator waits until the next
one arrives. In contrast, with the Multiple Buffer design, the
tuple’s timestamp is extracted, and the windows that it belongs
to are determined (the last window that the tuple participates
in is given by τl = τ − ((τ + s) mod s), where s is WQ’s
slide, and the rest are found iteratively). A copy of the tuple
is stored in each buffer for each window.

As previously shown in the Dataflow system [44], SPEs
which support event time window processing, make use of
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individual window samples
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CoD

Fig. 5: CoD tuple arrival: the tuple is optionally added to the
windows it belongs to, and also stored in the buffer space.

periodic watermarks. Those are tuples having only a times-
tamp (τW ), and indicate that all tuples with τ ≤ τW have
been observed by the system. A watermark is akin to a
contract that processing will have access to all tuples up
to a particular point in time, and that no late tuples will
be encountered. In addition, the watermark mechanism is
used as a checkpointing mechanism to guarantee exactly-once
processing semantics [17]. Watermarks are produced by data
source operators in a periodic fashion. Every time a window
operator receives a watermark, it triggers the processing of all
affected windows.

At the arrival of the watermark, the window operator has
to prepare all non-processed windows ending on (or before)
τW . The operator extracts the tuples for each window, and
stages them for processing. With Single Buffer design, the
operator scans the buffer and gathers all the tuples belonging
to a particular window. At the same time, it evicts expired
tuples (those that they carry a timestamp earlier than the start
of the current window). Optionally, the window operator might
perform an additional scan on the window to separate tuples
processed for the first time. This scan is done on SPEs that
offer incremental processing (e.g., Storm, Heron). Turning to
the Multiple Buffers design, the operator picks the appropriate
window, and it passes it the processing logic. Fig. 4 presents
the window preparation process when the watermark with
timestamp 69 arrives. With a Single Buffer design, the operator
scans its buffer and collects the tuples of window (50, 65), and
marks tuple 47 for eviction. Finally, the operator sends tuples
for processing. With a Multiple Buffer design, the operator
simply picks the buffer for the corresponding window and
sends the tuples for processing.

B. CoD implementation

In both designs, tuple storage is decoupled from window
processing. Concretely, with the watermark-based execution,
processing is postponed until the watermark has been received.
This way, CoD can be designed to avoid additional scans and
maintain a runtime cost similar to that of Uniform.

(21)

(15, 25)... ...

t:	15 t:	13 t:	6...
tuple buffer

Step 1: watermark arrives

Step 2: locate 
window extract 
concept

Step 3: scan buffer to collect window 
tuples and shed using C(15,25)

C(15, 25)

t:	17

t:	16t:	17 ...

Step 4: process remaining tuples

Fig. 6: CoD watermark arrival: the concept is extracted from
the sample and then tuples are shed based on it.

In order for CoD to avoid the additional scan of a window,
uniform sampling is performed incrementally. When a tuple
arrives, the operator determines the windows that the tuple
belongs to. Also, for each window, CoD maintains a uniform
sample of size b. The incoming tuple is added on each win-
dow’s sample based on a random process (i.e., coin flip). Fig. 5
illustrates the steps that are followed by CoD when a new tuple
arrives. Step 1: the tuple’s timestamp is extracted and it is used
to identify the windows that the tuple participates. Step 2: for
each of those windows, a random process (e.g., a coin-flip)
determines whether the tuple will be included in the sample.
In our implementation, each sample is a reservoir sample, in
order to maintain samples of size b for each window. Step 3:
the tuple is stored to the operator’s storage space.

At a watermark arrival, CoD uses the uniform samples to
extract window’s concept Cw. Step 1: Extract watermark’s
timestamp and identify window to be processed. Step 2: CoD
extracts Cw from the corresponding sample. Step 3: in a single
scan of the tuple buffer CoD locates the tuples for the window,
uses Cw to prioritize tuples for shedding, and evicts expired
ones. Step 4: surviving tuples are sent for processing and the
sample for the window is discarded.

As we presented in Sec. IV-B, Uniform’s runtime cost
requires one scan over Sw

i . This action can be performed when
the window is scanned to extract the window’s tuples. CoD’s
design results in a similar runtime cost, with a time complexity
of O(c|Sw

i |) (since the dominant factor is the scan of the
window). This cost is equivalent to Uniform load shedding
runtime cost.

C. Implementation for different query types

As has been illustrated in Table II, different stateful op-
erations have a different concept. In this section we provide
details of CoD’s sampling process for different query types.

1) Scalar User-Defined Aggregations: When Q is a scalar
User-Defined Aggregation (UDA) then CoD will maintain a
uniform sample for each window. For instance, if Q is the
arithmetic mean of tuples’ payloads (p), then during tuple
arrival, based on a random process tuple’s p will be included



TABLE III: Dataset Characteristics

Dataset Size Queries Mean Window Size
(tuples)

DEBS 32 GB Group Aggr. ∼ 100K
GCM 16 GB Group Aggr. 320K
DEC 175 MB Aggr. 46K

in the sample. When a watermark arrives, CoD will extract the
mean value µ and the variance σ2 from the window sample
(see Table II). With this information, it can decide the sampling
rate required to provide an answer based on a user’s accuracy
requirements [26].

2) User-Defined Aggregations: When Q is a grouped UDA,
then during tuple arrival CoD maintains the frequency of
appearance of each group. Given a shed bias b and a window’s
size, CoD can create a stratified sample with a proportional
representation of each group. Concretely, for each group g,
CoD has to determine its sampling rate bg . As indicated
in [40], [41], [45], this technique will ensure that every group
g will appear in the result. When a watermark arrives, CoD
extracts each tuple’s k attribute(s), and based on the tuple’s
group, it maintains a sample of size bg|Sw

i |. In comparison
with Uniform, this stratified sampling approach is expected to
lead to more accurate results and zero missing groups.

3) Two-way Equality Joins: IfQ is an equality join between
two streams, then CoD needs to maintain a histogram of
groups for each of the two streams [42]. This way, CoD will
be able to know which groups have a higher likelihood of
forming a result. When a watermark arrives, CoD identifies
the intersection of the two histograms: for each group g that
appears in both histograms, a sample rate b{1,2}g is determined
based on the overall shed bias b, for each stream. Similar
to grouped UDAs, when the window is scanned, a stratified
sample for each stream and each group on each stream is
maintained and pushed for processing.

VII. EXPERIMENTAL EVALUATION

In our experimental evaluation, our goal is to mea-
sure performance, error, and the ability to decrease data
volume in real world conditions. We implemented Uni-
form and CoD algorithms on Apache Storm v1.2, by
extending the WindowManager class. For Uniform, our
ShedWindowManager class requires the shed percentage
parameter b. When a watermark arrives, a binomial process
(p = b) determines whether the tuple is shed or not. Even
if a tuple is shed, it is maintained in order to acknowl-
edge its acceptance to the upstream operator. For CoD, our
ConceptShedWindowManager receives the shed percent-
age parameter b, which controls the size of the sample for
each window. Every time a tuple arrives, CoD augments the
corresponding window samples by using a similar binomial
process as in Uniform. At watermark arrival, the concept is
extracted from the corresponding sample, and tuples are shed
accordingly.
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Fig. 7: Scalability of normal execution compared to Uniform
load shedding and CoD, with the shedding ratio set to 98%.

A. Experimental Setup

We conducted our experiments on a cluster consisting of 5
AWS r4.xlarge nodes. Each node ran on Ubuntu Linux 16.04
and OpenJDK v1.8. Each node had access to 4 virtual CPUs
of an Intel Xeon E5-2686 v4 and 32GBs of RAM. One node
was set up as the master. It had a long-running single-instance
ZooKeeper server (v3.4.10) and an Apache Storm Nimbus
process. The rest of the nodes ran a single Storm Supervisor
process and were configured with up to 3 execution threads
(one was reserved for Storm’s acknowledgment service). In
all our experiments, we enabled Storm’s acknowledgment
mechanism to guarantee processing of all tuples. All our
experiments were repeated five times and the numbers reported
are the averages of all runs.

B. Datasets

We used three real-world datasets, with varying sizes, data
characteristics, and window queries. Two of the datasets
featured grouped aggregations and one scalar aggregation.
Table III presents for each dataset its total size, the aggregation
type, and the average window size in tuples. We provide
additional details for each dataset below:
ACM DEBS Challenge Dataset (DEBS): This dataset con-
sists of 32 GB of data accumulated from a New York Taxi
company over a month. In its original form, this dataset
comes with two sliding window queries [34]. We calculated
the mean fare per route for sliding windows of 30 minutes,
with a 10 minute slide. We used a single source operator, a
varying number of window aggregation operators, and a single
collector bolt that accumulates routes the aggregation result.
Google Cluster Monitoring Dataset (GCM): This dataset
contains information about jobs submitted in one of Google’s
clusters [46]. From this dataset, we used part of the task-
events table and ran a sliding window grouped aggregation,
taken from [16]. This query calculates the average CPU time
requested by each scheduling class, on a 60 minute window
with a 30 minute slide. Compared to DEBS this dataset
features less groups and smaller window sizes.
DEC Network Monitoring Dataset (DEC): This dataset is
the smallest in size that we used in our analysis. Previously,
it has been used to measure Uniform load shedding’s accu-
racy [26] and it consists of network packets monitored over an
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Fig. 8: Overall average and 95 percentile window latency with 4 worker nodes.

hour. The query that we used for this dataset is the calculation
of the average packet size on sliding windows of size 45
seconds and slide of 15 seconds.

C. Experimental Results

Below, we present our experimental results on scalability
(Section VII-C1), performance (Section VII-C1), accuracy
(Section VII-C3), and data volume reduction (Section VII-C4).
To this end, we compared normal execution with the current
state-of-the-art in load shedding (i.e., Uniform) and CoD.

1) Scalability (Fig. 7): First, we examined the scalability
of each approach by measuring the average and 95 percentile
window processing latency on the DEC dataset. The reason we
picked DEC for this experiment is because it is a processing-
heavy aggregation, without any need for memory. Therefore,
this dataset poses a favorable use-case for normal execution,
since the workload is not memory-heavy. Also, we set the
shedding rate (b) to 98% for both Uniform and CoD, since our
analysis has shown that it leaves enough data to produce results
with less than 10% error (see Section VII-C3). In addition,
we used the whole dataset and we doubled the number of
server nodes (i.e., worker nodes) that participate in the process.
Fig. 7 presents the average and 95 percentile latency for
normal (labeled as “Storm”), Uniform load shedding (labeled
as “uni”), and CoD load shedding (labeled as “CoD”).

As can be seen, Storm has the highest average and 95
percentile latency. The reason for this is due to the fact
that processing takes place in the whole window and all
tuples are scanned. Uniform’s performance is faster due to
the fact that a fraction of the window is processed. The same
is the case with CoD. Both settings with shedding achieve
significantly better average processing latency compared to
normal and more than four times better 95 percentile latency.
Another important observation is that with load shedding,
better processing latency is achieved with a fraction of the
resources: CoD and Uniform running with one node achieve
better latency compared to normal execution running on four
nodes.
Take-away: With CoD, processing takes place on a fraction of
the window, and one requires much less resources to achieve
better processing latency compared to Storm without any load
shedding.

2) Performance (Fig. 8): Next, we measured overall mean
and 95-percentile latency for all three datasets. Compared to

the scalability experiment (Sec. VII-C2) we measure end-to-
end latency on the stateful operator, from the watermark arrival
until the window result is pushed to the next operator. For
this experiment, we set the number of worker nodes to four
(i.e., utilize all our resources), and the shed-bias to 97% (i.e.,
less than three percent of the window gets processed). For all
datasets, we used a single source operator, and a sink operator.

Fig. 8a presents the overall latency for the DEC dataset. As
can be seen, the overall latency is lower for Uniform and CoD.
For DEC, most of the time is spent on window preparation
(i.e., window scan). Therefore, the performance gap between
normal and the load shedding methods is small. However, this
is not the case in GCM and DEBS. Fig. 8b illustrates that CoD
and Uniform present better performance compared to normal
execution. The reason is that GCM requires a grouped aggre-
gation, which can introduce additional load to each worker.
Fig. 8c presents a similar picture. CoD manages to produce a
result faster than normal Storm, and up to 2.25 times faster
for the 95 percentile case. In our prototype implementation we
measured that Uniform was slower compared to CoD due to
the frequency of the binomial process (i.e., on every tuple of
the window). This is not the case with CoD, since tuples of
infrequent groups are simply added to the window.
Take-away: CoD improves overall latency and it can produce
a result up to 2.25 times faster compared to normal Storm.

3) Accuracy (Fig. 9): For the two load shedding techniques,
we measured the average error and the 95-percentile error
among all windows on all datasets. For the error metric we
used the relative error for the aggregation result of DEC, and
for DEBS and GCM the average error among all groups for
a given window. In addition, for each dataset we picked a
different shed bias (b) which was 99%, 98%, and 98% for
DEC, GCM, and DEBS. In the case of CoD, b works as the
size of the sample created to identify Cw.

Fig. 9a shows that both Uniform and CoD produce compa-
rable results for DEC. This happens because DEC features a
scalar aggregation query. Therefore, CoD creates a uniform
sample, which is equivalent to Uniform and the resulting
accuracy is the same for both techniques. Fig. 9b illustrates the
error for GCM, and the difference between the two becomes
significant. In detail, Uniform sheds infrequent groups from
the result, which in turn make the average error more than
40%. This is not the case with CoD, which employs stratified
sampling for each group, by measuring their frequency. Then,
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Fig. 9: Average and 95 percentile relative error for DEC, GCM, and DEBS.
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Fig. 10: CoD achieves much better error with a fraction of the
data required by Uniform.

CoD determines a shed bias for each group, and when it scans
the window creates a sample for each group. As a result, no
groups are missed from the final result and the error remains
below 10%. A similar behavior can be seen with DEBS, whose
results are shown in Fig. 9c. Due to the fact that DEBS features
more groups, Uniform’s error is more than 80%. This is not
the case with CoD which manages to maintain both average
and 95-percentile error close to 10%.
Take-away: CoD is able to identify the concept of each
window and maintain accuracy more than 90%. Compared to
Uniform, CoD can achieve more than an order of magnitude
better accuracy.

4) Data Volume Reduction (Fig. 10): In the last experiment
we wanted to analyze the drop of value in error while the data
volume processed increases. To this end, we utilized all the
workers in our infrastructure and executed the DEBS workload
with varying b (shed bias) values: 98%, 90%, 75%, and 50%.
On each run, we measured the average relative error achieved
by each load shedding technique: Uniform and CoD.

Fig. 10 illustrates the average relative error when a different
percentage of the window is processed. As far as Uniform is
concerned, when the data percentage processed increases, the
average relative error drops (almost) linearly. After examining
the quality of the results, Uniform achieves big values for
errors for two reasons. First, groups that do not appear often
in the window are completely dropped, which leads to 100%
error for them. Second, groups that appear frequently have
some of their values dropped, which leads to high error values
for those as well. On the other hand, CoD identifies the right
amount of sampling needed per group by employing stratified
sampling. Therefore, each group is represented proportionally

in the final result, and the average relative error remains
significantly low. In fact, for a data percentage value 25 times
smaller, CoD achieves much higher accuracy compared to
Uniform.
Take-away: CoD makes it feasible to process significantly less
data while maintaining a very high accuracy.

VIII. RELATED WORK

Throughout this paper we presented previous work done
in load shedding [25], [26], [28], [31], [33], [47]. In ad-
dition, Uniform load shedding has appeared in a distributed
version [30]. A control-based approach to load shedding is
presented in [29] and the work of Gedik et al. [27] focuses on
load shedding for join operations. Unfortunately, none of those
feature a general mechanism for estimating Cw, and in turn
they are not robust against concept drift. The work presented
in [33] presents two heuristics for estimating the concept
for equality joins. However, those algorithms are targeted for
joins and rely on frequency-based estimation, which might
not efficiently estimate the concept on all CQ types (i.e.,
grouped median). In addition, those heuristics do not present a
systematic approach for detecting concept drift. Furthermore,
prior work focused on optimization of continuous queries
under resource constraints [27], [31], [47]. [47] presented an
optimization framework based on the resource constraints of
window joins on unbounded streams. Moreover, work on load
shedding has looked at other dimensions beyond correctness.
The work of Kalyvianaki et al. [48] presents an algorithm
that focuses on fair load shedding among federated SPEs. The
work of Pham et al. [43] presents load shedding in agreement
with QoS of CQs with different priority classes.

Finally, a lot of work has been done on approximation data
structures for stream processing [49]–[53]. However, those
approaches aim at particular classes of CQs and cannot be
used for multiple types of operators. Finally, sampling-based
approximation processing has been previously proposed for
relational databases [40], [45]. In the case of data streams, data
arrive continuously and the their characteristics are unavailable
for the SPE to analyze and pick an optimal sampling strategy.

IX. CONCLUSIONS

In this paper we revisited load shedding in modern SPEs.
Our investigation on load shedding has revealed two short-
comings of previously proposed techniques. Namely, that



previously proposed techniques are (a) brittle against the
inherent concept drift of data streams, and (b) rely on knowing
tuples’ importance at query submission. These shortcomings
constitute Uniform load shedding the only applicable solution
for modern SPEs. To improve the accuracy of the current
state of the art (i.e., Uniform), we proposed CoD, a novel
technique for load shedding, which relies on estimating a
window’s concept before shedding tuples. Even though CoD
requires two scans of a window, we describe a design that
incurs zero overhead for modern SPEs by taking advantage of
their architecture. We implemented CoD for Apache Storm and
examined its performance, accuracy, and data volume reduc-
tion capabilities compared to normal execution and Uniform
load shedding. Our experiments with real workloads show that
CoD manages to (a) reduce processing costs by up to 2.25x
compared to normal execution, (b) achieve more than an order
of magnitude better accuracy compared to the state of the art
in load shedding, and (c) reduce the data volume significantly.
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of the Borealis stream processing engine,” in CIDR, 2005.

[7] V. Gulisano et al., “Streamcloud: An elastic and scalable data streaming
system,” TPDS, vol. 23, no. 12, pp. 2351–2365, 2012.

[8] R. Ananthanarayanan et al., “Photon: Fault-tolerant and scalable joining
of continuous data streams,” in SIGMOD, 2013, pp. 577–588.

[9] M. Zaharia et al., “Discretized streams: An efficient and fault-tolerant
model for stream processing on large clusters,” in HotCloud, 2012.

[10] D. G. Murray, F. McSherry, R. Isaacs et al., “Naiad: A timely dataflow
system,” in SOSP, 2013, pp. 439–455.

[11] A. Toshniwal, S. Taneja, A. Shukla et al., “Storm@twitter,” in SIGMOD,
2014, pp. 147–156.

[12] S. Kulkarni, N. Bhagat, M. Fu et al., “Twitter heron: Stream processing
at scale,” in SIGMOD, 2015, pp. 239–250.

[13] B. Chandramouli, J. Goldstein, M. Barnett et al., “Trill: A high-
performance incre- mental query processor for diverse analytics,” in
PVLDB, 2015, pp. 401–412.

[14] Y. Wu and K. L. Tan, “Chronostream: Elastic stateful stream computa-
tion in the cloud,” in ICDE, 2015, pp. 723–734.

[15] P. Carbone et al., “Apache flinkTM: Stream and batch processing in a
single engine,” IEEE Data Eng. Bull., vol. 38, no. 4, pp. 28–38, 2015.

[16] A. Koliousis, M. Weidlich, R. Castro Fernandez et al., “Saber: Window-
based hybrid stream processing for heterogeneous architectures,” in
SIGMOD, 2016, pp. 555–569.
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