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This work is about automatic detection of agent mentions in
case law.

It is important because the capability is foundational for many
applications.

We show that it is possible to detect the mentions automatically
using simple sequence labeling model.

We explore relatedness of the task when performed on different
domains (areas of legal regulation) showing that ...

I there are differences between distinct domains;

I but there are also similarities which enable utilization of
knowledge across domains.
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Motivation

Case law analysis comprises (i) identification of relevant decisions
and (ii) extraction of valuable information.

It has been argued that directly retrieving argument-related
information (AR) would be extremely valuable.[1,2]

There is still a considerable gap between the state-of-the-art and a
full-blown AR system.[3]

Even the most foundational NLP technology performs poorly when
applied to legal texts . . .

. . . and detection of agent mentions is one such technology.
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[1] Ashley and Walker 2013; [2] Grabmair et al. 2015; [3] Ashley 2017
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Task Definition

Detecting agent mentions amounts to recognizing when a word or
a phrase denotes an agent.

A typical court decision contains many mentions of agents.

The magistrate judge denied the second motion to compel because
Mavrix failed to notify the anonymous parties of the pending
motion. Mavrix moved the district court for review of the
magistrate judge’s order, which the district court denied on the
basis of the moderators’ First Amendment right to anonymous
internet speech.

Even words such as possessive adjectives (e.g., his, their) could be
considered agent mentions.
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Task Definition

We defined a light-weight and easilly extensible hierarchy of agents:

Task of detecting agent mentions: (1) find all text spans denoting
agents; and (2) classify each span with most appropriate type.
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Hypotheses

hypothesis i A simple sequence labeling model that uses
low-level textual features could learn to detect
agent mentions automatically.

hypothesiis ii When a model is trained on decisions from one
area of legal regulation and applied to texts from
other area the performance decreases.

hypothesiiis iii Using texts from other domains to support the
model trained on the decisions from the target
domain may lead to better performance.
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Data Set: Decisions

We downloaded 10 court decisions from publicly available online
sources.[1]

(a) 5 cyber crime (cyber bullying, credit card frauds, possession of
electronic child pornography)

(b) 5 intellectual property (copyright, trade marks, patents)
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sum longest average shortest

cyber-crime # of chars 199980 61703 39996.0 28306
# of tokens 71100 20881 14220.0 10414
# of sentences 1772 513 354.4 250

intellectual-property # of chars 247042 75625 49408.4 36823
# of tokens 90286 27915 18057.2 13144
# of sentences 2084 729 416.8 291

[1] www.courtlistener.com; scholar.google.com.

www.courtlistener.com
scholar.google.com


Data Set: Agent Mentions

We created annotation guidelines for manual annotation for the 12
types.[1]

The two guiding principles were full-coverage and maximum
specificity.
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AGT PER ORG ATT JDG EXP WTN PTY AMC JUR LEG CRT
cyber-crime

seq 146 612 236 72 96 14 195 1352 0 82 17 334
seq/doc 29 122 47 14 19 3 39 270 0 16 3 67

intel-prop
seq 241 661 433 76 115 37 34 1668 35 81 16 451
seq/doc 48 132 87 15 23 7 7 334 7 16 3 90

total
seq 387 1273 669 148 211 51 229 3020 35 163 33 785
seq/doc 39 127 67 15 21 5 23 302 5 16 3 78

[1] luima.org; jas438@pitt.edu

luima.org
jas438@pitt.edu


Data Set: Inter-annotator Agreement

Three IP decisions were processed by two annotators to measure
inter-annotator agreement (IA).

Two variants of IA measure:

(a) full agreement – ratio of the annotations created by the both
users over the all annotations (agree in type and span)

(b) partial agreement – two annotations agree if they are of the
same type and if they overlap by at least one character
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AGT PER ORG ATT JDG EXP WTN PTY AMC JUR LEG CRT
full .74 .53 .59 .63 .80 .00 .00 .81 .63 .00 .48 .71
partial .87 .64 .74 .67 .84 .00 .00 .90 .71 .89 .48 .81
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Experiments: Design

We performed three experiments:

i. same domain – we assess the possibility of detecting agent
mentions automatically for each of the domains separately.

ii. different domain – we applied models trained on one area of
law to the texts from other domain.

iii. combined domains – we used data from both of the domains.

In all experiments we train a separate CRF model for each type.

Features – e.g. a token in lowercase, token’s length, position
within document, is-digit, is-whitespace

Labels – BILOU scheme.
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Experiments: Evaluation

We use traditional IR metrics:

P = |Pred∩Gold |
|Pred | R = |Pred∩Gold |

|Gold | F = 2∗P∗R
P+R

In the same domain experiment we use the leave one out
cross-validation.

In the different domain experiment we evaluate the models on the
documents from the different area of law.

In the combined domains experiment the data from both domains
were pulled together (leave one out).
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Experiments: Results
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AGT PER ORG ATT JDG EXP WTN PTY AMC JUR LEG CRT
Same domain

ex
ac

t P .74 .65 .79 .67 .47 .00 .56 .73 .17 .87 .50 .81
R .36 .17 .39 .25 .16 .00 .04 .36 .03 .56 .06 .69
F1 .48 .27 .52 .37 .23 .00 .08 .48 .05 .68 .11 .75

o
ve

rl
ap P .83 .73 .85 .73 .72 .00 .61 .84 .50 .91 1.0 .87

R .40 .19 .42 .27 .24 .00 .05 .41 .09 .59 .12 .74
F1 .54 .31 .57 .39 .36 .00 .09 .55 .15 .72 .22 .80

Different domain

ex
ac

t P .67 .48 .70 .59 .46 .00 .00 .63 .00 .85 .27 .80
R .28 .09 .39 .18 .20 .00 .00 .23 .00 .63 .09 .68
F1 .39 .16 .49 .27 .28 .00 .00 .33 .00 .73 .14 .73

o
ve

rl
ap P .76 .58 .75 .64 .64 .00 .00 .74 .00 .90 .55 .85

R .31 .11 .42 .19 .28 .00 .00 .27 .00 .66 .18 .72
F1 .44 .19 .54 .29 .39 .00 .00 .39 .00 .77 .27 .78

Combined domains

ex
ac

t P .70 .66 .73 .68 .52 .00 .52 .69 .22 .88 .45 .79
R .37 .23 .43 .35 .26 .00 .06 .34 .06 .69 .15 .72
F1 .48 .34 .54 .46 .34 .00 .11 .46 .09 .77 .23 .76

o
ve

rl
ap P .79 .74 .78 .72 .73 .00 .52 .80 .44 .92 .64 .85

R .41 .25 .46 .37 .36 .00 .06 .39 .11 .72 .21 .78
F1 .54 .38 .58 .49 .48 .00 .11 .53 .18 .81 .32 .81
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Discussion

The results clearly show that simple CRF models using low-level
textual features are capable of detecting the agent mentions.

For some types (Jury, Court) the performance appears to be
sufficient for actual use.

For some other types (Expert, Witness, Legislator) the
performance is clearly too low to produce useful results.

For the remaining types it is not clear if the results would have the
potential to be useful in practice (may depend on an application).
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Discussion II

For each domain there may be certain agent mentions that are rare
or non-existent in other domains.

In cyber crime decisions one of the prosecuting parties was often
mentioned as “the government.”

Certain patterns in mentioning agents transfer across domains.

The Court type mentions transfer well since even the models
trained on the different domain retained good performance.

“We” is universally being used to mention the deciding majority.
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Future Work

The models trained in our experiments are quite simplistic
(especially in terms of features they use).

Simple textual features do not provide sufficient information to
detect certain mentions and to distinguish among different types.

The models struggled to distinguish mentions of the Amicus Curiae
type from mentions of the Party and the Organization types.

Most of the times Amici could be detected by a rule-based system
in the header.

Using the detected tokens as contextual features could raise the
performance of our models from very bad to excellent.
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Future Work II

Corpus extension (there is a clear data sparsity problem for some of
the types)

Extension of the agent hierarchy (we use only a handful of very
basic types)

More powerful prediction model (e.g., long short-term memory
networks)

Co-reference resolution

Use in an actual application (e.g., attribution resolution for
improving IR)
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Conclusion

We examined the possibility of automatically detecting agent
mentions in case law analysis.

We have shown that:

i. it is possible to detect mentions of different agent types
automatically.

ii. the task is domain dependent in a sense that models trained
on one area of law do not perform as well for a different area.

iii. there is relatedness between domains allowing the use of data
from different areas of law.
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Thank you!

Questions, comments and suggestions are welcome now
or any time at jas438@pitt.edu.
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