Implementing Lexical Analyzers

Finite Automata

For lexical analysis:
- Specification — Regular expression
- Implementation — Finite automata

A finite automata consists of 5 components: $(\Sigma, S, n, F, \delta)$
1. An input alphabet, Σ
2. A set of states, S
3. A start state, $n \in S$
4. A set of accepting states $F \subseteq S$
5. A set of transitions, $\delta : S \times \Sigma \rightarrow S$

Finite Automata Transition $\delta : s_a \rightarrow s_b$:
This is read as “In state s_a, go to state s_b, when input is encountered”

At the end of the input (or when no transition is possible), if in current state X:
- If $X \in$ accepting set F, then accept
- Otherwise, reject

We sometimes prefer to use graphical representations of finite automata, known as a state graph.

State Graph Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start State</td>
<td>Initial state</td>
</tr>
<tr>
<td>State</td>
<td>Regular state</td>
</tr>
<tr>
<td>Accepting State</td>
<td>Terminal state</td>
</tr>
<tr>
<td>Transition</td>
<td>Transition between states</td>
</tr>
<tr>
<td>Self-loop</td>
<td>Return to same state</td>
</tr>
</tbody>
</table>

Examples

<table>
<thead>
<tr>
<th>Alphabet</th>
<th>Accepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCII</td>
<td>“if”</td>
</tr>
<tr>
<td>{0,1}</td>
<td>00^{*}, 00^{+}, 0^2</td>
</tr>
</tbody>
</table>

What language does this recognize? (Alphabet = {0,1})
Two or more 0s in a row at the end of the input

Regex: 00* or 00+ or 0(2+)
Table Implementation

Table Implementation

Input

State

<table>
<thead>
<tr>
<th>S</th>
<th>T</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Table-driven Code

```java
FSA() {
    state = 'S';
    while (!done) {
        ch = fetch_input();
        state = Table[state][ch];
        if (state == 'X') {
            System.err.println("error");
        }
    }
    if (state \in F) {
        System.out.println("accept");
    } else {
        System.out.println("reject");
    }
}
```

Epsilon Transitions

Another kind of transition: \(\epsilon \)-transition

- Machine can move from state A to state B without reading any input

DFA & NFAs

Deterministic Finite Automata (DFA):
- One transition per input per state
- No \(\epsilon \)-moves

Non-deterministic Finite Automata (NFA):
- Can have multiple transitions for one input in a given state
- Can have \(\epsilon \)-moves

Finite automata have finite memory
- Need only to encode the current state

Converting REs to NFAs

Thompson's Algorithm

REs can be converted to NFAs. Atomic REs are straightforward.

Epsilon transitions:

Single characters:

- Can have \(\epsilon \)-moves
Converting REs to NFAs

Alternation: $N_1 \cup N_2$

Concatenation: $N_1 \cdot N_2$

Kleene Closure: N_1^*

Example
Convert $(a|b)^*ab$ to an NFA

Step 1: a

Step 2: b

Step 3: $(a|b)$
Example

Convert \((a|b)^*ab\) to an NFA

Step 4: \((a|b)^*\)

![Diagram of NFA for \((a|b)^*\)]

Step 5: \((a|b)^*a\)

![Diagram of NFA for \((a|b)^*a\)]

Step 6: \((a|b)^*ab\)

![Diagram of NFA for \((a|b)^*ab\)]

Example

Convert \((a|b)^*ab\) to an NFA

Power of NFAs and DFAs

Theorem: NFAs and DFAs recognize the same set of languages

Both recognize regular languages.

DFAs are faster to execute because there are no choices to consider.

For a given language, the NFA can be simpler than the DFA – a DFA can be exponentially larger.

Executing Finite Automata

A DFA can take only one path through the state graph

- Completely determined by input

A NFA can take multiple paths “simultaneously”

- NFAs make \(\epsilon\)-transitions
- There may be multiple transitions out of a state for a single input

Rule: the NFA accepts it if it can get into a final state by any path

Which is more powerful, an NFA or a DFA?

Example

NFA and DFA that accept \((a|b)^*ab\)

![Diagram of NFA and DFA for \((a|b)^*ab\)]
NFA to DFA Conversion

Basic idea: Given a NFA, simulate its execution using a DFA

- At step n, the NFA may be in any of multiple possible states

The new DFA is constructed as follows:

- The states of the DFA correspond to a non-empty subset of states of the NFA
- The DFA's start state is the set of NFA states reachable through ε-transitions from NFA start state
- A transition $S_a \xrightarrow{\omega} S_b$ is added iff S_b is the set of NFA states reachable from any state in S_a after seeing the input ω, also considering ε-transitions

Epsilon-Closure

Let $\text{edge}(s,c)$ be the set of all NFA states reachable by following a single edge with label c from state s.

For a set of states S, ε-closure(S) is the set of states that can be reached from a state in S via ε-transitions.

$$\varepsilon\text{-closure}(S) = S \cup \bigcup_{(s,c) \in \text{edge}(s,c)} \varepsilon\text{-closure}(S)$$

Construct DFA

We now compute where we can go from A on each input in our alphabet.

On an 'a', considering each state in A, where might we end up? An a would take us from 2 to 3 and from 7 to 8. But we must consider our ε-transitions as well.

$$B = \varepsilon\text{-closure}(3) \cup \varepsilon\text{-closure}(8) = \{1, 2, 3, 4, 6, 7\} \cup \{8\}$$

Start State

The NFA's start state is S_0, so the DFA's start state = ε-closure(S_0)

By iteration:

- $T_1 = S_0 = \{S_0\}$
- $T_2 = T_1 \cup \varepsilon$-closure($T_1$) = $\{S_0, S_1, S_7\}$
- $T_3 = T_2 \cup \varepsilon$-closure($T_2$) = $\{S_0, S_1, S_2, S_4, S_7\}$
- $T_4 = T_3 \cup \varepsilon$-closure($T_3$) = $\{S_0, S_1, S_2, S_4, S_7\}$

$T_4 = T_3$ so we are done.

NFA to DFA Conversion Example

Start state = ε-closure(S_0) = $\{0, 1, 2, 4, 7\}$ = A

We'll call this collection of states A, and will be a new node in our DFA that is our DFA start state.

<table>
<thead>
<tr>
<th>Set</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0, 1, 2, 4, 7]</td>
<td>A</td>
</tr>
</tbody>
</table>

On an 'b', considering each state in A, we could go to 5, but we must do the ε-closure.

$$C = \varepsilon\text{-closure}(5) = \{1, 2, 4, 5, 6, 7\}$$

<table>
<thead>
<tr>
<th>Set</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0, 1, 2, 4, 7]</td>
<td>A</td>
</tr>
<tr>
<td>[1, 2, 3, 4, 5, 6, 7]</td>
<td>B</td>
</tr>
<tr>
<td>[1, 2, 4, 5, 6, 7]</td>
<td>C</td>
</tr>
</tbody>
</table>
NFA to DFA Remarks

This algorithm does not produce a minimal DFA.

It does however, exclude states that are not reachable from the start state.

This is important because an n-state NFA could have 2^n states as a DFA.
(Why? Set of all subsets.)

The minimization algorithm is left to the graduate course.

Why DFAs?

Why'd we do all that work?

A DFA can be implemented by a 2D table T:
- One dimension is states, the other dimension is input characters
- For $S_a \rightarrow a$, we have $T[S_a,c] = S_b$

DFA execution:
- If the current state is S_a and input is c, then read $T[S_a,c]$
- Update the current state to S_b assuming $S_b = T[S_a,c]$
- This is very efficient
Automating Automatons

If we have algorithmic ways to convert REs to NFAs and to convert NFAs to faster DFAs, we could have a program where we write our lexical rules using REs and automatically have a table-driven lexer produced.

NFA to DFA conversion is the heart of automated tools such as lex/flex/JLex/Jflex
• DFA could be very large
• In practice, lex-like tools trade off speed for space in the choice of NFA and DFA representations

Implementation

RE → NFA → DFA → Table-driven Implementation
• Specify lexical structure using regular expressions
Finite automata
• Deterministic Finite Automata (DFAs)
• Non-deterministic Finite Automata (NFAs)
Table implementation

Scanner Automaton

Ambiguity Resolution

Imagine a rule for C identifiers:

```
[a-zA-Z_][a-zA-Z0-9_]*
```

And the rule for a keyword such as if:

```
"if"
```

How do we resolve the fact that if is a keyword and if8 is an identifier?

Two rules:
1. Longest match – The match with the longest string will be chosen.
2. Rule priority – for two matches of the same length, the first regex will be chosen. I.e., Rule order matters.