Diagnosis Code Prediction from Electronic Health Records as Multilabel Text Classification: A Survey

Jeong Min Lee
Department of Computer Science
University of Pittsburgh
jlee@cs.pitt.edu

Aldrian Obaja Muis
Language Technology Institute
Carnegie Mellon University
amuis@cs.cmu.edu

Abstract

This article presents a survey on diagnosis code prediction from various information in Electronic Health Records (EHR): both unstructured free text and structured data. Particularly, our interests are in casting the problem as text classification with multiple sources and using neural network based models. We will first present previous work in this area and describe some simple baseline models for the relevant tasks.

1 Introduction

Electronic Health Records (EHR), the comprehensive collection of patient care details such as order of medications, procedures, lab tests, and diagnosis, serve as an important source of information for healthcare technology, which can be used for training intelligent patient monitors, simulating basic research, providing well-documented case studies of clinically significant pathologies (Moody and Mark, 1996), and providing training data for a personalized healthcare system (Ma et al., 2017).

Being an important aspect of the healthcare sector, the patient records in these databases are usually recorded with lots of details, including both numerical, structured, and textual data. The numerical data comes from measurements such as heart rate, blood pressure, and clinical test results. The structured data come in the form of medical codes associated with each patient record meticulously assigned manually by hospitals originally for billing and administration purposes, while the unstructured data come from the clinical notes, which contain detailed natural language description of the healthcare provided to the patients during the admission.

The large amount of data poses a problem for manual analysis due to information overload. However, the large amount of data, both structured and unstructured, also provide a fertile ground to develop intelligent systems for automatically analyzing these records. For example, picking the appropriate diagnosis codes from more than ten thousands of possible codes is prone to error, not to mention that this requires expert knowledge in medicine (Farkas and Szarvas, 2008).

In this survey we will focus more on the textual content of the records, and as such we will describe existing works on utilizing those texts to develop an automated system that helps analysis of the health records. At the end of this survey, we will also describe one task and the state-of-the-art systems on that task, which we plan to investigate deeper for further analysis.

2 Electronic Health Records Databases

The work on collecting EHR databases is not new, dating back to at least as early as 1996 with the first version of Multiparameter Intelligent Monitoring in Intensive Care (MIMIC) database (Moody and Mark, 1996), which was then developed further to MIMIC-2 (Saeed et al., 2011; Lee et al., 2011) and MIMIC-3 (Johnson et al., 2016). The latter two versions of MIMIC database also include texts in various categories.

Other than the popular and open access MIMIC databases, there are also other health records databases which are used in some previous works, such as Sutter (used by Choi et al. (2015, 2016a,b) and Zhang et al. (2017)), Medicaid (used by Ma et al. (2017)), and 2007 Computation Medical Challenge (introduced by Pestian et al. (2007) and used by Zhang (2008)).

There are also some extensions to the existing datasets, motivated by the desire to have
more structured information attached to the clinical texts to alleviate the noise inherent in the text so that downstream tasks might benefit from it. In 2013, Suominen et al. (2013) conducted a shared task focusing on detecting disease and disorder names mentioned in the texts (they considered not just discharge summaries, but also radiology, EEG, and ECG reports).

3 Tasks and Related Work

Due to the many types of information available in EHR, a number of research studies have been conducted to utilize the diverse aspects of the data. In this survey, as the aim of our project is to predict diagnosis codes of patients, we will focus on various approaches to predict diagnosis codes across different types of features (from very unstructured free-text to the more structured data like medical and diagnosis codes) and models (including both neural and non-neural models).

3.1 Diagnosis Prediction Task

On patient management and care in hospital, status of patient is observed and diagnosis is identified by physicians. To standardize the coding scheme, the International Classification of Diseases (ICD) is used in most of hospitals around the world. The revision of the ICD is conducted periodically and current version is 10 (ICD-10). But the previous version ICD-9-CM (CDC, 2011) had been used from 1970s till recent and most of publicly available EHRs such as MIMIC-2 (Saeed et al., 2011; Lee et al., 2011) and MIMIC-3 (Johnson et al., 2016) are using ICD-9-CM. From general disease category to particular organ and site specific subtypes, the ICD-9-CM has tree-like hierarchical structure in which nodes closer to the root represent more abstract categories. In the tree, leaf nodes and intermediate nodes has its own ICD-9-CM code with string label. In the view of machine learning and data mining, the problem of diagnosis code prediction can be seen as a multi-class multi-label classification problem.¹ The large label space (14,025 unique diagnosis codes in total) in this task is one of the great challenges of this task that makes this task interesting. The following sections will describe the various approaches that people have used to do this task.

3.2 Diagnosis Prediction with Non-textual Data

EHR contains various structured data such as past histories of medication, procedure, lab test, and demographic information of patient. Several studies have been conducted using those data. Parthiban and Srivatsa (2012) used SVM and Naive Bayes to predict heart-related diseases with patient demography, cholesterol level, and, blood pressure as features. Choi et al. (2016a) used bidirectional RNN with attention mechanism to predict heart failure diagnosis codes. They used medication code and procedure code as features.

On the neural models, Lipton et al. (2016) used LSTM to predict the 128 most common diagnosis codes. One particular thing to note is that they modeled sequential data in multivariate time series from physiological variables. With time series of 13 variables such as diastolic and systolic blood pressure, CO2, heart rate, and body temperature, it shows moderate performance (30.35% micro-average F1 score) on 128 diagnosis codes.

3.3 Diagnosis Prediction with Unstructured Text Data

Along with numerical variables, unstructured free text also contains valuable information for diagnosis code prediction. Especially, as it is written by medical experts, it summaries complex physiological states of patient and details of care management and treatment. However, as its unstructuredness nature, particular choice of processing and modeling is needed.

Farkas and Szarvas (2008), Goldstein et al. (2007) and Crammer et al. (2007) use rule-based approaches. Farkas and Szarvas (2008) uses hybrid of C4.5 decision tree and Maximum entropy classifier and Crammer et al. (2007) uses rule-based system that matches the input text with the medical code description, in addition to a keyword-based system. Goldstein et al. (2007) compares rule based model with N-grams and TF-IDF based models. Perotte et al. (2014) leverages hierarchical structure of the ICD-9-CM codes to utilize hierarchical SVM classifier. In addition to leaf node of ICD-9-CM as base labels, they create augmented label sets for each intermediate nodes of ICD-9-CM and trained individual SVM for all label sets. It uses MIMIC-2 database and with 5,030 ICD-9-CM codes it achieves micro F1-score of 39.5%. Saria et al. (2010) incorporated

¹There are also others treating this as an information retrieval task, such as Rizzo et al. (2015), using the concept of “soft-classification”, but in this survey we focus on works that treat this as a classification task.
unstructured free notes with structured variables such as clinical events of medication order, ventilator settings and tube placements. Most of these approaches process free text into bag of word or N-gram features and there is inevitable drawback that losing information of order of words and sentences.

More recently, Vani et al. (2017) proposes to utilize a variant of RNN which they call Grounded RNN (GRNN) to learn word-level representation and optimize modeling diagnosis codes together. In order to improve interpretability of the RNN model, it ties each dimension of hidden states to the label that is to be predicted. It recorded a micro F1-score of 58.0% in MIMIC-2 (7,042 labels) and 46.4% in MIMIC-3 (5,000 labels)\(^2\). They proposed to use grounded dimensions in the RNN hidden states as a mean to give more interpretability to their models, which is an important aspect in this domain, on top of the prediction accuracy. The idea is to force-associate some dimensions in the RNN hidden states to the label space, effectively modeling the model’s belief of each label at each word in the document. To prevent the associated dimensions from being used to store non-label-specific information, they did a semi-diagonal update (see Fig 1) to help the model to store label-specific information in the associated dimensions \(g\) and other information in the normal hidden states \(c\).

![Figure 1: Semi-diagonal update in GRNN (Vani et al., 2017).](image)

3.4 Other Prediction Tasks using EHR

In addition to the task of predicting diagnosis codes, there are many other interesting works utilizing EHR data. Zhang et al. (2017) uses GRU with content-based attention to predict medication prescription given the disease codes. Suresh et al. (2017) compares LSTM and CNN models on predicting clinical interventions from both numerical and textual data.

With regard to usage of clinical notes, Ghassemi et al. (2014) tackles in-hospital mortality prediction problem by generating latent topics using LDA (Blei et al., 2003) and building an SVM classifier. Caballero and Akella (2015) predicts patient readmission to ICU using clinical notes. They created features from unstructured free text using name entity recognition frameworks. Jo et al. (2015) models patient mortality by modeling state transition of latent topics of notes and training SVM classifier.

4 Experiment

We conducted a few experiments with simple models to estimate the difficulty of the diagnosis code prediction task.

4.1 Dataset

For the experiments we use MIMIC-3 Database, a publicly available, multi-granular, deidentified EHR contains more than 60,000 hospital admissions of critical care patients. From the dataset we extracted medication orders, lab test orders, and procedures that occurred more than 20 different admissions. As a result, we have 1,140 medications, 518 lab events, and 423 procedures. Although we do not make use of these for this first checkpoint, they might potentially be used in the final project. Similarly, in total there are 6,914 ICD-9-CM labels in the full dataset. Unlike the setup of Vani et al. (2017), we use this full set of labels for this preliminary experiments.

The main data that we use for this project would be the discharge summaries, which contain textual description of each patient’s admission. We follow the text preprocessing procedure of Muis and Lu (2016) in using Stanford CoreNLP sentence splitter with additional heuristics to handle some semi-structured text in the dataset, including bullet lists and section names. The sentences are then tokenized using regex-based tokenizer and anonymization tokens (e.g., “[*doctor first name 77***]”) are normalized (e.g., “DOCTOR_NAME”). We prefer oversplitting (most punctuations are considered separate tokens) during tokenization, which has the advantage of smaller vocabulary size and less sparsity, since there are lots of chemical and medicine names in the dataset.

For the purpose of this assignment, we also took about 1/10th of the full dataset to be used as a development set.

The dataset statistics can be seen in Table 1.

\(^2\)They use the most common 4,000 diagnosis codes plus 1,000 procedure codes as the label space.
<table>
<thead>
<tr>
<th></th>
<th>Train</th>
<th>Valid</th>
<th>Test</th>
<th>Total</th>
<th>Train</th>
<th>Valid</th>
<th>Test</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>#Docs</td>
<td>31,676</td>
<td>10,442</td>
<td>10,556</td>
<td>52,674</td>
<td>3,151</td>
<td>1,075</td>
<td>1,045</td>
<td>5,271</td>
</tr>
<tr>
<td>#Sentences</td>
<td>4,951,612</td>
<td>1,636,034</td>
<td>1,650,258</td>
<td>8,237,904</td>
<td>496,424</td>
<td>168,517</td>
<td>162,069</td>
<td>827,010</td>
</tr>
<tr>
<td>Avg. #Sents/doc</td>
<td>156.32</td>
<td>156.68</td>
<td>156.33</td>
<td>156.39</td>
<td>157.54</td>
<td>156.76</td>
<td>155.09</td>
<td>156.90</td>
</tr>
<tr>
<td>Avg. #Labels</td>
<td>11.76</td>
<td>11.79</td>
<td>11.66</td>
<td>11.74</td>
<td>11.77</td>
<td>11.71</td>
<td>11.46</td>
<td>11.70</td>
</tr>
</tbody>
</table>

Table 1: Full MIMIC-3 dataset statistics.

<table>
<thead>
<tr>
<th>Model</th>
<th>Valid</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM (C=32)</td>
<td>P 59.11 R 25.99 F 36.11</td>
<td>P 59.20 R 26.20 F 36.32</td>
</tr>
<tr>
<td>SVM (C=128)</td>
<td>P 58.18 R 26.16 F 36.09</td>
<td>P 58.21 R 26.36 F 36.28</td>
</tr>
<tr>
<td>MLP (h=1024)</td>
<td>P 64.16 R 21.68 F 32.41</td>
<td>P 64.03 R 21.58 F 32.28</td>
</tr>
<tr>
<td>GRNN-best</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2: Result (micro-average F1 scores) of some basic models on the task without label filtering.

4.2 Models

In general, we consider the task to be a multi-class multi-label classification problem, where the input is a document (a sequence of words or can also be considered a sequence of sentences) and the output is all the ICD-9-CM labels associated with the document.

We implemented two models following a simple bag-of-words approach to do the prediction for our experiments. We implemented a multi-class multi-label SVM with linear kernel using one-vs-rest strategy using sklearn package in Python. We did some tuning on the C parameter on development set. We also implemented multilayer perceptron (MLP) with one hidden layer of size 1024 (with Tanh) in PyTorch with MSE loss function (with Sigmoid activation at the end, since we are doing multi-label classification). We use batch size 64 and learning rate of 0.002 and trained the network for 3700 and 300 epochs in development and full dataset, respectively, using AdaGrad optimizer.

4.3 Results and Discussion

We report micro-average F1 scores in Table 2.

Looking at the bag-of-words models, we can see that it got a descent performance compared to state-of-the-art score (46.4%, although this is not directly comparable due to our larger label space). Although these models do not consider word orders, it can capture some prominent keywords in the text which are predictive of the labels. We speculate the higher result of SVM compared to MLP in the full dataset due to the better TF-IDF values obtained from larger dataset.

5 Conclusion and Future Work

The task of diagnosis code prediction from discharge summary is a challenging task, due to the large number of labels and the long textual description as input, yet interesting, due to the hierarchy in the label space, and suitable for neural models, due to the ample amount of training data.

We would like to investigate more how GRNN performs and how we can utilize other information on top of it, such as the label hierarchy and other non-textual data including orders of medication, lab test and procedures. We extracted these additional data for the next step.

In addition, one of the characteristics of the dataset is the the high class imbalance (diagnosis codes) as seen in the Figure 2. Treatment to class imbalance problem in CNN has been studied in Buda et al. (2017). It uses oversampling, undersampling, and thresholding that compensates for prior class probabilities. It would be interesting to explore the idea to our problem.

Another interesting path toward exploiting the EHR data is to introduce time dimensionality into the diagnosis prediction task. That is, modeling previous admission’s notes and diagnosis codes into predicting next diagnosis codes. For that path, it would be feasible make hierarchical model that uses MLP or CNN at the lower level and uses recurrent neural network models at top level.
Work Distribution

Jeongmin I worked on the implementation of LSTM (although it was not included to the report due to some implementational bugs, the code is in the repository) and data processing on admissions and non-textual features such as medications, lab test orders and procedures which will be used for next task. For report, I contributed to the section of tasks and related work, and get the statistics of the dataset and for the section of experiment, I contributed to writing of the parts that I worked on implementation side.

Aldrian I worked on the implementation of MLP and SVM and also the text preprocessing (sentence splitting, tokenization), including the corresponding sections in the report, such as the result table and the data statistics. In addition to that I also contributed in the report through the introduction and the initial overall draft, and final touch up of the report.

References

