Introduction to MIMIC-3 Database

Jeong-Min Lee
jlee@cs.pitt.edu
2016. 12. 7.
Topics

• Introduction
• Overview
• Patient Information
• Medications
• Lab Tests
• Outputs
• Diagnosis and Procedures
• Clinical Notes
• How to Get Access?
Introduction

• MIMIC-3: Medical Information Mart for Intensive Care 3
• Publicly available deidentified patient record.
• Records on 46520 patient stayed in critical care units of Beth Israel Deaconess Medical Center (at Boston) between 2001 and 2012.
• It includes demographics, vital sign measurements, lab test results, procedures, medications, and clinical notes.
• This slide is largely based on the information provided in MIMIC-3 version 1.4 tutorial website: http://mimic.physionet.org
Introduction

- There is a MIMIC ‘version 2’
 - A little bit different table structure.
 - But the version 2 comes with a clinical database and a waveform database.
 - Waveform database: many of records of continuously digitized physiologic waveforms and simultaneously recorded time series (trends) of physiologic measurements.
 - 3TB of data in all.
 - Signals (125 samples per second):
 - ECG (electrocardiographic) waveforms
 - BP (continuous blood pressure) waveforms
 - Raw output of fingertip plethysmograph
 - Respiration waveforms
 - Numerics/Trends (1 sample/second or 1 sample/minute):
 - BP (systolic, diastolic, and mean)
 - CO: cardiac output
 - CO2: carbon dioxide
 - HR: heart rate
 - Respiration rate
 - SpO2: oxygen saturation (from fingertip plethysmography)
 - ST: ECG ST segment levels
 - Temperature

- It will not be covered in this presentation
Overview

• The MIMIC-3 database is consisted of 26 tables.
• Each table contains each patient record (at each row) with specific field (columns)
• Tables starts with ‘D_’ are dictionaries and provide definitions for identifiers.
• “_MV” and “CV” in table names are representing different information systems used to collect data.
 • CV: Philips Carevue, 2001-2008
 • MV: iMDSoft Metavision, 2008-2012
Topics

• Introduction
• Overview
• Patient Information
• Medications
• Lab Tests
• Outputs
• Diagnosis and Procedures
• Clinical Notes
• How to Get Access?
Patient Information

• Each patient is unique with its own “subject_id”.
• Each hospital admission of a patient is unique with “hadm_id”.
• Each ICU stay of a patient is unique with “icustay_id”.
• That means,
 • One subject_id can be associated with multiple hadm_ids when a patient had multiple admissions.
 • One hadm_id can be linked to multiple icustay_id when a patient had a multiple ICU stays during an admission. (e.g., transferring between multiple ICUs)
Patient Information

- PATIENTS table
 - Gender, DOB (date of birth)
 - DOD (date of death), expire flag (whether a patient died or not)
 - Age of certain patient of a point of time in the record can be calculated by subtracting a certain record time – dob.
 - Note that all dates in the database is shifted randomly with deidentification process. But it is consistent throughout a patient’s records.
Patient Information

- ADMISSIONS table
 - Admit and discharge time, death time if died in the admission
 - Admission and discharge location in hospital
 - Insurance, language, ethnicity, and marital status
 - Diagnosis, ** but this diagnosis is usually assigned by the admitting clinician and **not** use a systematic ontology (such as ICD9 code)
 - Final diagnosis can be found in DIAGNOSIS_ICD table.

- ICUSTAYS table
 - In/Out time
 - LOS (length of stay), values are normalized to 1.0 = 24hours
Topics

• Introduction
• Overview
• Patient Information
• **Medications**
• Lab Tests
• Outputs
• Diagnosis and Procedures
• Clinical Notes
• How to Get Access?
Medication

• Three tables contain information on medication:
 • 1) PRESCRIPTIONS
 • 2) INPUTEVENTS_CV
 • 3) INPUTEVENTS_MV
Medication

• PRESCRIPTIONS table
 • Medication related order entries.
 • Drug names, NDC code (11digit version)
 • National Drug Code (NDC) is originally 10-digit, 3 segment numeric identifier.
 • Centers for Medicare and Medicaid Services (CMS) has created 11-digit NDC derivative. This format has selected by HIPAA regulation thus other governmental agencies’ database such as UMLS (which contains RXNORM, NDF-RT ontologies) are using this 11-digit NDC.
Medication

• INPUTEVENTS tables
 • INPUTs are **any fluids which have been administered** to the patient
 • such as oral or tube feedings or intravenous solutions containing medications.
 • Inputs exist in two separate tables:
 • INPUTEVENTS_CV contains CareVue inputs
 • INPUTEVENTS_MV contains Metavision inputs
Medication

- **INPUTEVENTS_CV table**
 - For CareVue data, only the CHARTTIME is available.
 - The RATE and AMOUNT columns are *asynchronous*, and originally stored in different tables. (In MIMIC-3, these are in one table)
 - *Volumes* of input (e.g. 50 mL of normal saline) would usually be recorded every hour (though sometimes the period was longer).
 - *RATE* of the drug only updated when a change or verification of the rate was made by clinical staff.
Medication

• INPUTEVENTS_CV table (cont.)

<table>
<thead>
<tr>
<th>CHARTTIME</th>
<th>VOLUME</th>
<th>VOLUMEUOM</th>
<th>CHARTTIME</th>
<th>RATE</th>
<th>RATEUOM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>09:00</td>
<td>1</td>
<td>mL/min</td>
</tr>
<tr>
<td>10:00</td>
<td>60</td>
<td>mL</td>
<td>11:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td>60</td>
<td>mL</td>
<td>11:30</td>
<td>0.5</td>
<td>mL/min</td>
</tr>
<tr>
<td>12:00</td>
<td>45</td>
<td>mL</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Assuming this is a patient’s inputevent records of a certain medication.
Medication

• **INPUTEVENTS_CV** table (cont.)

<table>
<thead>
<tr>
<th>CHARTTIME</th>
<th>VOLUME</th>
<th>VOLUMEUOM</th>
<th>CHARTTIME</th>
<th>RATE</th>
<th>RATEUOM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>09:00</td>
<td>1</td>
<td>mL/min</td>
</tr>
<tr>
<td>10:00</td>
<td>60</td>
<td>mL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td>60</td>
<td>mL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:30</td>
<td></td>
<td></td>
<td>0.5</td>
<td>mL/min</td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td>45</td>
<td>mL</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• The volume is recorded only every hour
 • No start time is available. (CHARTTIME of volume is end time)
Medication

• INPUTEVENTS_CV table (cont.)

<table>
<thead>
<tr>
<th>CHARTTIME</th>
<th>VOLUME</th>
<th>VOLUMEUOM</th>
<th>CHARTTIME</th>
<th>RATE</th>
<th>RATEUOM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>09:00</td>
<td>1</td>
<td>mL/min</td>
</tr>
<tr>
<td>10:00</td>
<td>60</td>
<td>mL</td>
<td>11:00</td>
<td>60</td>
<td>mL</td>
</tr>
<tr>
<td>11:00</td>
<td>60</td>
<td>mL</td>
<td>11:30</td>
<td>0.5</td>
<td>mL/min</td>
</tr>
<tr>
<td>12:00</td>
<td>45</td>
<td>mL</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• The volume is recorded only every hour
 • No start time is available.
 • However, it’s reasonable to assume that the volume measurement corresponds to an hour.
Medication

• INPUTEVENTS_CV table (cont.)

<table>
<thead>
<tr>
<th>CHARTTIME</th>
<th>VOLUME</th>
<th>VOLUMEUOM</th>
<th>CHARTTIME</th>
<th>RATE</th>
<th>RATEUOM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>09:00</td>
<td>1</td>
<td>mL/min</td>
</tr>
<tr>
<td>10:00</td>
<td>60</td>
<td>mL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td>60</td>
<td>mL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11:30</td>
<td>0.5</td>
<td>mL/min</td>
</tr>
<tr>
<td>12:00</td>
<td>45</td>
<td>mL</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Next, we can see that the rate was titrated to 0.5
 • For the period between 11:00 to 12:00 there was half an hour of delivery at 1 mL/min and half an hour of delivery at 0.5 mL/min
 • => Resulting in a total volume of 45 mL delivered for the an hour between 11:00 and 12:00.
Medication

• INPUTEVENTS_CV table (cont.)

<table>
<thead>
<tr>
<th>CHARTTIME</th>
<th>VOLUME</th>
<th>VOLUMEUOM</th>
<th>CHARTTIME</th>
<th>RATE</th>
<th>RATEUOM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>09:00</td>
<td>1</td>
<td>mL/min</td>
</tr>
<tr>
<td>10:00</td>
<td>60</td>
<td>mL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td>60</td>
<td>mL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11:30</td>
<td>0.5</td>
<td>mL/min</td>
</tr>
<tr>
<td>12:00</td>
<td>45</td>
<td>mL</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Remember that VOLUME would usually be recorded every hour.
• RATE is only updated when a change or verification of the rate was made by clinical staff.
Medication

- **INPUTEVENTS_CV** table (cont.)

<table>
<thead>
<tr>
<th>CHARTTIME</th>
<th>VOLUME</th>
<th>VOLUMEUOM</th>
<th>CHARTTIME</th>
<th>RATE</th>
<th>RATEUOM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:00</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>mL/min</td>
</tr>
<tr>
<td>10:00</td>
<td>60</td>
<td>mL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td>60</td>
<td>mL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11:30</td>
<td>0.5</td>
<td>mL/min</td>
</tr>
<tr>
<td>12:00</td>
<td>45</td>
<td>mL</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- For **rates**, the CHARTTIME will correspond to a **start time** (when the drug was set to that rate).
- For **volumes**, the CHARTTIME will correspond to an **end time**
Medication

- **INPUTEVENTS_CV** table (cont.)
 - **ORDERID** links multiple items contained in the same solution together.
 - For example, when a drug of noradrenaline and a solution of NaCL is administered.
 - Both noradrenaline and NaCL occur on distinct rows but will have the same **ORDERID**.

<table>
<thead>
<tr>
<th>CHARTTIME</th>
<th>ITEM</th>
<th>ORDERID</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00</td>
<td>noradrenaline (drug)</td>
<td>201</td>
</tr>
<tr>
<td>10:00</td>
<td>NaCl (solution)</td>
<td>201</td>
</tr>
</tbody>
</table>
Medication

- **INPUTEVENTS_CV table (cont.)**
 - **LINKORDERID** links the same order across multiple instantiations
 - For example, when the **rate** of delivery for the solution with noradrenaline and NaCL is **changed**
 - Two new rows which share the same new **ORDERID** will be generated, but the **LINKORDERID** will be the same.

<table>
<thead>
<tr>
<th>CHARTTIME</th>
<th>ITEM</th>
<th>ORDERID</th>
<th>LINKORDERID</th>
<th>RATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00</td>
<td>noradrenaline</td>
<td>201</td>
<td>5001</td>
<td>1.0</td>
</tr>
<tr>
<td>10:00</td>
<td>NaCl</td>
<td>201</td>
<td>5001</td>
<td>1.0</td>
</tr>
<tr>
<td>11:00</td>
<td>noradrenaline</td>
<td>202</td>
<td>5001</td>
<td>0.5</td>
</tr>
<tr>
<td>11:00</td>
<td>NaCl</td>
<td>202</td>
<td>5001</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Medication

• INPUTEVENTS_MV table
 • For Metavision data, there is no concept of a volume in the database, only a RATE.
 • All inputs are recorded with a STARTTIME and an ENDTIME.
 • As a result, the volumes in the database for Metavision patients are derived from the rates.
 • Furthermore, exact start and stop times for the drugs are easily deducible
Medication

• **INPUTEVENTS_MV** table (cont.)

<table>
<thead>
<tr>
<th>Item</th>
<th>STARTTIME</th>
<th>ENDTIME</th>
<th>RATE</th>
<th>RATEUOM</th>
<th>ORDERID</th>
<th>LINKORDERID</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>18:20</td>
<td>18:25</td>
<td>1</td>
<td>mcg/kg/min</td>
<td>8003</td>
<td>8003</td>
</tr>
<tr>
<td>Noradrenaline</td>
<td>18:20</td>
<td>18:25</td>
<td>10</td>
<td>ml/hr</td>
<td>8003</td>
<td>8003</td>
</tr>
<tr>
<td>NaCl</td>
<td>18:25</td>
<td>20:00</td>
<td>2</td>
<td>mcg/kg/min</td>
<td>8020</td>
<td>8003</td>
</tr>
<tr>
<td>Noradrenaline</td>
<td>18:25</td>
<td>20:00</td>
<td>20</td>
<td>ml/hr</td>
<td>8020</td>
<td>8003</td>
</tr>
</tbody>
</table>

• The **STARTTIME** for the solution (NaCl) and the drug (noradrenaline) would be **18:20**.

• Rate for the drug would be **1 mcg/kg/min** and **10 ml/hr** for solution. (mcg: microgram)
Medication

• INPUTEVENTS_MV table (cont.)

<table>
<thead>
<tr>
<th>Item</th>
<th>STARTTIME</th>
<th>ENDTIME</th>
<th>RATE</th>
<th>RATEUOM</th>
<th>ORDERID</th>
<th>LINKORDERID</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>18:20</td>
<td>18:25</td>
<td>1</td>
<td>mcg/kg/min</td>
<td>8003</td>
<td>8003</td>
</tr>
<tr>
<td>Noradrenaline</td>
<td>18:20</td>
<td>18:25</td>
<td>10</td>
<td>ml/hr</td>
<td>8003</td>
<td>8003</td>
</tr>
<tr>
<td>NaCl</td>
<td>18:25</td>
<td>20:00</td>
<td>2</td>
<td>mcg/kg/min</td>
<td>8020</td>
<td>8003</td>
</tr>
<tr>
<td>Noradrenaline</td>
<td>18:25</td>
<td>20:00</td>
<td>20</td>
<td>ml/hr</td>
<td>8020</td>
<td>8003</td>
</tr>
</tbody>
</table>

• The nurse decides to increase the drug rate at 18:25 to 2 mcg/kg/min.

• As a result, the ENDTIME for the two rows corresponding to the solution (NaCl and noreadrenaline) is set to 18:25.
Medication

- **INPUTEVENTS_MV table (cont.)**

<table>
<thead>
<tr>
<th>Item</th>
<th>STARTTIME</th>
<th>ENDTIME</th>
<th>RATE</th>
<th>RATEUOM</th>
<th>ORDERID</th>
<th>LINKORDERID</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>18:20</td>
<td>18:25</td>
<td>1</td>
<td>mcg/kg/min</td>
<td>8003</td>
<td>8003</td>
</tr>
<tr>
<td>Noradrenaline</td>
<td>18:20</td>
<td>18:25</td>
<td>10</td>
<td>ml/hr</td>
<td>8003</td>
<td>8003</td>
</tr>
<tr>
<td>NaCl</td>
<td>18:25</td>
<td>20:00</td>
<td>2</td>
<td>mcg/kg/min</td>
<td>8020</td>
<td>8003</td>
</tr>
<tr>
<td>Noradrenaline</td>
<td>18:25</td>
<td>20:00</td>
<td>20</td>
<td>ml/hr</td>
<td>8020</td>
<td>8003</td>
</tr>
</tbody>
</table>

- Two new rows are generated with a STARTTIME of 18:25.
- These two new rows would continue until either (i) the drug rate was changed or (ii) the drug was delivery was discontinued.
Medication

- INPUTEVENTS_MV table (cont.)

<table>
<thead>
<tr>
<th>Item</th>
<th>STARTTIME</th>
<th>ENDTIME</th>
<th>RATE</th>
<th>RATEUOM</th>
<th>ORDERID</th>
<th>LINKORDERID</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>18:20</td>
<td>18:25</td>
<td>1</td>
<td>mcg/kg/min</td>
<td>8003</td>
<td>8003</td>
</tr>
<tr>
<td>Noradrenaline</td>
<td>18:20</td>
<td>18:25</td>
<td>10</td>
<td>ml/hr</td>
<td>8003</td>
<td>8003</td>
</tr>
<tr>
<td>NaCl</td>
<td>18:25</td>
<td>20:00</td>
<td>2</td>
<td>mcg/kg/min</td>
<td>8020</td>
<td>8003</td>
</tr>
<tr>
<td>Noradrenaline</td>
<td>18:25</td>
<td>20:00</td>
<td>20</td>
<td>ml/hr</td>
<td>8020</td>
<td>8003</td>
</tr>
</tbody>
</table>

- The ORDERID column would be identical for each instantiation of NaCl and noradrenaline which corresponded to the same solution/rate.
- That is, for the infusion given between 18:20 and 18:25, both NaCl and noreadrenaline would have the same ORDERID.
Medication

- INPUTEVENTS_MV table (cont.)

<table>
<thead>
<tr>
<th>Item</th>
<th>STARTTIME</th>
<th>ENDTIME</th>
<th>RATE</th>
<th>RATEUOM</th>
<th>ORDERID</th>
<th>LINKORDERID</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>18:20</td>
<td>18:25</td>
<td>1</td>
<td>mcg/kg/min</td>
<td>8003</td>
<td>8003</td>
</tr>
<tr>
<td>Noradrenaline</td>
<td>18:20</td>
<td>18:25</td>
<td>10</td>
<td>ml/hr</td>
<td>8003</td>
<td>8003</td>
</tr>
<tr>
<td>NaCl</td>
<td>18:25</td>
<td>20:00</td>
<td>2</td>
<td>mcg/kg/min</td>
<td>8020</td>
<td>8003</td>
</tr>
<tr>
<td>Noradrenaline</td>
<td>18:25</td>
<td>20:00</td>
<td>20</td>
<td>ml/hr</td>
<td>8020</td>
<td>8003</td>
</tr>
</tbody>
</table>

- LINKORDERID would further link the drug across all administrations, even when the rate is changed.
Topics

• Introduction
• Overview
• Patient Information
• Medications
• **Lab Tests**
• Outputs
• Diagnosis and Procedures
• Clinical Notes
• How to Get Access?
Lab tests

• Three tables contain lab test record
 • CHARTEVENTS
 • LABEVENTS
 • MICROBIOLOGYEVENTS

• Two tables contain itemid label information
 • D_ITEMS (for CHARTEVENTS and MICROBIOLOGYEVENTS)
 • D_LABITEMS (for LABEVENTS)
Lab tests

- CHARTEVENTS table
 - CHARTEVENTS table contains all the charted data available for patients.
 - It contains routine vital signs and any additional information relevant to their care: ventilator settings, laboratory values, code status, mental status, and so on.
 - As a result, the bulk of information about a patient’s stay is contained in CHARTEVENTS more than lab tests.
 - Furthermore, even though laboratory values are captured elsewhere (LABEVENTS), they are frequently repeated within CHARTEVENTS.
 - In cases where there is disagreement between measurements, LABEVENTS table should be taken as the ground truth.

<table>
<thead>
<tr>
<th>ITEMID</th>
<th>CHARTTIME</th>
<th>STORETIME</th>
<th>CGID</th>
<th>VALUE</th>
<th>VALUENUM</th>
<th>VALUEUOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>220051</td>
<td>2157-10-21 12:15:00</td>
<td>2157-10-21 12:15:00</td>
<td>16978</td>
<td>74</td>
<td>74</td>
<td>mmHg</td>
</tr>
<tr>
<td>226512</td>
<td>2157-10-21 12:15:00</td>
<td>2157-10-21 12:15:00</td>
<td>16978</td>
<td>66.8</td>
<td>66.8</td>
<td>kg</td>
</tr>
<tr>
<td>220046</td>
<td>2157-10-21 12:43:00</td>
<td>2157-10-21 12:43:00</td>
<td>16978</td>
<td>110</td>
<td>110</td>
<td>bpm</td>
</tr>
</tbody>
</table>
Lab tests

• CHARTEVENTS table (cont.)
 • Itemid: identifier for a measurement type in the database
 • The label and definition of itemid can be found in D_ITEMS table
 • For example, itemid 212 in CHARTEVENTS is ‘heart failure’
 • Value: the value measured for the item.
 • If this value is numeric, then VALUENUM contains the same data in a numeric format.
Lab tests

• LABEVENTS
 • This table contains information regarding laboratory based measurements.
 • Label of each itemid can be found in ‘D_LABITEMS’ table.
 • The data gathering process is as follows
 • 1) Clinical staff acquires a fluid form a site in the patient body
 • 2) The fluid is barcoded to associated with the patient and timestamped
 • 3) The lab analysis is run and result is returned within 4-12 hours.
 • The charttime column records when an observation is created.
 • It is closest proxy to the time the data was actually measured.
Lab tests

• LABEVENTS (cont.)
 • Value field contains the value measure for the lab item.
 • FLAG field indicated whether the value is considered abnormal or not using pre-defined thresholds.
 • A patient without hospital admission ID (hadm_id) is a lab value obtained as outpatient.
Lab tests

- **D_LABITEMS**
 - Contains identifiers associated with lab measurements.
 - Each entry has LOINC codes.

- Fluid: the substance which the measurement was made.
- Category: higher level info as to the type of measurement.

<table>
<thead>
<tr>
<th>ITEMID</th>
<th>LABEL</th>
<th>FLUID</th>
<th>CATEGORY</th>
<th>LOINC_CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>50800</td>
<td>SPECIMEN TYPE</td>
<td>BLOOD</td>
<td>BLOOD GAS</td>
<td>NULL</td>
</tr>
<tr>
<td>50801</td>
<td>Alveolar–arterial Gradient</td>
<td>Blood</td>
<td>Blood Gas</td>
<td>19991-9</td>
</tr>
<tr>
<td>50802</td>
<td>Base Excess</td>
<td>Blood</td>
<td>Blood Gas</td>
<td>11555-0</td>
</tr>
</tbody>
</table>
Lab tests

- MICROBIOLOGYEVETNS
 - Contains microbiology information, including tests performed and sensitivities.
 - CHARTTIME: time at which an observation was charted, and is usually the closest proxy to the time the data was actually measured.
 - SPEC_ITEMID and SPEC_TYPE_DESC: info on specimen
 - ORG_ITEMID and ORG_NAME: info on organism
 - AB_ITEMID and AB_NAME: info on antibody
 - INTERPRETATION: “S” is sensitive, “R” is resistant, “I” is intermediate, and “P” is pending

<table>
<thead>
<tr>
<th>CHARTTIME</th>
<th>SPEC_ITEMID</th>
<th>SPEC_TYPE_DESC</th>
<th>ORG_ITEMID</th>
<th>ORG_NAME</th>
<th>ISOLATE_NUM</th>
<th>AB_ITEMID</th>
<th>AB_NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>2165-06-03</td>
<td>70079</td>
<td>URINE</td>
<td>80004</td>
<td>KLEBSIELLA PNEUMONIAE</td>
<td>1</td>
<td>90022</td>
<td>AMPICILLIN/SULBACTAM</td>
</tr>
<tr>
<td>2165-06-03</td>
<td>70079</td>
<td>URINE</td>
<td>80004</td>
<td>KLEBSIELLA PNEUMONIAE</td>
<td>1</td>
<td>90019</td>
<td>CIPROFLOXACIN</td>
</tr>
<tr>
<td>2165-06-03</td>
<td>70079</td>
<td>URINE</td>
<td>80004</td>
<td>KLEBSIELLA PNEUMONIAE</td>
<td>1</td>
<td>90018</td>
<td>CEFTRIAXONE</td>
</tr>
<tr>
<td>2165-06-03</td>
<td>70079</td>
<td>URINE</td>
<td>80004</td>
<td>KLEBSIELLA PNEUMONIAE</td>
<td>1</td>
<td>90017</td>
<td>CEFTAZIDIME</td>
</tr>
<tr>
<td>2165-06-03</td>
<td>70079</td>
<td>URINE</td>
<td>80004</td>
<td>KLEBSIELLA PNEUMONIAE</td>
<td>1</td>
<td>90013</td>
<td>TOBRAMYCIN</td>
</tr>
</tbody>
</table>
Topics

• Introduction
• Overview
• Patient Information
• Medications
• Lab Tests
• **Outputs**
 • Diagnosis and Procedures
 • Clinical Notes
• How to Get Access?
Outputs

• Outputs are fluids which have either been excreted by the patient, such as urine output, or extracted from the patient, for example through a drain.

• All outputs records are in OUTPUTEVENTS table.
 • The time at which the output is measured is recorded in the CHARTTIME column.
 • There is no start time recorded with outputs - CHARTTIME corresponds to the time that the volume had been output by.
 • The volume of output is recorded in the VALUE column, and the unit of measurement is provided in the VALUEUOM column (usually milliliters, or mL).
 • It is usually reasonable to assume that any output recorded is for the interval between the current CHARTTIME and the previous CHARTTIME for the same item.
Topics

• Introduction
• Overview
• Patient Information
• Medications
• Lab Tests
• Outputs
• **Diagnosis and Procedures**
• Clinical Notes
• How to Get Access?
Diagnosis

• **DIAGNOSES_ICD** table contains tuples of patient id (subject_id), admission id (hadm_id), and ICD-9 code.

• No timestamp information is available.

• The code field for the ICD-9-CM Principal and Other Diagnosis Codes is six characters in length, with the decimal point implied between the third and fourth digit for all diagnosis codes other than the V codes.

• The decimal is implied for V codes between the second and third digit.

• Sequence number: ICD diagnoses are ordered by priority - and the order does have an impact on the reimbursement for treatment.

• **D_ICD_DIAGNOSES** table contains label for each ICD-9 code.
Procedures

• PROCEDURES_ICD table contains procedure record.
 • Similar structure to DIAGNOSES_ICD table:
 • Patient id, admission id, ICD-9 procedure code, and sequence number.
 • D_ICD_PROCEDURES table contains label for ICD-9 procedure codes.
 • 3882 different kinds of procedures are used in this table.

• PROCEDUREEVENTS_MV table also contains procedure records.
 • Patient procedures for the subset of patients who were monitored in the ICU using the iMDSof MetaVision system.
 • 125 different kinds of procedures are used in this table.
Procedures

- CPTEVEENTS table contains current procedural terminology (CPT) codes which facilitate billing purpose.
 - CPT_CD : original CPT code
 - CPT_NUMBER: numeric version of CPT_CD
 - SECTIONHEADER: a category of the CPT code.
 - D_CPT table contains label for the CPT code.
Topics

- Introduction
- Overview
- Patient Information
- Medications
- Lab Tests
- Outputs
- Diagnosis and Procedures
- **Clinical Notes**
- How to Get Access?
Clinical Notes

- NOTEEVENTS table contains clinical free text note.
- Including nursing and physician notes, ECG reports, radiology reports, and discharge summaries.
- Full category:
 - Case Management
 - Consult
 - Discharge summary
 - ECG
 - Echo (echoencephalogram)
 - General
 - Nursing
 - Nursing/other
 - Nutrition
 - Pharmacy
 - Physician
 - Radiology
 - Rehab Services
 - Respiratory
 - Social Work
Other tables

• There are some tables that I didn’t mention in this slides.
• A brief is:
 • CALLOUT: Information regarding when a patient was cleared for ICU discharge and when the patient was actually discharged.
 • CAREGIVERS: Every caregiver who has recorded data in the database (defines CGID).
 • DATETIMEEVENTS: All recorded observations which are dates, for example time of dialysis or insertion of lines.
 • DRGCODES: Diagnosis Related Groups (DRG), which are used by the hospital for billing purposes.
 • SERVICES: The clinical service under which a patient is registered.
 • TRANSFERS: Patient movement from bed to bed within the hospital, including ICU admission and discharge.

• (The full brief is from http://www.nature.com/articles/sdata201635/tables/4)
Topics

• Introduction
• Overview
• Patient Information
• Medications
• Lab Tests
• Outputs
• Diagnosis and Procedures
• Clinical Notes

• How to Get Access?
Getting Access

1. Complete the required training course
 - Complete CITI “Data or Specimens Only Research” course
 - https://www.citiprogram.org/index.cfm?pageID=154&icat=0&ac=0
 - In the Human Subjects training category, select the “Data or Specimens Only Research” course
 - Complete the course and save a copy of your certificate.
 - Complete Pitt Required Educational modules for working with Biomedical data.
 - To be announced by Prof. Milos Hauskrecht

2. Request access to MIMIC-III
 - Create an account on PhysioNet using the following link: https://physionet.org/pnw/login
 - Follow the instructions on PhysioNet to apply for access to the MIMIC-III project, remembering to provide your CITI training certificate: https://physionet.org/works/MIMICIIIClinicalDatabase/access.shtml
 - When your application has been approved you will receive emails containing instructions for downloading the database from PhysioNetWorks.
 - Approval may take several weeks.
Questions?