Online Handwriting Recognition Technology
- State of the Art

Jingtao Wang
Group for User Interface Research
jingtaow@cs.berkeley.edu
Feb 3, 2003
My Background

• Designed and implemented the IBM embedded large vocabulary, multi-lingual (English, simplified and traditional Chinese, Japanese) online handwriting recognizer for mobile devices.

• Team lead - R&D of the IBM full page online handwriting recognizer for Asian languages (simplified Chinese, traditional Chinese and Japanese) on desktop/laptop computers (shipped in ThinkScribe, a.k.a CrossPad, and ThinkPad TransNote) at IBM China Research Lab.
The Proliferation of Handheld Devices
Agenda

• A Brief History
• Handwriting Recognition – Categorization and Related Applications
• Review of Classic On-line Handwriting Recognition Algorithms
• Embedded Handwriting Recognition Technology
• Pen Interfaces for Recognizers
• Conclusions
• Demo, Q&A
A Brief History

• 1914 Hyman Eli Goldberg, U.S. Patent 1,117,184, On-line recognition of hand-written numerals to control a machine in real-time.

• 1957 T. L. Dimond's stylator - the first on-line handwriting recognizer prototype

• Newton, Pen Computer, Palm, Crosspad, Thinkpad TransNote and TabletPC
Handwriting Recognition - Categorization and Applications

• Printed Character Recognition (OCR)
 – Relatively mature these days, key challenges – layout analysis, fonts recovery, robust recognition for low quality, low resolution input
 – Major applications: digital library, document management, digitize legacy paper publications, portable dictionary

• Handwritten Character Recognition
 – Online HWR (with temporal info, i.e. stroke trace info)
 • Character, Word, Sentence Level
 • Text entry, Gesture Command & Control, Annotation & Retrieval
 – Offline HWR (using raster image as input, no temporal info)
 • A rich test bed for pattern recognition research
 • Major Usage - Postal automation, census automation, automatic form processing
Beyond Individual Characters – Word and Sentence Level Recognizer

• Build on top of the character recognizer
• General strategy:
 – Over segmentation
 – Calling a character/component recognizer, getting a list of candidates with scores
 – Applying geometry spatial information (size, component gap) and language information (dictionary, language model etc) to each sub path
 – Using hypothesis search (Dynamic Programming, A*, Beam Search etc) to determine the best possible path
Challenges in Online Handwriting Recognition

• Character set/Dictionary Size
 – 6763 Characters in GB2312 (Simplified Chinese)
 – 13K Characters in BIG5 (Traditional Chinese)
 – 5k Characters in JIS (Japanese)

• Stroke number variations
 – Cursive Writing Styles/Broken strokes/duplicate strokes/omitted components

• Stroke order variations

• Limited memory and Computing Power on Small Devices
A Generic Recognition Workflow

1. Preprocessing
2. Feature Extraction
3. Coarse Classification
4. Detailed Matching
5. Post Processing
Common Recognition Algorithms

- Knowledge/Heuristic Based
 - Decision Tree
 - Hand coded (Fuzzy logic :-)

- Global Feature Vector Matching
 - Parameter or Non-parameter classifier (KNN)
 - Neural Network (MLP, LVQ, PNN..)
 - Support Vector Machine (SVM)

- Structure Based Methods
 - Dynamic Programming/DTW
 - Graph Matching (e.g. DAG matching)
 - Hidden Markov Model
 - Time Delay Neural Network (TDNN)
 - Heuristics based stroke correspondence
Global Feature Vector Matching

• Classifier itself is usually not the most influential factor on accuracy !(less than 10%)
 – However, different classifiers do have different pros and cons in speed, charset switching, largest supported class number, training difficulty.

• Feature extraction/selection usually determines the upper bound of performance

• Common pitfalls
 – Extract multiple feature types and use them directly
 – Extract too many dimensions of feature
Structure Based Methods

• Construct sub-components of handwriting, then use some algorithms to solve the component correspondence problem between the input and the prototypes
• Commonly used sub-components
 – Loop points, Crisp points, Cross points, Curvature points (usually for Western languages)
 – Stroke, Stroke segment (linear approximation of strokes)
 – Start, end points, equal distance/equal number sampling points
 – Radicals (usually for Asian Languages)
Examples of a HMM Based Recognizer

Original Input → After preprocessing, Segmentation and Feature Points Detection → Matching/Correspondence Results after Backtracing
An Example of Stroke Correspondence

Template Input

\[D(x) = D_{1b} + D_{2A} + D_{3C} + D_{4D} \]

\[D = \min\{ D(x) \} \]
Commonly Used Recognizer Training Algorithms

- Competitive Learning (SOM, LVQ)
- Linear Programming (SVM)
- Back-Propagation (MLP)
- Expectation-Maximization (HMM, GMM)
- Boosting
- Clustering Algorithms
- PCA, LDA, FA and their variations
- Nonlinear function optimization methods
- Randomized Algorithms (MCMC, Simulated Annealing)
- Brute Force method
Trends in Current HWR research

• Using multiple classifiers to achieve robustness to handle input variations – Classifier Combination
 • Classifier voting, Confusion matrix, Decision classifier, Confidence value transformation
• Obtaining the parameters of a recognizer from large training data set, not from heuristics
• Using transformations to capture delicate shape variations (e.g. SAT)
• Leveraging powerful but time-consuming training algorithms
• User Adaptation Algorithm (Writer dependent recognition)
Major Player on This Arena (Desktop)

- **English**
 - IBM - Used in CrossPad, ThinkPad TransNote
 - Microsoft - In OfficeXP, TabletPC (licensed part of source codes from Paragraph)
 - Motorola
 - Paragraph

- **Chinese/Japanese**
 - IBM
 - Motorola
 - Hanwang - Licensed to Microsoft for TabletPC
 - PenPower
 - Wintone
 - FineArts
Players in this Area
(Embedded/Lightweight)

• English
 – ART - ART Recognizer
 – CIT - Jot
 – IBM - Derived from the Multi-lingual version
 – Microsoft - Transcriber (Licensed version of Calligrapher) & Self developed single character recognizer
 – Motorola
 – Paragraph - Calligrapher

• Chinese/Japanese
 – FineArt – GoGo Pen
 – Hanwang - more than 70% PDA market share in mainland China
 – IBM Embedded HWR
 – Motorola Lexicus - DragonPen
 – PenPower – the most influential vendor in Taiwan
Lessoned Learned

• Collect a large enough data set (at least 200 * charset size) before the start of your research
• Trade-offs are necessary to compromise time & space
• No one-size-fits-all recognition algorithm, classifier combination is usually an effective solution
• Recognition algorithm is not simply a combinational optimization problem - must adapt your recognition model to human cognition model
• Train your recognizer, not code your recognizer!
• Beware of the curse of dimension (CoD)
UI Issues for Embedded Recognizers

• Character Segmentation
 – Uni-stroke
 – Time threshold
 – Spatial Information/ "Ping-pong" window
 – Language Information

• Character Set switching/identification
 – Shift Key/Shift Gesture
 – Specific writing Areas for different character sets
 – Showing guide line in the writing area

• Pen Gesture integration
Prototype Recognizer Interfaces at IBM
Sentence/Page Level Handwriting Recognition

• Support more advanced devices: TransNote, CrossPad, Whiteboard, WebPad, etc.
• Geometry based segmentation combined with a language model

保持咖啡新鲜请储存在干燥的地方
性格を重視する人が多いようだ
133 M Hz 处理器
Pen/Handwriting Technology - Hardware

- **ThinkScribe/CrossPad**
 - Writing on paper
 - Hardware: digitizer, display,
 - memory cpu, IR/Serial, AAA battery
 - Software and API

- **ThinkPad TransNote**
 - 10.4" pivoting touch screen
 - Input by keyboard, touch screen, or handwriting
 - 600-MHz Pentium III processor
 - 10g hard disk
 - folding portfolio

- **InkManager Pro**
 - Ink storage
 - Index of keyword, todos, messages
 - PIM updater connection with lotus notes, organizer, MS-outlook, etc.
 - InkXfer
Collaborative Input via Laptop and PDA

"Handwriting On the Move" - Input solutions for mobile laptop users
Demo
Questions ???

[Image: A meeting scene with a person addressing two others, one of whom is writing with a pen.]