
CS 2510: GRADUATE OPERATING SYSTEMS
FALL 2017

Project 2 – Synchronization

Introduction
Multicore processors are now a mainstay of commodity computing, from mobile devices to server class systems. This
has required Operating Systems to now consider parallel architectures as the predominant substrate of execution, and
has given rise to many new approaches and designs. Synchronization poses one of, if not the, largest challenges
for these new environments. When multicore CPUs were being introduced poorly designed synchronization limited
scalability due to the prevalence of course grained global locks that only allowed a single core to execute a given
operation. One example of this can be seen in the process scheduler for Windows Vista that included a global lock in
the system wide process dispatch routine and other issues that resulted in large performance degradation with more
than 8 cores 1. If you have followed Linux development then you have probably heard mention of the BKL (Big Kernel
Lock) that prevented more than a single core from operating in the kernel at any given time. As a result the number of
synchronization operations has exploded as OS designers move towards finer grained locking strategies.

In order to ensure that OS performance continues to scale as the number of cores increases synchronization ap-
proaches have taken the spotlight. In this project you will implement a small selection of synchronization primitives
used on the x86. This project is broken into multiple parts, and builds on itself as you complete it. In this project you
will implement:

• Memory barriers
• Atomic operations
• Barriers
• Spinlocks
• Reader-Writer Locks
• A lock free queue

The project framework can be downloaded from the course website, and assumes that you have a 64 bit Linux
environment. The project evaluation will be conducted on a 64 bit version of Ubuntu, and it is your responsibility to
ensure that your code functions correctly in that environment. Inside the unpacked project framework you will find a
set of files that include a set of evaluation routines (driver.c) and the implementation files for the locking operations
(locking.h and locking.c). For this project you will only modify locking.c and locking.h, you may not make any
changes to driver.c.

Inside locking.c you will find a set of function declarations that you will need to implement. You are not allowed to
change the function prototypes. You may implement additional functions if you so choose, but the functions provided
are sufficient to complete the project in its entirety. The amount of code for this project will be relatively small (less
than 300 lines of code), so each function implementation will be fairly concise. Some functions include an struct
argument that is defined in locking.h. You may modify these structures however you choose. You will not have to
manage the structures allocations and deallocations, as that will be handled inside the driver implementation. We
recommend you implement this project from the start to the end in order, as there is a loose dependency on the
primitives. Meaning, that later primitives can and will make use of earlier operations.

Synchronization primitives utilize the very low-level behavior of the CPU. Implementing them requires that a pro-
grammer very carefully manage a CPUs execution directly in order to make sure it does the correct thing. Accordingly
the basic synchronization primitives are generally implemented directly in assembly language to ensure that the CPUs
operation is correct. For this project you will implement a mixture of inline assembly and C code to achieve the correct
behavior.

1http://betanews.com/2009/11/17/pdc-2009-scuttling-huge-chunks-of-vista-architecture-for-a-faster-windows-7/



Memory Barriers
The first operation you will implement is a simple memory barrier. These are used to ensure that the compiler does not
reorder or omit certain memory operations as part of its optimizations. A memory barrier does not necessarily interact
at all with the hardware, but instead is a signal to the compiler that memory operations that placed before the barrier
must occur before any memory operations placed after the barrier. Without barriers the compiler is free to reorder
operations in anyway it wants as long as the behavior is consistent according to its own behavioral model.

As an example of why this is useful consider a very basic locking strategy that uses an integer counter located in
memory.

int global_lock = 0;

void do_something() {

// make sure that lock is available (global_lock == 0)

global_lock = 1;

// do something

global_lock = 0;

}

In this case a compiler is not aware that the operation on global_lock has any side effects outside of simply
setting its value to 1. Therefore the compiler might decide to reorder the operations so that global_lock is set to
1 after the critical region do something. Or it might simply remove the operations on global_lock altogether
because it is pointless from the point of the of the compiler (setting the value to 1, and then to 0 without reading it is
the same as just leaving its value as 0.)

In order to prevent the compiler from making these mistakes you will need to implement mem_barrier which
will tell the compiler that it cannot rely on memory values persisting across its invocations.

Atomic Operations
Next you will need to implement simple atomic operations. Modern multicore x86 processors implement a shared
memory model with cache coherency that ensures that each core sees a consistent version of the same memory space
as every other core. This means that when one core performs a single memory operation it is immediately visible to
every other core in the system. This behavior provides the substrate by which all synchronization is performed on x86
platforms.

Atomic operations are the simplest form of synchronization and provide a building block for many of the higher
level synchronization operations. Their necessity is due to the fact that x86 memory operations are very rarely “sim-
ple”, in that they require multiple memory operations in order to complete. At the basic level a memory operation is
either a load or a store that either reads or writes a value to a given memory address, as should be familiar to you if
you have taken an architecture course (see RISC vs. CISC). The x86 exposes a complex ISA that is implemented as
a RISC ISA under the covers. This means that a single x86 instruction is actually implemented as a set of micro-ops
(such as load/store).

The upshot of this is that the cache coherency protocol of the x86 operates on micro-ops but not entire x86 instruc-
tions. Therefore if you have a complex instruction (such as an add) that is implemented via a sequency of micro-ops
that first reads a memory address, modifies its value, and then stores it back to the same location, the hardware provides
no guarantee that another core will not modify the value in the middle of add instruction’s execution.

This means that by default, x86 operations are not atomic. To make an operation atomic, a programmer must
explicitly indicate that desire to the CPU. When the CPU detects this it acquires a lock on the memory bus for the



duration of a single instruction. Implementing this functionality requires that the programmer add a special “lock”
prefix to the instruction they wish to make atomic.

For this part of the project you will need to implement atomic verisons of both add and substract.

Spinlocks
Spinlocks represent one of the most popular forms of locking, and are used as a general locking primitive to provide
straight-forward mutual exclusion. Spinlocks get their name from the fact that historically they utilize a polling or
busy-wait approach while waiting for a currently held lock to be released. Many current spinlock implementations try
to take a more nuanced approach to waiting for a lock that does not impose the utilization penalties associated with
polling. In this project we will only focus on a naive spinlock implementation that busy-waits (polls) while waiting
for a lock to be released.

Each spinlock is initialized via spinlock_init which passes a pointer to a spinlock state structure that you will
fill in. After a spinlock is intialized it maybe be acquired via spinlock_lock and released with spinlock_unlock.
Only a single thread is allowed to acquire a spinlock at any given time, threads that try to acquire an already taken lock
must wait until they are able to acquire the lock themselves.

Note that the there is a fairly complicated set of tasks that are required by the spinlock code. It must check to see
if a lock is available and then acquire it if its free. This must all be done atomically, to ensure another thread does
not acquire the lock between detecting that it is free (memory read) and marking it as acquired (memory write). To
achieve this the x86 has implemented a special set of instructions that perform complex memory operations. For this
project you will utilize the compare-and-swap instruction cmpxchg. You must implement the functionality using the
x86 ISA, and are not permitted to use wrappers located in the C runtime.

Barriers
Barriers are a way by which multiple threads wait a specific location in the code until other threads in the system have
reached the same location. This primitive allows a programmer to implement a single synchronization point that can
be used to ensure that an application executes in lock step behavior. These operations are extremely popular in parallel
distributed systems and a predominant feature in many MPI based parallel applications. While they are most often
seen in distributed memory systems, they have their use in shared memory environments as well.

As an example of why you would use a barrier consider a scientific application that simulates a physical phenomena
over time. The simulation is broken into a series of timesteps that each represent a given quanta of simulated time.
The simulation code that executes is exactly the same for each timestep, and modifies a shared buffer that represents
the current state of the simulated system at a given point in time. Now imagine what would happen if one core got
out of sync with the rest and began simulating a different timestep than the rest of the cores. Because the simulation
is using a single shared buffer to store the state data, the simulation would no longer be valid as the buffer no longer
represented the correct state at a given point in time. To prevent this from happening, such an application needs to
ensure that every core is operating on the same timestep. If one core finishes before the others it needs to wait for the
others to finish instead of moving ahead to the next time step before the other cores. Barriers provide a way to ensure
this behavior.

For this part of the project you will need to implement a simple barrier primitive. The barrier will be initialized
with a certain count which will indicate the number of threads that the barrier will need to wait for. A thread will
signal its arrival at the barrier by calling barrier_wait, which will be responsible for ensuring the thread does
not continue execution until the appropriate number of threads (as specified by the init function) have arrived at the
same location. Once all the threads have reached the barrier, they will be allowed to continue. The barrier should
automatically “reset” itself: That is a barrier should be able to handle multiple iterations of waiting with only a single
initialization.

For reference you may want to read the man page for pthread_barrier_wait().

Reader Writer Locks
Reader writer locks are a specialized form of spinlocks designed for a particular use case where reads happen much
more often than writes. To see why this distinction is useful, we go back to the behavior of the x86’s cache coherency
protocol. Cache coherency ensures that memory operations that modify a memory value are atomic and immdiately
visible to every core on the system. However, this key here is that the coherency protocol only comes into play when



memory is modified. If memory is simply being read then there is no reason why multiple cores cannot each access
the value concurrently without any ramifications. Each core caches the value of the memory locally, and provides
immediate access to it without notifying the other cores. For simple behaviors with a single writer thread modifying
a single memory word this is all that is needed, as the cache coherency protocol will ensure that any modification is
propagated to the rest of the cores which will then use the updated value for subsequent reads. However for anything
beyond the basic case, a more complicated locking scheme is needed.

One example of a more complex case is a function that references a memory value repeatedly as part of its execu-
tion. The only requirement this function has is that the value does not change in the middle of the function. That is
a memory reference at the beginning of the function should always be equal to a memory reference at the end of the
function. If it is a read only variable then there is no problem, however what happens if the variable is occasionally
modified? We need some way to ensure that the modification happens while the function that reads the value is not
running anywhere in the system. It is cases such as these that Reader Writer locks are designed for.

Reader Writer locks provide a way for multiple readers to concurrently access a memory value with the assurance
that it will not be modified. This is achieved by requiring each reader to acquire a read lock that prevents modifications
to occur while still allowing other readers to access the value. When a modification is required code must acquire a
write lock that behaves like a normal spin lock and ensures full mutual exclusion to the writer. This creates a scenario
where multiple readers may concurrently acquire read locks until a writer requests a write lock, at which point they
must wait until the writer completes and releases the write lock. Conversely a writer must wait for all the current
readers to release their locks before the write lock is acquired

For this part of the project you will need to implement reader writer locks. You will have to handle lock acquisitions
and releases for both readers and writers. While there is some complexity in a reader writer lock’s behavior when
dealing with read lock requests while a writer is waiting, for this project we will again take the simple approach. Once
a writer requests a write lock, any subsequent reader must wait for the writer to acquire and release the lock before
they are allowed to acquire a read lock.

Lock Free Queue
Locking is a complicated business and is the largest source of complexity in modern systems. A good rule of thumb for
when to use locking is to (1) Don’t, unless you absolutely have to, and (2) lock at the finest granularity possible to avoid
performance penalties and possible deadlock scenarios. When people are first getting started with concurrency, there
is a common tendency to use locks frequently and in complex manners. 99% of the time this is a mistake. You should
always try to minimize the amount of time you hold a lock, not just for performance but also to avoid complexity in
the code. In particular you should avoid as much as possible situations where you call out of a function while holding
a lock. Dealing with concurrency requires a certain mentality, and the first step to achieving that mentality is the
realization that locking is a necessary evil that should be minimized whenever possible.

As a result of the perils introduced by locks, many people have sought alternatives to the traditional mutual exclu-
sion based locking approaches. One such example is the use of lock-free data structures, in particular queues. A lock
free data structure is a data structure that is capable of being operated on simultaneously by multiple threads.

For the last part of this project you will implement a lock free queue, as described in Implementing Lock Free
Queues by John D. Valois (available on the course website). You will need to implement the algorithm described in
section 3.4 (“A New Lock-Free Queue”). In addition to the implementation code please include a short answer to the
question below.

Question:
The test function uses multiple enqueue threads and a single dequeue thread.
Would this algorithm work with multiple enqueue and multiple dequeue threads? Why or why not?

Conclusion
As you have seen, all of the synchronization operations you have implemented so far have relied on atomic features
provided by the architecture. In the case of the x86 (and most other architectures) these features are implemented
via hardware on a system wide level. That is an atomic operation requires locking the memory bus across the entire
system, and relies entirely on the system wide cache coherency protocol that manages the caches of all the cores.



As core counts continue to increase the this arrangement will quickly encounter fundamental scalability problems as
cache coherency introduces more and more overhead. Indeed Intel is currently investigating CPU architectures that
have partitioned cache coherency domains. While the primitives we explored in this project will most likely remain
relavent for many years to come, new approaches to synchronization are being actively explored and developed.
For example, transactional memory is an approach to providing synchronized behavior in a way that avoids explicit
locking.

Submission
To submit your code, please send a tarball containing your locking.h and locking.c files to jacklange@cs.pitt.edu.
Along with the code please include a readme file that explains the state of your code (What is working and what is
not). Inside the readme also provide an answer to the question about Lock Free Queues included at the end of this
handout.


