
u-PC: Personal Workspace on a Portable Storage
Injung Kim*, Min Kyung Hwang, Woojoong Lee, Chanik Park

Department of CSE/GSIT*

Pohang University of Science and Technology,

San 31, Hyoja-dong, Pohang, Kyungbuk, Republic of Korea

{pypupipo, hmk0119, wjlee, cipark} @ postech.ac.kr

ABSTRACT

In these days, people easily meet a public computer at any place.

For instance, when visiting someone’s office to take part in a

meeting, a user usually faces an unfamiliar workspace on the

computers. Even if the user has a Microsoft PowerPoint file on the

USB flash device, it is common that the user can not open the file

because of different versions or absence of appropriate

applications. In order to avoid this situation, people carry on their

laptop or try to access e-mail clients.

In this paper, we propose a framework called ubiquitous personal

computing environment (u-PC) that supports mobility of personal

workspace within any portable storage. This framework is

specially designed for fast and light-weight switching between

carried workspace on the portable storage and native one on the

public computers. For supporting the application mobility, we

present a mechanism performed by filtering file and registry I/Os

in order to extract platform-dependent resources such as system

libraries, application settings and registry information, during

application installation process. Then, the filtered resources are

stored to the portable storage so that the framework can provide

the resources for applications by forwarding I/O requests which

enable to execute these applications independently when being

invoked and requesting the filtered resources. Additionally, the

framework includes the module supporting the wireless portable

storages that is designed by using iSCSI and UPnP standards for

automatic detection and initialization.

Finally, we implement a prototype of the framework to prove our

concept and to show adaptability in real-world conditions. Some

limitations and future works are also presented.

Categories and Subject Descriptors

D.4.3 [Operating Systems]: File Systems Management – Access

methods.

D.4.4 [Operating Systems]: Communications Management –

Input/output.

General Terms

Application, User Profile, User Data, Portable Storage, iSCSI,

UPnP, File I/O, Registry, Windows Kernel.

Keywords

Personal Workspace, Application Mobility, File and Registry

Hooking, File Forwarding.

1. INTRODUCTION
In the emerging ubiquitous computing, people want to use their

customized personal computing environment at any time and any

place. Let us consider a Windows operating system based desktop

which is used every day by a user. Once the Windows OS boots up,

it loads initial processes and brings up configuration related to the

user who has logged in [3]. For the user, Windows OS constitutes

the personal computing environment including desktop settings,

application settings, internet settings, and personal data. We define

it as personal workspace in this paper.

The user may require certain files or own personal workspace from

public computers while being away from own computer. Although

it is possible to carry the data files by using USB flash devices

(UFD), e-mail clients, or FTP programs, it is difficult to open such

files on other computers due to different versions or absence of

appropriate applications.

Therefore, there is a strong necessity for a framework which

provides mobility of personal workspace. However, it is not

simple to move the applications or user profile because they are

closely correlated to the Windows OS. Unlike Linux, application

installation requires not only uncompressing of application binary

files but also configuring and registering of the application in the

Windows OS. Windows system has a special mechanism to

maintain application configuration and system configuration, that

is, registry. It is difficult to control registry since the user can not

directly monitor it in the user mode. Also, some host dependant

files created during application installation need to be set up on

the special location like system root. Therefore, our technique

presents mobility of applications and user profile because the user

may not know where they are placed or how they are related with

the system.

We also present a framework for detecting a wireless portable

device and loading u-PC software automatically. By using iSCSI

and UPnP standards, the wireless portable storage is detected by

Table 1. Comparison with similar systems to u-PC

- Based on UFD

- Mainly supports non-

commercial applications

- Application mobility

supports for Windows

- Supports any type of UFD

CeedoU3 MojoPac u-PC

Pros

- Open standard based

(U3 middleware platform,

a specialized H/W specification)

- Security policy

- Application mobility supports

for Windows

- Supports any type of UFD

- Virtual workspace like a native

Windows OS

- Security policy

- Personal workspace mobility

supports for Windows

- Supports any type of

portable storage

Cons

- Applications must be modified

- Requires specially designed

H/W

- Based on UFD

- Relatively long initialization

and setup time

- A few applications supported

currently

- Requires host PC set up

UPnP & iSCSI client

- Based on UFD

- Mainly supports non-

commercial applications

- Application mobility

supports for Windows

- Supports any type of UFD

CeedoU3 MojoPac u-PC

Pros

- Open standard based

(U3 middleware platform,

a specialized H/W specification)

- Security policy

- Application mobility supports

for Windows

- Supports any type of UFD

- Virtual workspace like a native

Windows OS

- Security policy

- Personal workspace mobility

supports for Windows

- Supports any type of

portable storage

Cons

- Applications must be modified

- Requires specially designed

H/W

- Based on UFD

- Relatively long initialization

and setup time

- A few applications supported

currently

- Requires host PC set up

UPnP & iSCSI client

any public computer and starts to load u-PC software package.

Then, the user can work in the personal workspace without extra

application installation or setting up the connection.

There are similar systems such as Thin-clients, SoulPad [6],

DeskPod [7], U3 [9], MojoPac [4], and Ceedo [1]. Each of them

supports relatively more applications, security policy, or clear

division of personal workspace from the host PC than the u-PC

framework. However, they have some disadvantages of requiring

high quality of network latency, having to reboot the system,

supporting only Linux environment, needing a special hardware,

or having long setup time. Therefore, we propose a system, called

u-PC, which supports mobility of personal workspace simply and

easily.

The user can easily access many types of flash memory devices to

carry personal workspace, for example, USB hard drives, iPods,

and MP3 players. It needs enough space to store applications and

user data, but minimum capacity for using u-PC is only about

30MB. Since the portable storage devices tend to be cheaper and

have faster access, it is reasonable to use them for moving

applications and user profile.

u-PC can be represented by two strengths. First, it supports

mobility of various types of applications, including editor, image

viewer, media player, FTP server, and compression applications.

We have tested some applications such as Hangul, Acrobat Reader,

Edit Plus, GhostScript, GVim, Winamp, Adrenaline, and so on.

Also, we plan to extend the number of applications. As for

executing u-PC applications on some host PC, the user does not

need to worry about conflicts of the same applications which are

already installed in the host PC, since u-PC registers the registry

information of applications into the u-PC registry hierarchy not

the original one.

Second, mobility of user profile makes a user feel comfortable

when starting the u-PC software package on any host PC since

visible environment is almost the same as the user’s desktop. This

user profile can be desktop surroundings, internet surroundings

and application data. Mobility of user profile aims at application

attributes as well as familiar computing environment such as a

wallpaper, a first page of web browser, bookmarks, and so on.

Generally, portable storage is used for carrying user data files. u-

PC, however, serves mobility of applications as well as user

profile and data files within any portable storage device. It affects

the development of portable storage device industries by providing

a new kind of services.

The remainder of this paper is organized as follows. In Section 2,

we describe related work. Section 3 discusses the u-PC

architecture, and Section 4 explains how the u-PC device is

detected and u-PC software package loads into the host PC.

Section 5 presents how u-PC supports the application mobility. In

Section 6 we present the technique of how user profile could be

mobile. Finally, Section 7 concludes this paper and highlights

ideas for future work.

2. RELATED WORK
Due to decreasing cost of the hardware, increasing computer

infrastructure and trade-off among performance, weight, and size,

recent research tends to focus on the software-approach. It is more

efficient to move data with portable storage such as USB drives

instead of laptop or sub-laptop computers. To an extent, recent

research in software-approach to support user’s mobile computing

environment is composed of two approaches, network-based

approach and storage-based approach.

Thin-client systems [5, 8], which are the representative network-

based methods, require network access for the central server

infrastructure. Such systems put all applications and state

information to the server, and then logical executions run on the

server, that is, server-side computing. Also, remote desktop of

Windows system and XTerminal of UNIX system are a type of

network-based methods. To achieve a better performance of the

network-based approach, reliable network environment such as

high-bandwidth and low latency is essential.

Another approach, storage-based approach, is self-contained and

runs on any local host. Some environments such as SoulPad [6]

and DeskPod [7] achieve these features by providing a

virtualization mechanism. However, SoulPad needs to reboot and

configures for applying virtual machine monitors (VMMs) into the

host, and DeskPod only works on the Linux OS even though many

users are familiar with Windows OS.

Other environments such as U3 [9], MojoPac [4], and Ceedo [1]

are very similar to u-PC as shown in Table 1. They all support

application mobility for Windows and use a sort of portable

storage. U3 platform provides security policies and an open

standard based platform which is the U3 middleware platform, but

requires every application to be modified or programmed by U3

Data

Partition

Data

Partition

Partition for u-PC

Portable storage space

Dynamic loading &

unloading of u-PC S/W

Data and Registry

Synchronization

Host S/W components

Windows NT kernel

execution

installation

SYSTEM DRIVESYSTEM DRIVE
u-PC S/W components

Portable

Storage

u-PC Apps.

Launchpad

User Apps. &

Native Installer

of Apps.

Application Manager

User profile

Manager

User data

Manager

App. execution

Manager

Storage

Manager

Registry

Manager

Device

Event

Manager

Registry

API
u-PC AMSL

Reg. monitor File I/O filter

Registry File system

Binaries for

u-PC Apps.

User profile

information

u-PC S/W

package

Figure 1. u-PC architecture

specification, and using a specially designed U3-compatible

hardware is also essential. On the other hand, MojoPac proposes

virtual workspace like a native Windows OS, and supports

security policies. This system, however, has relatively long

initialization and setup time due to the change from a native

Windows OS to the virtual workspace. At last, Ceedo is in the

process of development. Therefore, it mainly supports non-

commercial applications which are opened sources. In comparison

with u-PC, these systems offer a number of applications, and

support the security policies to counter the loss of devices.

Many other systems have been proposed to support application

mobility, but they need to change an application itself, require a

specific hardware, take long startup time, and influence the system

settings on the host system. u-PC has been built from previous

work by [2], a system only for the application mobility in

Windows 2000. In this paper, we show the developed and

extended u-PC framework on several aspects which are provided

by working in Windows XP as well as Windows 2000, creating

mobility of ubiquitous personal computing environment that

includes user profile, user data, and applications, and supporting

more applications than before.

3. u-PC ARCHITECTURE
u-PC runs on either Windows 2000 or XP with any portable

storage device such as a USB flash or a hard drive. The overall

architecture of the system is depicted in Figure 1. The left side on

the figure describes how the host PC is composed once the u-PC

device is detected and the u-PC software components are

automatically loaded. The other side shows which data is stored in

the u-PC device.

Once the u-PC software package is installed onto the device, a

user is able to save own user profile information and applications

that the user wants to retrieve from the desktop to the hand. For

example, the user profile can be a wallpaper, a first page of web

browser, and bookmarks. Since most visible environment is

similar to the user’s desktop, user profile mobility can make the

user feel comfortable whenever the u-PC software package is

executed by UPnP and iSCSI standards which are described in

Section 4. Along with the user profile, applications could be

stored into the u-PC device by using the u-PC software package.

Also, the user can save one’s data in the data partition of portable

storage space.

The u-PC device detected by UPnP automatically loads the u-PC

software package into the host PC by the iSCSI server and client.

Once the u-PC software package is dynamically loaded, the device

event manager composes the u-PC software package that consists

of u-PC application launchpad, application manager, registry

manager, and storage manager.

When the device event manager shows the u-PC application

launchpad to the user, the user could select any action of u-PC by

using the u-PC application launchpad, a simple user interface. The

actions include applying user profile, accessing user data,

installing applications, executing applications, and removing

applications. When the user selects an action, the u-PC application

launchpad sends a request to the application manager.

The application manager has three different managers which are

core components of u-PC, and they are user profile manager, user

data manager, and application execution manager. Each manager

synchronizes data files and registry whenever they are modified,

and supports mobility of user profile, user data, and applications.

Also, each manager sends respective actions to the lower managers,

the registry manager and the storage manager. The application

manager supports these managers by registering the u-PC

application mobility support layer (u-PC AMSL) to the Windows

NT kernel.

First of all, for mobility of user profile, the user profile manager

backs up the user profile of the host PC by executing the registry

manager that uses registry API to extract the host PC’s user profile

information from the system drive to the u-PC device. Then, it

applies user profile of u-PC into the other host PC. At that time,

the user can see the changed wallpaper, user’s bookmarks on the

web browser, and so on. The user profile manager also goes back

to the original user profile of the host PC when device event

manager detects that u-PC device is not plugged anymore.

Second, for mobility of user data, the user data manager allows the

user to use data easily from the shortcut of data partition in the u-

PC device. The user can access it from the user interface of the u-

PC, that is, the u-PC launchpad.

Lastly, for mobility of desktop applications like Acrobat reader,

Photoshop, and Winamp, the application execution manager

provides two functions, the application installation and the

application execution. Both functions make applications portable

and execute them in the host environment without any failure of

file I/Os.

In the Windows kernel level, the u-PC AMSL works with registry

API, registry, and file system. In fact, Windows system supports

the layered kernel mode drivers so that I/O request packets (IRP)

can pass several drivers when handling the I/O requests. It means

that it is possible to add a driver under or above the function

driver, called a filter driver. The filter driver filters the I/O

requests in order to add or modify these behaviors. In this paper,

we have produced the personal workspace mobility by

implementing the u-PC AMSL, which includes two filter drivers,

registry monitor and file I/O filter.

The registry monitor is for monitoring when registry keys and

values are created, deleted, or modified. After the observation, it

records the changes of registry, and returns the information to the

registry manager by using registry API. The registry API is already

defined as how to access the system registry.

On the other hand, file I/O filter allows the storage manager to

access the file system, and if the user wants to execute the

applications, access the user profile, or obtain user’s data within

the u-PC device, the file I/O filter makes them appear to exist in

the host system.

Finally, when the u-PC device is plugged out, Windows system

broadcasts a message called WM_DEVICECHANGE to the entire

system whenever the status of portable storage is changed. At that

time, the device event manager catches the massage carefully and

judges whether the device is composed of u-PC or not. When the

device event manager confirms that it is the u-PC device, it starts

to clean the host PC just like the environment before using u-PC.

4. u-PC WITH UPnP/iSCSI STANDARDS
For the automatic operations of detecting a u-PC device and

loading a u-PC software package, u-PC is designed with

UPnP/iSCSI standards. We assume that a host PC has already set

up the UPnP and iSCSI client and is running them. Also, the u-PC

device is assumed to have set up the iSCSI server.

First, to detect the u-PC device, the host PC needs a special

protocol, UPnP. The UPnP technique, which represents universal

plug and play, is designed by Microsoft for the independent and

unified network environment. It enables to work as peer-to-peer

networking instead of central concentrated networking, and

executes on the different operating systems or platforms due to

using standard network techniques such as IP or HTTP. Devices

using the UPnP technique could have several operations which are

addressing, discovery, description, control, eventing, and

presentation. These six operations exist for the universal plug and

play. To detect the u-PC device, we especially use the discovery

operations which enable to detect any portable device without

central concentrated database.

Second, to load the u-PC software package, the host PC is

required to be set up the iSCSI client, and the u-PC device has to

be set up the iSCSI server. Once, the host PC detects the u-PC

device, it starts to load the u-PC software package by using the

iSCSI standards. The iSCSI technique, which means internet SCSI

or SCSI over IP, is a block-oriented storage access protocol that

enables a user to recognize a remote storage as their own local

block device through general TCP/IP networks. Since the iSCSI

uses the standard Ethernet switch and router for this kind of access,

it can not only be applied to Ethernet technologies, but can also be

used to create a storage networking system without any distance

restrictions that can equally be applied to wireless network

environment. Accordingly, focusing on this applicability, this

paper presents automatically loading environment to consist of

personal workspace from the u-PC to the host PC.

5. APPLICATION MOBILITY
In this section, we describe how u-PC supports the application

mobility. For the application mobility, we have to consider how u-

PC collects the information created during application installation

and how it works on the host PC without any conflict or error. The

former is described in Section 5.1, while the later is presented in

Section 5.2. The following two sub-sections present the method of

supporting the application installation and execution with detailed

explanation of u-PC AMSL which we have previously shown in

the architecture of u-PC in Figure 1.

5.1 Supports for the Application Installation
The Windows system uses a special type of database called

registry for keeping application settings as well as the entire

system. In this part, for carrying the entire application files and

registry to the portable storage, we hook the file and registry

requests during application installation processes. In Figure 1, the

AMSL component is in charge of this hooking process and

consists two parts of kernel mode driver, the file I/O filter and the

registry monitor.

The former, the file I/O filter, filters any file requests created

during the application installation and stores file information such

as a file path, a file name, and so on. The latter is the registry

monitor that monitors the changes of registry, and then records

detailed information such as registry values and registry keys. The

registry monitor handles registry actions with the Windows

registry API which is defined of creating, changing, and deleting

registry.

When the application installation process is over, the application

execution manager sends all of the created files and registry from

the system drive to the u-PC device by using the recorded

information. Finally, u-PC automatically removes all of these files

and registry from the system drive.

5.2 Supports for the Application Execution
u-PC makes the host PC to think that it can execute applications

encapsulated within the portable storage device as shown in

Section 5.1. It also makes an illusion and makes the user feels as if

the applications were installed on the system drive. To support the

 Table 2. Install time of three applications on the three different cases of devices,

the USB device with u-PC, the USB device without u-PC, and the system derive.

43 (min)

10 (min)

12 (min)

The USB device with u-PC

Hangul 2005 (288MB)

Acrobat reader 7.0 (42.9MB)

Winamp 5.23 (19.2MB)

Application (size)

2 (min)37 (min)

1 (min)9 (min)

1 (min)10 (min)

The system driveThe USB device

43 (min)

10 (min)

12 (min)

The USB device with u-PC

Hangul 2005 (288MB)

Acrobat reader 7.0 (42.9MB)

Winamp 5.23 (19.2MB)

Application (size)

2 (min)37 (min)

1 (min)9 (min)

1 (min)10 (min)

The system driveThe USB device

application execution, the u-PC AMSL works inside the Windows

kernel in order to filter file and registry requests from u-PC

applications.

The registry monitor enables to update the registry dynamically

which has been already registered by the registry manager when

the user starts to execute applications in the u-PC launchpad. To

monitor the changes of the registry, the registry monitor loads a

device driver which hooks the system calls on the Windows NT

kernel. When a user-mode process issues a privileged system call,

its control is transferred to the software interrupt handler, and it

takes a system call number which indexes into a system service

table to find the address of the NT function to handle the requests.

Before monitoring, the register monitor replaces those entries in

the table with pointers to filtering functions. Therefore, it is

possible to monitor the NT system services because the registry

monitor modifies the value of pointer on the function which

corresponds to the system call of modifying registry. Once the

pointer of adequate function is changed and the registry monitor

starts to monitor, the registry monitor updates the changed registry

from the system drive to the u-PC device whenever the

applications try to modify one’s registry.

Next, the file I/O filter plays an important role in the changed file

requests from the system disk to the portable device in order to run

applications which are encapsulated on the u-PC device. It

monitors every file requests inside the Windows NT kernel,

catches the file requests for the u-PC applications, and finally

changes the file requests toward the u-PC device where

corresponding files are placed. This occurs since the application

installation processes store all the files into the system drive.

Therefore, although the applications point the system drive, the

file I/O filter changes the requests to the portable storage and

returns successful responses of the file requests.

In conclusion, these routines make the u-PC applications work as

if they were installed on the system drive, and the applications

encapsulated on the u-PC device can work well without any

failure of the file I/O requests.

6. USER PROFILE MOBILITY
In this paper, we define the user profile for supporting carriable

personal workspace, which is composed of the following three

parts:

6.1 Application Configuration and Desktop

Environment
The mobile user wishes to execute applications consistently on

any host PC. For example, when a user manipulates some u-PC

applications, one can change the application settings such as

closing drawing tool bar and opening the table tool bar. Once the

user terminates to use the applications, moves around with the u-

PC device, and starts the applications again on the other host PC,

one may want to see the same status of the applications with the

table tool bar and no drawing tool bar. u-PC supports these

attributes by dynamically updating whenever the application’s

registry is modified.

Also, to supply much more familiar desktop environment, u-PC

user profile considers desktop environment such as a wallpaper,

Windows theme, attributes of folder, and so on.

6.2 Internet Environment
The u-PC user profile regards the internet environment as a

necessity to be mobile since most computing users use the web

browser. Therefore, u-PC carries the user’s favorite bookmarks,

recently opened web pages, cookies and so on.

6.3 Application Data
When a user is working on the Microsoft Outlook, the application

stores the received and sent e-mails as a data file. If the Microsoft

Outlook has no data when the user moves with u-PC device, and

runs it on the other host PC, then the user feels that it is useless.

We call it, application data, and the u-PC user profile framework

carries it on the u-PC device.

As a result, the u-PC user profile maintains the application

configuration, the desktop environment, the internet environment,

and the application data. It also supports dynamic updates by the

registry monitor, as we have mentioned in Section 5.

Another remaining aspect to consider about the u-PC user profile

is the entire sequence. As a matter of fact, the u-PC user profile

does not register as soon as the u-PC device is detected. At first,

the u-PC registry manager has to backup the current host’s user

profile, and then register that of the u-PC. For the backup of the

host’s user profile, the u-PC registry manager makes the registry

hierarchy of u-PC information. Soon after, when the u-PC device

is ejected physically, the device detect manager starts to clean up

the host PC as same as before starting u-PC. To clean the host PC,

the device detect manager accesses and uses the back-up

information in the u-PC registry hierarchy.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a framework called u-PC which

guarantees the portability of a personal workspace that includes

applications, user profile, and data. The key features of the

framework are not only filtering and logging the file I/Os but also

monitoring registry changes in order to obtain some platform-

dependent installation information during the installation process

made by application-specific installers. Then, it stores the

information to a portable storage playing a role in a u-PC device.

When the u-PC device is connected to another machine and

encapsulated applications are invoked, the information is used to

forward the file requests from the system drive to the portable

storage in case of requesting the filtered files.

u-PC will be improved in terms of installation time of applications

into the u-PC device. In fact, compared to the general time of

application installation into the system drives, the application

installation into the u-PC device takes much more time due to

write latency of the portable storage device. To verify this, we

conducted some tests using LG IBM laptop with Mobile Intel

Pentium 4-M CPU 1.90GHz, 1GB RAM, Windows XP SP2, and

1GB USB device with 2.0 bandwidth. Moreover in Table 2, we

suggested that u-PC has a pre-installation progress that does not

install into the portable storage device but copy application

packages which are already installed by using the u-PC framework.

As another test of applications installed to the system drive, the

time to copy Winamp from the system drive to the USB device

took about 2 or 3 minutes, and other applications, Acrobat Reader

and Hangul, took only 3 or 4 minutes.

We hope that u-PC can support much more applications and user

profile, which will be a part of our future work. For the

applications, we need to research on not only monitoring file I/O

requests but also process migration. Furthermore, the user profile

needs to be considered on another approach with no latency of

setup time such as a virtual workspace on MojoPac. In the future,

we will extend the u-PC environment to become more flexible and

feasible.

8. REFERENCES
[1] Ceedo, http://www.ceedo.com

[2] Kyonghoon, L. A Technique for Application Programs

Mobility Using Portable Storage in Windows Operating System,

Master Thesis, Pohang University of Science and Technology,

Pohang, Republic of Korea, 2005

[3] Mark, E. R. and David, A. S., Microsoft Windows Internals,

Fourth Edition: Microsoft Windows Server 2003, Windows XP,

and Windows 2000, Microsoft Press, Redmond, Washington, 2005.

[4] MojoPac, http://www.mojopac.com

[5] Ricardo, A. B., Shaya, P., Gong, S., and Jason, N. MobiDesk:

Mobile Virtual Desktop Computing. In Proceedings of the Tenth

Annual ACM International Conference on Mobile Computing and

Networking (MobiCom 2004), Philadelphia, PA, 2004, 1-15.

[6] Ramón, C., Casey, C., Chandra, N., and Mandayam, R.

Reincarnating PCs with Portable SoulPads. In MobiSys 05: The

Third International Conference on Mobile Systems, applications,

and Services, Seattle, WA, 2005.

[7] Shaya, P. and Jason, N. Highly Reliable Mobile desktop

computing in Your Pocket. In Proceedings of the 30th Annual

International Computer Software and Applications Conference

(COMPSAC 2006), Chicago, IL, 2006, 247-254.

[8] Tristan, R., Quentin, S., Kenneth, R. W., and Andy, H. Virtual

Network Computing. IEEE Internet Computing, 1998, 33-38.

[9] U3 Platform, http://www.u3.com

