Enabling Ubiquitous Application Access for [oT

Injung Kim
Computer Science
Columbia University
NY, U.S.A.
injungkim@caa.columbia.edu

Abstract— Ubiquitous and efficient information access is key
in IoT environment. For such enablement, Cloud is leveraged for
ubiquitous content access (anywhere and anytime) where some
example services are Dropbox, iCloud, SkyDrive, and Google
Drive. An eco-system of applications and services has been made
possible by Cloud based platforms that were not feasible that
easily. These use cases have successfully allowed users to access
their content ubiquitously and seamlessly from a wide variety of
desktop as well as mobile devices of their choice.

Extending this abstraction to personalized applications stack,
we propose and build a personalized application access
leveraging Internet of Thing (IoT) framework to support access
to personalized applications from anywhere on any device. First,
we develop a framework for application virtualization that
decouples an application from any specific platform or device
and enables access to personalized application access at per user
level. Next we provide an implementation of this framework for
applications on Windows platform leveraging Amazon S3 cloud
storage although our approach can be implemented for any
platform with any other cloud systems.

Keywords— cloud, ubiquitous application access, application
virtualization

I. INTRODUCTION

The Internet of Things (IoT) has revolutionized the cyber-
physical space with the information gathering, processing and
digital information access. Combined with Cloud computing
resources at the backend, together these have enabled a wide
range of cyber-physical services and applications that were not
feasible before. These include a wide range of services such as
healthcare, smart energy, transportation, tourism, daily public
services, entertainment industries, or emergency services.

Cloud computing with its resource level virtualization
supports on-demand and elastic access to IT computes
resources. Such ease of elastic and on-demand resource access
has spurred a wide variety of enterprise grade applications that
were otherwise very difficult to provide without Cloud based
resource. One such application category is the ubiquitous
access to data anytime anywhere from any platform or device.
Example services include Dropbox [1], OneDrive [2], iCloud
[3], and Google Drive [4]. Storage cloud is leveraged by these
services to allow users access to their data in a truly ubiquitous
manner.

The focus of our paper is to extend this ubiquitous data
access to ubiquitous application access in an IoT environment

Sambit Sahu

Cloud and Big Data Analytics
IBM T.J. Watson Research Center
NY, U.S.A.
sambits@us.ibm.com

so that seamlessly access to customized applications from
anywhere on any type of platforms and devices can be
supported. The benefit of ubiquitous application access in an
IoT environment in addition to data access is to empower
services that need such personalized application accesses at
these end points at any time.

We propose Ubiquitous Application Access (UAA) - that
leverages cloud to allow access to applications ubiquitously as
mentioned above. The key component of UAA is an
application virtualization framework that allows UAA to
enable platform independent access to personalized
applications.

The application virtualization framework consists of two
components, i.e., (i) ability to support platform independent
access to applications, and (ii) ability to support user specified
application personalization in an application independent
manner. While the first requirement is relatively easier and
feasible to support with simple modifications of existing
capabilities such as AppStore [5] and Google Play [6], the
second capability requires one to automatically translate the
user initiated personalization of an application in one platform
to other platforms - which is the core of our proposed UAA
application virtualization framework. The implementation of
our UAA framework consists of two key components: one is to
package all the application and to deploy the applications
seamlessly on any computer, and the other is to compose the
user profile.

While AppStore [5] with iCloud and Google Play[6] with
Google Cloud could be leveraged to allow ubiquitous
application access, these are neither platform agnostic nor
support per user application customization. Desktop cloud is
significantly different in that user is provided access to a
virtualized platform with remote access to a set of application
through remote desktop. We provide access to applications on
the device natively that has significant advantage both in terms
of performance and functionality.

In order to illustrate the feasibility of our approach, we
provide a prototype implementation for Windows based
platform with the right level of abstraction leveraging Amazon
S3 storage service [7]. Windows registry is a special
mechanism to maintain application and desktop configurations,
and our prototype implementation also controls the registries to
support seamless application and user profile. We demonstrate
our prototype by comparing device based and cloud based
compositions of UAA framework. In addition, we discuss areas

978-1-4799-6707-0/14/$31.00 ©2014 IEEE

of future research to extend the UAA framework to the diverse
platforms and devices.

In Section 2 we motivate UAA capability and illustrate
usage scenarios. Section 3 describes the UAA framework with
application virtualization and functional architecture. Section 4
describes our end-to-end prototype for Windows based
platform. Section 5 summarizes our current capability and
discusses the future direction to truly achieve application level
ubiquity leveraging cloud.

II. MOTIVATION AND USAGE SCENARIO

In this section, we describe UAA - a ubiquitous
personalized application access in IoT environment that allows
access to applications from anywhere on any platform. First,
we motivate our proposed solution and compare it with related
work. Next we illustrate UAA usage and its enabling key
elements.

A. Motivation

In a truly emerging ubiquitous computing era, one should
be able to access ones personalized application besides the data
from anywhere on any platform. Cloud storage based services
such as Amazon S3 [7], Google Drive [4], Dropbox [1], or
Microsoft OneDrive [2] allows ubiquitous data access, and it
has been extensively studied in the several ways; access control
for multi-authority cloud storage[8], reducing the frequency of
data loss[9], consistency checking[10], minimizing trust[11],
and so on. However, these do not consider how access to ones
personalized applications.

One may argue that a user may access to his/her
applications remotely, i.e., remote desktop - but this has clear
disadvantages which are network dependency, incompatibility
with some operating systems, downtime, or bottlenecks. Many
usage scenarios and applications would not meet the desired
performance or the constraints.

While services like iCloud [3] a step in this direction that
could be leveraged to build the capability that being advocated
by our UAA solution, it is not platform independent and also
does not support application personalization. Our previous
work [12] supports the portability of application and user
profile level based on the USB hard drives, but it has limited
storage capacity, as well as exposes itself to the security threat
like a lost device, and could only deploy platform dependent
applications.

Our proposed solution allows one to access personalized
applications on any platform - a capability that extends the
ubiquitous data access. UAA allows users access to their
personalized applications thereby providing a seamless
connected experience in a platform independent manner.

B. UAA Usage Phases

Let us illustrate how UAA facilitates the capability stated
above. Figure 1 illustrates the initialization phase, i.e., the very
first time a user accesses an application using UAA from a
device. This phase is similar to installing and accessing an
application from AppStore [5] for iOS, Google Play [6] for
Android platform. But UAA supports this in a platform

% e

VR
g "y .d

Fig. 1. Users might choose appications they want to use on any platform

P
—~ ~\
Vs nf \——
/ d X ~.
— - N\

! - Con 0\
/ \ o - GMaii =~
/ \. 5@ Firofox N\
{ N Sffes Firchox \
A . 2 I
\ o J

iTunes

T —

Fig. 3. As soon as the user is disconnected to the UAA framework, the public
computer will restore to the original status.

agnostic manner by automatically selecting appropriate
application version and installation process. The user is then
allowed to use these applications with ubiquitous data access.
The user may choose to personalize the applications thereby
changing application configurations.

Figure 2 illustrates the capability to personalize and
customize the applications. For example, one may choose to
change ones screen wall paper. It is feasible as UAA
framework maintains application customizations by keeping
track of changes to appropriate configuration files. Thus next
time a user accesses the same application, the saved
configuration files are used instead of initial configuration files.

Figure 3 illustrates the cleanup phase that is activated as
soon as user wants to end the session. This is a critical phase
for privacy concern as user could be accessing his/her
personalized applications along with data from a public
computer.

As illustrated, users may easily access their data and any
application with a simple connection to the UAA framework
that is enabled on top of cloud storage. As UAA restores
applications using saved per application configurations in a
platform independent manner, users are provided a truly
ubiquitous application level access.

III. FRAMEWORK AND ARCHITECTURE

In order to support ubiquitous application access, UAA
provides two key enabling components: (i) platform and OS
independent application access, (ii) application personalization.
These are the core capabilities that UAA brings through
application virtualization framework that we propose and
provide an implementation. We first describe this proposed
framework followed by functional description of UAA.

A. Application Virtualization Framework

Supporting the first requirement is relatively easier. UAA
needs to detect the platform and OS level details of the device
that the user logs in to access UAA. Based on the platform
details, it chooses the right application installation files and
installer.

The second requirement of application personalization is
tricky. UAA needs to capture the changes the user makes to the
application configuration on the current platform and then
derive the equivalent changes for the other platforms.

These two requirements are achieved by describing an
application that captures platform dependent installation and
configuration relationships across the platform. These together
are our framework for application virtualization. A suggested
implementation is a configuration specification of application
defined in a manner that allows one to link configuration
elements through a relationship. Once an element is changed in
one platform configuration, through this relationship, this
change is propagated to other platform configurations. In some
sense this is similar to what an OVF format is for hypervisor
independent virtual machine specification.

B. Functional Architecture

Next we describe the functional aspect of the architecture.
It could be divided into (i) preparing stage, (ii) deployment
stage and (iii) composition phase.

1) Preparing Stage (Packaging All The Applications): The
UAA framework lets the users make the application packages
they want to carry, and to make the application package, they
need to have its general set up file. Figure 4 shows the key
steps to make an application package. For example in the case
of Windows platform, all the file actions are requested by I/O
request packet (IRP) on the kernel level. Since it works on the
kernel level, we call our functional module as a file I/O filter

User mode

Kernel mode

/O Manager

1. Setup
the application [ygp

2. Monitorall of the created.
deleted, updated files
until the setup processis over

Limg
il [ToC

3.Onceitis over.
ineType 1] moveall to the Cloud

c
Create msvor:
Createabede

File /O
Filter Layer

IRPB

| |

Public
Computer C

. Clond
- ‘) ,:)

A)
-l
Fig. 4. Packaging all the applications
User mode
Kernel mode
I /O Manager
1. Request 4. Returnthe 5. Request
file response file
s kit
response of IRP A 4. Change
Yes success? No thetarget
fromAtoB
ToCompletionRoutine Type 2 File JO
Filter Layer
2. Response 6. Response
for the Request for theRequest
| Hardware |
Public
Computer
* Cloud
(A) e
——— L VL

Fig. 5. Deploying applications seamlessly

layer, and the loCompletionRoutine typel function on the file
1/0O filter layer performs to make the application package.

For the first step, through the UAA user interface, they may
choose any application's set up file, and then start it to let the
IoCompletionRoutine function know which process is to be
monitored. As soon as the set up process is started, the function
also starts to monitor all the actions such as create, update, and
delete files. And then, once the set up process is done, the
function detects the end of the set up process and moves all the
changed or created files to the cloud storage with file path,
name, version, and platform information. In the Figure 4, we
mark an original file request as IRP A which target is a public
computer, and mark a copy request of application files as IRP
B which target is cloud storage.

The point is these packaged applications cannot be
executed on other computers because all the application
processes tries to find their files on the initial computer not on
the cloud storage. Therefore, following stage will describe how
to deploy application packages seamlessly.

2) Deploying Stage (Deploying Applications Seamlessly):
Between two different stages; preparing stage and deploying
stage, there is no need to work on the same public computer
but need to connect to the user's cloud storage space. Once the
user makes the application packages into the cloud storage, he
or she can move all around the world, and then have a sit in
front of any platform to keep going on his/her work.

Since we suppose that all of the application packages are
already stored on the cloud storage by the preparing stage,
there could be all the versions of diverse applications for all
kinds of platform on the cloud storage. Due to the benefit of the
cloud storage, there is no storage capacity limitation and the
user may easily put any application package and their large
data, either. However, the application package could not be
executed itself because all the related application files do not
exist on the public computer but on the cloud storage. Figure 5
explains how to redirect all the file requests from the public
computer to the cloud storage. In this case,
IoCompletionRoutine function on the file I/O filter layer
performs to let the application package work seamlessly.

The concept is that the requests of the application will fail
since the file does not exist on the public computer. Therefore,
before the failed response is returned to the application itself in
the user mode, the loCompletionRoutine function captures the
failed response, changes its target from the public computer to
the cloud storage, and makes the request issue again. Then, I/O
manager issues the request to the cloud storage without sending
the failed response to the application, and the new response
will be returned successfully. It is also possible that the
IoCompetionRoutine bypasses the successful response when
the requested file exists on the public computer. In the Figure 5,
we mark an original file request as IRP A which target is a
public computer, and mark a redirected request of application
files as IRP B which target is cloud storage.

With the deploying stage, when the user connects the public
computer to the UAA framework on the cloud storage, the
applications stored on the cloud storage cloud be executed on
any public computer.

3) Composition (User Profile Automation): Unlike
application part of the UAA framework, composition of the
user profile is intuitive. The user may choose any user profile
they want to carry and store it into the cloud storage through
the UAA framework. When the UAA framework is running, it
will back up the user profile of the public computer, then
change it to the user's one which is already stored on the cloud
storage. For example, if a user stores his/her preferred
wallpaper, screensaver, favorite links, or even internet cookies
into the cloud storage, when the user is connected to the cloud
storage from the public computer, the UAA framework will
automatically compose the user profile into the public
computer. Lastly, there is a cleanup process which restores the
original user profile into the public computer right after the
connection is dropped. The cleanup process also removes the
file I/O filter layer from the public computer. With these
automatic composing user profiles, the user could work on the

Fig. 6. Initial status of public computer will be restored when the connection
to the UAA framework is dropped.

Fig. 7. When a user connects to the UAA framework, the user might choose
any application with their user profile.

ubiquitous application access cloud.

IV. PROTOTYPE IMPLEMENTATION

This section shows a prototype on the Windows platform
leveraging Amazon S3, and then presents performance metrics.
This paper present an implementation of the UAA framework
for applications and user profile on Windows platform
leveraging Amazons S3 cloud storage [7]. Figure 6 shows the
initial status of the public computer which has its own
applications and default settings of profile, and in Figure 7,
when an end-user connects to the UAA framework from the
cloud storage, his/her ubiquitous application access including
the user profile will be composed to the computer. Then, as
soon as the connection to the framework is dropped, the
original status of the public computer will be restored.

We have performance tests to show how different of
application executions which is based on the cloud storage, the
device, or the local computer. The experimental test-base is the
Intel dual core 2.6GHz*2, 2.93GB RAM, Microsoft Windows
XP SP3, with 144.0Mbps WIFI network. For UAA based on
the cloud storage, we choose the Amazon S3 storage in Tokyo,
Japan as the nearest cloud storage from Korea where the test
was performed. In order to recognize the cloud storage as a
typical disk partition, WebDrive 11.0 lets the user map a
network drive to cloud services and use remote files like they
right on the computer [13]. For the device based test, we use
the SanDisk 1.0GB USB 2.0 device with a 480Mb/s bandwidth.

We first examine the upload and download time of different
size of files with cache or not in Table I. The small file is 1KB
text, while the large file is 495MB movie, and after
reconnection to the cloud storage or the device, accessing file

TABLE L

COMPARISON OF CLOUD STORAGE AND USB DEVICE

Check Lists Cloud Storage Device
Upload Less than 1sec Less than 1sec
Small file | Download Less than 1sec Less than 1sec
1KB
() Downloaq after Less than 1sec Less than 1sec
reconnection
Upload 7min 29sec 1min 49sec
Large file | Download 19sec 41sec
(495MB) Downloaq after 6min 22sec 4sec
reconnection
TABLE IL PACKAGING AND EXECUTING THE MUSIC PROGRAM
Check Lists Cloud Device Public
Storage Computer
Packaging or Setting Smin 19sec | 1min 3sec 19sec
up the program
Executing the program | 15sec 3sec Less than Isec

does not have any cache. As a result, uploading and
downloading of the small file are similar between cloud storage
and the device, but the large file takes longer on the cloud
storage. However, accessing to the cached file is even faster
than the device since the WebDrive supports the cache itself. In
this experiment, uploading and downloading any file into the
cloud storage depend on several facts; where the cloud storage
is, what kind of network the public computer uses, and how the
WebDrive works internally. Therefore, even though using the
cloud storage is slower than the device, it has more benefits
that are the cloud storage’s unlimited space and global cloud
datacenter that make the user use the nearest one.

Table II shows the observations of the time for packaging
the program into the cloud storage and the device, and setting it
up on the public computer. The tested media program is
Winamp 5.32 and its total size is 1.30MB. In addition,
executing the program stored on the cloud storage, the device,
and the public computer is also examined. The time depends on
how many files the program has, and like above experimental,
the place of cloud data center, network environments, and the
WebDrive itself have a decisive effect on the result again.

V. CONCLUSION

In this paper, we extend the ubiquitous data access to
ubiquitous personalized application access leveraging cloud
storage. Towards facilitating access to personalized access to
applications natively from anywhere on any device, we

proposed and built UAA - a ubiquitous application access
leveraging cloud. First, we developed a framework for
application virtualization that decouples an application from
any specific platform or device and enables access to
personalized application access at per user level. Next we
provide an implementation of this framework for applications
on Windows platform leveraging Amazon S3 cloud storage
using application virtualization framework. Note that this same
implementation framework can be extended to Linux, Mac iOS,
Android based platforms - which is in our future implantation
roadmap.

Future work for wider supports of large-scale ubiquitous
application access cloud such as other operating systems, other
cloud storages, or even other client machine like a smart phone
is needed. It is also possible to improve the performance when
the framework works on the remote storage by using cache or
making full use of local applications first not to have much
streaming requests.

REFERENCES

[1] Dropbox, http://www.dropbox.com

[2] Microsoft OneDrive, https://onedrive.live.com/
[3] Apple iCloud, https://www.icloud.com

[4] Google Drive, http://drive.google.com

[5] Apple AppStore, http://store.apple.com
[6] Google Play, https://play.google.com/store

[7] Amazon Simple Storage Service(S3), http://aws.amazon.com/s3

[8] K. Yang, X. Jia, "Expressive, efficient, and revocable data access control
for multi-authority cloud storage", IEEE Transactions on Parallel and
Distributed Systems (TPDS), Vol 25, Issue 7, pp. 1735-1744, 2014

[9]1 A. Cidon, R. Stutsman, S. Rumble, S. Katti, et al., "Copysets: reducing
the frequency of data loss in cloud storage", USENIX Annual Technical
Conference (ATC) 2013, pp. 37-48

[10] D. B. Terry, V. Prabhakaran, R. Kotla, M. Balakrishnan, et al.,
"Consistency-based service level agreements for cloud storage",
Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles (SOSP), pp. 309-324, 2013

[11] P. Mahajan, S. Setty, S. Lee, A. Clement, et al., "Depot: cloud storage
with minimal trust", ACM Transactions on Computer Systems, Volume
29, Number 4, Article 12,2011

[12] I Kim, M. Hwang, W. Lee, C. Park, "u-PC: personal workspace on a
portable storage", The 4th Intionational Conference Mobile Technology,
Application and Systems (Mobility Conference 2007), Singapore
Chapter for ACM, 2007, pp. 228-233.

[13] Sound River Technology WebDrive, www.webdrive.com

