
cAppCloud: Contextual Personalized Application
Cloud

Injung Kim
Computer Science

Columbia University
NY, U.S.A.

injungkim@caa.columbia.edu

Sambit Sahu
Cloud and Big Data Analytics

IBM T.J. Watson Research Center
NY, U.S.A.

sambits@us.ibm.com

Abstract— Extending ubiquitous data access to personalized
applications stack, we propose and build a cloud based intelligent
personalized application leveraging cloud to allow users access to
their personalized applications from anywhere on any device.
Our system is smart and intelligent in the sense that it adapts
itself based on (i) available bandwidth between the user location
and the cloud system, (ii) user profile that is automatically sensed
and learned, (iii) user locations among other context profiles.

First, we develop a framework for application virtualization
that decouples an application from any specific platform or
device and enables access to personalized application access at
per user level. Our solution is context aware and learns the usage
context based on the location and user profile and leverages this
to minimize the download bandwidth requirement. Next we
provide an implementation of this framework for applications on
Windows platform leveraging Amazon S3 cloud storage-although
cAppCloud can be implemented for any platform with any other
cloud systems. Given the era of Internet of Things (IoT) and
various Cloud Enabled Intelligent Applications, we feel that
cAppCloud can meet various key requirements to facilitate the
interesting scenarios.

Keywords— cloud, personalized application desktop,
application virtualization

I. INTRODUCTION
Cloud computing with its resource level virtualization

supports on-demand and elastic access to IT computes
resources. Such ease of elastic and on-demand resource access
has spurred a wide variety of enterprise grade applications that
were otherwise very difficult to provide without Cloud based
resource. One such application category is the ubiquitous
access to data anytime anywhere from any platform or device.
Example services include Dropbox [1], OneDrive [2], iCloud
[3], and Google Drive [4]. Cloud storage is leveraged by these
services to allow users access to their data in a truly ubiquitous
manner.

The focus of our paper is to extend this ubiquitous data
access to ubiquitous application access for users so that they
can seamlessly access their customized applications from
anywhere on any type of platforms and devices. We propose
cAppCloud - Personalized Application Desktop - that leverages
cloud to allow users access to their applications ubiquitously as
mentioned above. The key component of cAppCloud is an
application virtualization framework that allows cAppCloud to

enable platform independent access to personalized
applications.

The application virtualization framework consists of two
components, i.e., (i) ability to support platform independent
access to applications, and (ii) ability to support user specified
application personalization in an application independent
manner. While the first requirement is relatively easier and
feasible to support with simple modifications of existing
capabilities such as AppStore [5] and Google Play [6], the
second capability requires one to automatically translate the
user initiated personalization of an application in one platform
to other platforms - which is the core of our proposed
cAppCloud application virtualization framework. The
implementation of our cAppCloud framework consists of two
key components: one is to package all the application and to
deploy the applications seamlessly on any computer, and the
other is to compose the user profile.

In addition, our solution is context aware and learns the
usage context based on the location and user profile and
leverages this user profile to minimize the download
bandwidth requirement to build the personalized desktop as
quickly as possible. This is quite important in a non-enterprise
scenario where the bandwidth between the user and the
backend cloud may be limited and that the use may be using a
few set of applications. For this study, we define “home, work,
travel, café/Mall” as the location context to capture different
usage types.

While AppStore [5] with iCloud and Google Play[6] with
Google Cloud could be leveraged to allow ubiquitous
application access, these are neither platform agnostic nor
support per user application customization. Desktop cloud is
significantly different in that user is provided access to a
virtualized platform with remote access to a set of application
through remote desktop. We provide access to applications on
the device natively that has significant advantage both in terms
of performance and functionality.

 In order to illustrate the feasibility of our approach, we
provide a prototype implementation for Windows based
platform with the right level of abstraction leveraging Amazon
S3 storage service [7]. Windows registry is a special
mechanism to maintain application and desktop configurations,
and our prototype implementation also controls the registries to
support seamless application and user profile. We demonstrate
our prototype by comparing device based and cloud based

2014 IEEE 6th International Conference on Cloud Computing Technology and Science

978-1-4799-4093-6/14 $31.00 © 2014 IEEE

DOI 10.1109/CloudCom.2014.140

829

2014 IEEE 6th International Conference on Cloud Computing Technology and Science

978-1-4799-4093-6/14 $31.00 © 2014 IEEE

DOI 10.1109/CloudCom.2014.140

829

Fig. 1. Users might choose applications they want to use on any platform (left). Each user could execute the applications with their user profile (middle). As soon
as the user is disconnected to the cAppCloud framework, the public computer will restore to the original status (right)

compositions of cAppCloud framework. In addition, we
discuss areas of future research to extend the cAppCloud
framework to the diverse platforms and devices.

In Section 2 we motivate cAppCloud capability and
illustrate usage scenarios. Section 3 describes the cAppCloud
framework with application virtualization and functional
architecture. Section 4 describes how intelligent cAppCloud
framework is and Section 5 describes our end-to-end prototype
for Windows based platform. Section 6 summarizes our current
capability and discusses the future direction to truly achieve
application level ubiquity leveraging cloud.

II. MOTIVATION AND USAGE SCENARIO
In this section, we describe cAppCloud - a ubiquitous

personalized application desktop cloud that allows users to
access their applications from anywhere on any platform. First,
we motivate our proposed solution and compare it with related
work. Next we illustrate cAppCloud usage and its enabling key
elements.

A. Motivation
In a truly emerging ubiquitous computing era, one should

be able to access ones personalized application besides the data
from anywhere on any platform. Cloud storage based services
such as Amazon S3 [7], Google Drive [4], Dropbox [1], or
Microsoft OneDrive [2] allows ubiquitous data access.
However, these do not consider how access to ones
personalized applications.

One may argue that a user may access to his/her
applications remotely. For example, using remote desktop or
cloud server has clear disadvantages which are network
dependency, incompatibility with some operating systems,
downtime, or bottlenecks. Many usage scenarios and
applications would not meet the desired performance or the
constraints.

While services like iCloud [3] a step in this direction that
could be leveraged to build the capability that being advocated
by our cAppCloud solution, it is not platform independent and
also does not support application personalization. Our previous
work [8] supports the portability of application and user profile
level based on the USB hard drives, but it has limited storage
capacity, as well as exposes itself to the security threat like a
lost device, and could only deploy platform dependent
applications.

Our proposed solution allows one to access personalized
applications on any platform - a capability that extends the
ubiquitous data access. cAppCloud allows users access to their
personalized applications thereby providing a seamless
connected experience in a platform independent manner.

B. cAppCloud Usage Phases
Let us illustrate how cAppCloud facilitates the capability

stated above. Figure 1 left image illustrates the initialization
phase, i.e., the very first time a user accesses an application
using cAppCloud from a device. This phase is similar to
installing and accessing an application from AppStore [5] for
iOS, Google Play [6] for Android platform. But cAppCloud
supports this in a platform agnostic manner by automatically
selecting appropriate application version and installation
process. The user is then allowed to use these applications with
ubiquitous data access. The user may choose to personalize the
applications thereby changing application configurations.

Figure 1 middle image illustrates the capability to
personalize and customize the applications. For example, one
may choose to change ones screen wallpaper. It is feasible as
cAppCloud framework maintains application customization by
keeping track of changes to appropriate configuration files.
Thus next time a user accesses the same application, the saved
configuration files are used instead of initial configuration files.

 Figure 1 right image illustrates the cleanup phase that is
activated as soon as user wants to end the session. This is a
critical phase for privacy concern as user could be accessing
his/her personalized applications along with data from a public
computer.

As illustrated, users may easily access their data and any
application with a simple connection to the cAppCloud
framework that is enabled on top of cloud storage. As
cAppCloud restores applications using saved per application
configurations in a platform independent manner, users are
provided a truly ubiquitous application level access.

III. FRAMEWORK AND ARCHITECTURE
In order to support ubiquitous application access,

cAppCloud provides two key enabling components: (i)
platform and OS independent application access, (ii)
application personalization. These are the core capabilities that
cAppCloud brings through application virtualization
framework that we propose and provide an implementation.

830830

Fig. 2. Packaging all the applications (left). Deploying applications seamlessly (right).

A. Application Virtualization Framework
Supporting the first requirement is relatively easier.

cAppCloud needs to detect the platform and OS level details of
the device that the user logs in to access cAppCloud. Based on
the platform details, it chooses the right application installation
files and installer.

The second requirement of application personalization is
tricky. cAppCloud needs to capture the changes the user makes
to the application configuration on the current platform and
then derive the equivalent changes for the other platforms.

These two requirements are achieved by describing an
application that captures platform dependent installation and
configuration relationships across the platform. These together
are our framework for application virtualization. A suggested
implementation is a configuration specification of application
defined in a manner that allows one to link configuration
elements through a relationship. Once an element is changed in
one platform configuration, through this relationship, this
change is propagated to other platform configurations. In some
sense this is similar to what an OVF format is for hypervisor
independent virtual machine specification.

B. Functional Architecture
Next we describe the functional aspect of the architecture.

It could be divided into (i) preparing stage, (ii) deployment
stage and (iii) composition phase.

1) Preparing Stage (Packaging All The Applications): The
cAppCloud framework lets the users make the application
packages they want to carry, and to make the application
package, they need to have its general set up file. Figure 2 left
image shows the key steps to make an application package.
For example in the case of Windows platform, all the file
actions are requested by I/O request packet (IRP) on the kernel
level. Since it works on the kernel level, we call our functional
module as a file I/O filter layer, and the IoCompletionRoutine
type1 function on the file I/O filter layer performs to make the
application package.

For the first step, through the cAppCloud user interface,
they may choose any application's set up file, and then start it
to let the IoCompletionRoutine function know which process is
to be monitored. As soon as the set up process is started, the
function also starts to monitor all the actions such as create,
update, and delete files. And then, once the set up process is
done, the function detects the end of the set up process and
moves all the changed or created files to the cloud storage with
file path, name, version, and platform information. In the
Figure 2 left image, we mark an original file request as IRP A
which target is a public computer, and mark a copy request of
application files as IRP B which target is cloud storage.

The point is these packaged applications cannot be
executed on other computers because all the application
processes tries to find their files on the initial computer not on
the cloud storage. Therefore, following stage will describe how
to deploy application packages seamlessly.

2) Deploying Stage (Deploying Applications Seamlessly):
Between two different stages; preparing stage and deploying
stage, there is no need to work on the same public computer
but need to connect to the user's cloud storage space. Once the
user makes the application packages into the cloud storage, he
or she can move all around the world, and then have a sit in
front of any platform to keep going on his/her work.
 Since we suppose that all of the application packages are
already stored on the cloud storage by the preparing stage,
there could be all the versions of diverse applications for all
kinds of platform on the cloud storage. Due to the benefit of
the cloud storage, there is no storage capacity limitation and
the user may easily put any application package and their large
data, either. However, the application package could not be
executed itself because all the related application files do not
exist on the public computer but on the cloud storage. Figure 2
right image explains how to redirect all the file requests from
the public computer to the cloud storage. In this case,
IoCompletionRoutine function on the file I/O filter layer
performs to let the application package work seamlessly.

The concept is that the requests of the application will fail
since the file does not exist on the public computer. Therefore,

831831

before the failed response is returned to the application itself in
the user mode, the IoCompletionRoutine function captures the
failed response, changes its target from the public computer to
the cloud storage, and makes the request issue again. Then, I/O
manager issues the request to the cloud storage without sending
the failed response to the application, and the new response
will be returned successfully. It is also possible that the
IoCompetionRoutine bypasses the successful response when
the requested file exists on the public computer. In the Figure 2
right image, we mark an original file request as IRP A which
target is a public computer, and mark a redirected request of
application files as IRP B which target is cloud storage.

With the deploying stage, when the user connects the
public computer to the cAppCloud framework on the cloud
storage, the applications stored on the cloud storage be
executed on any public computer.

3) Composition (User Profile Automation): Unlike
application part of the cAppCloud framework, composition of
the user profile is intuitive. The user may choose any user
profile they want to carry and store it into the cloud storage
through the cAppCloud framework. When the cAppCloud
framework is running, it will backup the user profile of the
public computer, then change it to the user's one which is
already stored on the cloud storage. For example, if a user
stores his/her preferred wallpaper, screensaver, favorite links,
or even internet cookies into the cloud storage, when the user
is connected to the cloud storage from the public computer,
the cAppCloud framework will automatically compose the
user profile into the public computer. Lastly, there is a cleanup
process which restores the original user profile into the public
computer right after the connection is dropped. The cleanup
process also removes the file I/O filter layer from the public
computer. With these automatic composing user profiles,the
user could work on the personalized application desktop cloud.

IV. CONTEXT AWARE CAPPCLOUD
 The previous section described the system architecture that
did not assume any bandwidth constraint. It assumes that
sufficient bandwidth is available between the cloud system and
the user device so that all the application images can be
downloaded onto the user device in real time to create the
personalized desktop for the user. However there may not be
sufficient bandwidth available to download all the applications
especially in the wide area network – which is typically the
case in an non-enterprise scenario. We illustrate later in the
section using several Internet measurements that based on
usage contexts, the available bandwidth may be severely
limited.

 In this section, we propose an intelligent approach that
accounts for bandwidth limitations and adapts the solution in a
context aware manner accounting for a variety of factor to
optimize the user experience. When the bandwidth is limited, it
is always not feasible to download the entire desktop content.
Also it is always not required to download the entire set of
applications. Consider the following scenario: When a user is
at home, the applications and data usage may be different
compared to when at work. Also it may very well be different
when one logs in from a café or when one is travelling or

Fig. 3. User profile has various kinds of workspace

Fig. 4. Application profile has several application lists with its total size and
last access time to decide which application prefetches first

checking some web sites from a Mall. Thus the usage of
applications and the dependent data are very context specific. It
may be possible to learn this context and be possible to just
fetch only a subset of the applications and dataset instead of the
entire dataset – which would be quite useful for bandwidth
limited case.

 Before defining the algorithm in detail, first we provide an
intuitive sketch of the algorithm. The key idea behind the
algorithm is based on “Contextual User Profile” that we
maintain and learn for each user. Each user has a predefined set
of user context. While it is not limited to these set of
predefined states, we explore with these set of predefined
labels: Home, Work, Travel, Café/Mall. These are location
based activities that we feel define the characteristics of
application usage. For each user, based on where a user may be
logging in from, those application sets would be downloaded
instead of full set. This metadata would be learned from the
past usage just like any other caching based approach. This
metadata would be maintained as a per user profile in the
backend in the cloud as part of our system.

Both the user profile and application profile are designed

832832

for the various kinds of personalized workspace. By logging
the user’s various workspace and application preference into
the user profile and application profile, personalized
workspace could be composed depending on where the user is
and which application the user prefer to use. Also, prefetching
applications consider to network dependency because if there
are much streaming requests, the response time for the
application will be slow. Therefore, after checking the
network situation of the current platform that a user is using,
perfecting most recently accessed applications will improve
the entire application streaming. We also mention an
algorithm how the application prefetcher decides which
application prefetches first after learning which applications
the user prefers to use on which workspace by having the last
access time of the application that the user actually requests.

1) User profile: Our current implementation is applicable
to store desktop data such as wallpaper, screensaver, favorite
links, or even internet cookies into the cloud storage. However,
the user may use different applications as well as desktop data
on their circumstance (e.g., a user may mostly use web-
browser for online shopping at home, but he/she may use
document applications at work.). Figure 3 shows the user
profile has various kinds of workspace such as office, home,
and even mobile phone. In order to specify the diverse
platform for the user, the user profile has platform name, OS
type, and bandwidth of each platform. With this user profile,
all of the applications could support for the diverse platform
for a user.

2) Application profile: The fact that provisioning in our
current implementation deploys applications when a user
actually requests. In practice, however, prefetching
applications before a user requests may be desirable to
decrease network dependency, but this clearly requires
prefetching by figuring out which application is better to
prefetch first. Therefore, Figure 4 provides that application
profile has the application information such as its name,
version, total size and last access time. Especially total size
and last access time of the application are to decide which
application prefetches first. In case the user may not request
the application prefetched, the last access time will not be
updated. Therefore, the last access time means the time when
the user really uses the application.

3) Algorithm of application prefetcher: Figure 5 shows the
algorithm how the application prefetcher will prefetch the
applications and manages user profile and application profile.
U is a user, A is an application, and AP is an application
profile. For the first, a user chooses a user profile that the user
wants to compromise the specific applications into the current
platform. If the user wants to create application preference for
the new platform or the user profile is not up-to-date, the user
will update a user profile and the application prefetcher learn
the user profile preference. Once the user chooses or adds the
proper user profile, the application prefetcher gets the
preferred application to prefetch by checking for the last
accessed time of the application. Then, it will check the total
size of the application and the network bandwidth of the
current platform, then figures out how long prefetching the

Fig. 5. Application prefetcher will prefetch the applications and manage user
profile and application profile.

application will take. In case the user actually tries to launch
any application, the application prefetcher updates the
application profile with the current access time. Also, while
the bandwidth is enough to prefetch, it will prefetch all of the
applications in the order of most recently accessed application.
In this algorithm, there are learning functions to have the
user’s preference about the platform and application. The best
scenario of this algorithm is that the application prefetcher
prefetches all of the applications before the user wants to use
since the network bandwidth is enough and the prefetcher’s
prediction is correct for all of the prefecthes. Therefore, the
user may launch the applications without network latency
since all of the applications are already prefetched on the
platform.

V. PROTOTYPE IMPLEMENTATION
This section shows a prototype on the Windows platform

leveraging Amazon S3, and then presents performance metrics.
This paper presents an implementation of the cAppCloud
framework for applications and user profile on Windows
platform leveraging Amazons S3 cloud storage [7]. The
experimental test-base is the Intel dual core 2.6GHz*2,
2.93GB RAM, Microsoft Windows XP SP3, with 144.0Mbps
WIFI network. We choose the Amazon S3 storage in Tokyo,
Japan as the nearest cloud storage from Korea where the test
was performed. To recognize the cloud storage as a typical
disk partition, CloudBerry Drive 1.3.0 lets the user map a
network drive to cloud services and use remote files like they
right on the computer.

In view of wireless connection, diverse wireless
environment need to be considered as well. In a broad or
abstract sense, the scenarios for the use of wireless network
may be categorized as home, office, and public environment.
From the diverse environments, there exist general

833833

(a)upload 494MB movie file (b)download 494MB movie file

(c)upload 1KB text file (d)download 1KB text file

Fig. 6. Comparison of file transfer time on the several wireless environments

Fig. 7. TCP bandwidth measurement on three different environments

problems on the wireless network. There could be too many
users trying to use the same channel, radio frequency might
interfere with WLANs, and wireless adapter settings such as
QoS would influence the use of wireless network. Therefore,
Figure 7 shows the comparison of file transfer time on the
several wireless environments we may face with. We examine
the upload and download time of different size of files on
several time slots; morning, afternoon, evening, and night. The
experiment at the public place has from 5 to 54.0Mbps WIFI
network, and then office and home have relatively high WIFI
throughput, 144.0Mbps and 130.0Mbps, respectively. Each
experiment has been tested 10 times on three different days.
The speed to upload and download in public environment has
generally worse than others because there are many users
using the same channel at the public place and noise such as
radio frequency is out there. The reason why there are wide
variations of the throughput in public environment is because
it mostly gives free WIFI service with a limited quality of
service (QoS) of the wireless adapter settings. On the other
hands, office and home have relatively constant throughput
because it set up the wireless network with a password to
serve it exclusively.
 To check each bandwidth of three different environment;
public, office, and home, we also performed additional
experiments to consider how the bandwidth is diverse on the
different WLAN environments. We have used an iperf 2.0.5-2
tool to measure the network performance, and repeated the
above experiment for 100 times for the TCP bandwidth on

three environments with different window size in Figure 8.
From these experiments we see that there is a bandwidth
limitation for the public environment. The graph also describes
that the bandwidth is getting higher for the bigger TCP window
size, however, there could still exist the defeats of wireless
network such as concurrent connection, noise interference, etc.

 In general, we see that using cloud storage to store
personalized application and data definitely takes longer than
device based or public computer itself. Also, when the user
uses the wireless network, its bandwidth will be an important
fact to determine the entire performance of our framework.
Unlike LAN environment, the wireless network environment
needs to be considered how many applications the user would
be better to prefetch, and what size of applications the network
environment could deal with. Therefore, through the user and
application profiles which were created and managed by our
algorithm, applications is better to prefetch, particularly when
the network bandwidth is enough to prefetch.

VI. CONCLUSION
In this paper, we extend the ubiquitous data access to

ubiquitous personalized application access leveraging cloud
storage. Towards facilitating access to personalized access to
applications natively from anywhere on any device, we
proposed and built cAppCloud - a personalized application
desktop leveraging cloud. First, we developed a framework for
application virtualization that decouples an application from
any specific platform or device and enables access to
personalized application access at per user level. In addition,
we built context aware user profile to only prefect part of the
application set to minimize the bandwidth requirement. The
system learns user behavior and maintains a location and usage
aware context in a user profile and leverages intelligently to
build the personalized desktop as quickly as possible.

 Next we provide an implementation of this framework for
applications on Windows platform leveraging Amazon S3
cloud storage using application virtualization framework. Note
that this same implementation framework can be extended to
Linux, Mac OS, Android based platforms - which is in our
future implantation roadmap.

Future work for wider supports of large-scale ubiquitous
personalized application desktop cloud such as other operating
systems, other cloud storages, or even other client machine like
a smartphone is needed. It is also possible to improve the
performance when the framework works on the remote storage
by using cache or making full use of local applications first not
to have much streaming requests.

REFERENCES
[1] Dropbox, http://www.dropbox.com
[2] Microsoft OneDrive, https://onedrive.live.com/
[3] Apple iCloud, https://www.icloud.com
[4] Google Drive, http://drive.google.com
[5] Apple AppStore, http://store.apple.com
[6] Google Play, https://play.google.com/store
[7] Amazon Simple Storage Service(S3), http://aws.amazon.com/s3
[8] I. Kim, M. Hwang, W. Lee, C. Park, "u-PC: personal workspace on a

portable storage", Proceedings of the 4th International Conference on
Mobile Technology, Applications, and Systems, pp. 220-225, 2007

834834

