CS3150 - Homework — Week 2 (2.25, 3.22, 4.9)*

Dan Li, Xiaohui Kong †, Hammad Ibqal and Ihsan A. Qazi
Department of Computer Science, University of Pittsburgh, Pittsburgh, PA 15260
† Intelligent Systems Program, University of Pittsburgh, Pittsburgh, PA 15260
January 20, 2006

Contents

1 Problem 2.25 2
2 Problem 3.22 4
3 Problem 4.9 7

*This was written by Dan Li
1 Problem 2.25

A blood test is being performed on \(n \) individuals. Each person can be tested separately, but this is expensive. Pooling can decrease the cost. The blood sample of \(k \) people can be pooled and analyzed together. If the test is negative, this one test suffices for the group of \(k \) in test suffices for the group of \(k \) individuals. If the test is positive, then each of the \(k \) person must be tested separately and thus \(k + 1 \) total tests are required for the \(k \) people.

Suppose that we create \(n/k \) disjoint groups of \(k \) people (where \(k \) divides \(n \)) and use the pooling method. Assume that each person has a positive result on the test independently with probability \(p \).

(a) What is the probability that the test for a pooled sample of \(k \) people will be positive?

Answer: The result of the pooled sample is positive means that at least one of the \(k \) tested samples has positive result, which probability is:

\[
1 - P(\text{all of the } k \text{ people have negative sample}).
\]

Since we assume that each person has a positive result on the test independently with probability \(p \), so that the probability that each person has negative result is \(1 - p \), and the probability that all of the \(k \) persons have negative results is \((1 - p)^k \).

Finally we have the probability that the test for the pooled sample of \(k \) people is positive is:

\[
1 - (1 - p)^k
\]

(b) What is the expected number of tests necessary?

Answer: At least one test is needed no matter what the test result of the pooled sample is. When the result is positive, \(k \) extra tests are needed. The probability that \(k \) extra tests are needed is:

\[
1 - (1 - p)^k
\]

so that the expected number of tests for each group of \(k \) people is

\[
1 + k \cdot [1 - (1 - p)^k] = 1 + k - k \cdot (1 - p)^k
\]

And there are \(n/k \) groups, so the total number of tests is:

\[
N(n, k) = \frac{n}{k} \cdot [1 + k - k \cdot (1 - p)^k] = n \cdot \left(1 + \frac{1}{k} - (1 - p)^k\right)
\]

(c) Describe how to find the best value of \(k \).

Answer: In order to find the best value of \(k \), we need to find such a value of \(k \) that the number from (b) reach its minimum value. This is done by the following:

\[
\frac{\partial N(n, k)}{\partial k} = \frac{\partial}{\partial k} n \cdot \left[1 + \frac{1}{k} - (1 - p)^k\right]
\]

\[
= n \cdot \left[-\frac{1}{k^2} - (1 - p)^k \cdot \ln(1 - p)\right]
\]

\[
= 0
\]
which gives:

\[k^2 \cdot (1 - p)^k = \frac{1}{\ln(1 - p)} \] (6)

The value of \(k \) can not be solved in closed form.

(d) Give an inequality that shows for what values of \(p \) pooling is better than just testing every individual.

Answer: When the number of tests using pooled sample is less that the number of tests for testing every individual, the pooling method is better. This is obtained by having:

\[
\begin{align*}
 n\left[1 + \frac{1}{k} - (1 - p)^k\right] &< n \\
1 + \frac{1}{k} - (1 - p)^k &< 1 \\
\frac{1}{k} &< (1 - p)^k \\
k &> \left(\frac{1}{1 - p}\right)^k \\
k^{\frac{1}{k}} &> \frac{1}{1 - p} \\
1 - p &> \left(\frac{1}{k}\right)^{\frac{1}{k}} \\
p &< 1 - \left(\frac{1}{k}\right)^{\frac{1}{k}}
\end{align*}
\] (7)
2 Problem 3.22

Suppose that we flip coin \(n \) times to obtain \(n \) random bits. Consider all \(m = \binom{n}{2} \) pairs of these bits in some order. Let \(Y_i \) be the exclusive-or of the \(i \)th pair of bits, and let \(Y = \sum_{i=1}^{m} Y_i \) be the number of \(Y_i \) that equal 1.

(a) Show that each \(Y_i \) is 0 with probability 1/2 and 1 with probability 1/2.

Answer: Each \(Y_i \) is the exclusive-or of two bits. Assume \(Y_i = x_j \oplus x_k \), then

\[
P(Y_i = 1) = P((x_j = 0 \cap x_k = 1) \cup (x_j = 1 \cap x_k = 0))
\]

\[
= P(x_j = 0 \cap x_k = 1) + P(x_j = 1 \cap x_k = 0)
\]

\[
= P(x_j = 0) \cdot P(x_k = 1) + P(x_j = 1) \cdot P(x_k = 0)
\]

\[
= \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2}
\]

\[
= \frac{1}{2}
\]

and

\[
P(Y_i = 0) = P((x_j = 0 \cap x_k = 0) \cap (x_j = 1 \cap x_k = 1))
\]

\[
= P(x_j = 0 \cap x_k = 0) + P(x_j = 1 \cap x_k = 1)
\]

\[
= P(x_j = 0) \cdot P(x_k = 0) + P(x_j = 1) \cdot P(x_k = 1)
\]

\[
= \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2}
\]

\[
= \frac{1}{2}
\]

(b) Show that the \(Y_i \) are not mutually independent.

Answer: Mutually independent means for every subset, the probability

\[
Pr(Y_i \cap Y_j \cap \cdots \cap Y_r) = Pr(Y_i) \cdot Pr(Y_j) \cdots Pr(Y_r)
\]

If we choose such a subset that those \(Y_i \)'s have factors in common, for example, we choose \(Y_i = x_a \oplus x_b \), \(Y_j = x_a \oplus x_c \) and \(Y_k = x_b \oplus x_c \), then

\[
P(Y_i = 1 \cap Y_j = 1 \cap Y_k = 1) = 0
\]

but

\[
P(Y_i = 1)P(Y_j = 1)P(Y_k = 1) = \frac{1}{8}
\]

They are not equal. So the \(Y_i \)'s are not mutually independent.

(c) Show that the \(Y_i \) satisfy the property that \(E[Y_iY_j] = E[Y_i]E[Y_j] \).
Answer: \(E[Y_iY_j] = Pr(Y_iY_j = 1) = Pr(Y_i = 1 \cap Y_j = 1) \).

If \(Y_i \) and \(Y_j \) do not have factor in common, i.e. \(Y_i = x_a \oplus x_b \) and \(Y_j = x_c \oplus x_d \), then

\[
Pr(Y_i = 1 \cap Y_j = 1) = Pr((x_a \oplus x_b = 1) \cap (x_c \oplus x_d = 1)) \\
= Pr(x_a = 0)Pr(x_b = 1) \cdot P(x_c \oplus x_d = 1) \\
+ Pr(x_a = 1)Pr(x_b = 0) \cdot P(x_c \oplus x_d = 1) \\
= \frac{1}{4}Pr(x_c \oplus x_d = 1) + \frac{1}{4}Pr(x_c \oplus x_d = 1) \\
= \frac{1}{2}Pr(x_c \oplus x_d = 1) \\
= \frac{1}{4}
\]

(10)

If \(Y_i \) and \(Y_j \) have one factor in common, i.e. \(Y_i = x_a \oplus x_b \) and \(Y_j = x_b \oplus x_c \), then

\[
Pr(Y_i = 1 \cap Y_j = 1) = Pr((x_a \oplus x_b = 1) \cap (x_b \oplus x_c = 1)) \\
= Pr(x_a = 0)Pr(x_b = 1)P(x_c = 0) \\
+ Pr(x_a = 1)Pr(x_b = 0)P(x_c = 1) \\
= \frac{1}{8} + \frac{1}{8} \\
= \frac{1}{4}
\]

(11)

While, for any \(i \),

\[
E[Y_i] = Pr(Y_i = 1) \\
= Pr(x_a = 0 \cap x_b = 1) + Pr(x_a = 1 \cap x_b = 0) \\
= \frac{1}{4} + \frac{1}{4} \\
= \frac{1}{2}
\]

(12)

So that \(E[Y_i]E[Y_j] = \frac{1}{4} \).

In any case, the equality \(E[Y_iY_j] = E[Y_i]E[Y_j] \) holds.

(d) Using Exercise 3.15, find \(Var[Y] \).

Answer: Using Exercise 3.15, since the above equality holds, and \(Y = \sum_{i=1}^{m} Y_i \),

\[
Var[Y] = \sum_{i=1}^{m} Var[Y_i]
\]

\[
Var[Y_i] = \bar{Y}_i^2 - (\bar{Y})^2 \\
= Pr(Y_i = 1) - (Pr(Y_i = 1))^2 \\
= \frac{1}{2} - \left(\frac{1}{2}\right)^2 \\
= \frac{1}{4}
\]

(13)
So, \(\text{Var}[Y] = m/4 \).

(e) Using Chebyshev’s inequality, prove a bound on \(\Pr(|Y - E[Y]| \geq n) \).

Answer: Using Chebyshev’s inequality,

\[
\Pr(|Y - E[Y]| \geq n) \leq \frac{\text{Var}[Y]}{n^2} = \frac{m/4}{n^2} = \frac{n - 1}{8n} = \frac{1}{8} (1 - \frac{1}{n}) \quad (14)
\]
3 Problem 4.9

Suppose that we can obtain independent samples \(X_1, X_2, \ldots \) of a random variable \(X \) and that we want to use these samples to estimate \(E[X] \). Using \(t \) samples, we use \(\frac{\sum_{i=1}^{t} X_i}{t} \) for estimate of \(E[X] \). We want the estimate to be within \(\varepsilon E[X] \) from the true value of \(E[X] \) with probability at least \(1-\delta \). We may not be able to use Chernoff’s bound directly to bound how good our estimate is if \(X \) is not a 0-1 random variable, and we do not know its moment generating function. We develop an alternative approach that requires only having a bound on the variance of \(X \). Let \(r = \sqrt{\text{Var}[X]/E(X)} \).

(a) Show using Chebyshev’s inequality that \(O(r^2/\varepsilon^2\delta) \) samples are sufficient to solve the problem.

Answer:

\[
\Pr(\frac{\sum_{i=1}^{t} X_i}{t} \leq (1+\varepsilon)E[X]) = 1 - \Pr(\frac{\sum_{i=1}^{t} X_i}{t} > (1+\varepsilon)E[X])
\]

\[
= 1 - \Pr(\sum_{i=1}^{t} X_i > t(1+\varepsilon)E[X])
\]

(15)

\[
E(\sum_{i=1}^{t} X_i) = t \cdot E(X) = t \cdot E(X)
\]

(16)

and

\[
\text{Var}(\sum_{i=1}^{t} X_i) = t \cdot \text{Var}(X) = t \cdot \text{Var}(X)
\]

(17)

Using Chebyshev’s Inequality, and write \(Y = \sum_{i=1}^{t} X_i \),

\[
\Pr(\sum_{i=1}^{t} X_i > t(1+\varepsilon)E[X]) = \Pr(Y > E(Y) + \varepsilon E(Y))
\]

\[
= \Pr(Y - E(Y) > \varepsilon E(Y))
\]

\[
\leq \frac{\text{Var}(Y)}{(\varepsilon E(Y))^2}
\]

\[
= \frac{\text{Var}(\sum_{i=1}^{t} X_i)}{(\varepsilon t E(X))^2}
\]

\[
= \frac{t \cdot \text{Var}(X)}{t^2 \varepsilon^2 E(X)^2}
\]

\[
= \frac{r^2}{t \cdot \varepsilon^2}
\]

(18)
As long as $t \geq r^2/(\varepsilon^2 \delta)$, we have

$$
Pr\left(\sum_{i=1}^{t} X_i/t \leq (1 + \varepsilon)E[X]\right) = 1 - Pr\left(\sum_{i=1}^{t} X_i > t(1 + \varepsilon)E[X]\right)
= 1 - \frac{r^2}{t \cdot \varepsilon^2}
\geq 1 - \delta
$$

(19)

So the number of estimates needed is: $r^2/(\varepsilon^2 \delta) = O(r^2/\varepsilon^2 \delta)$.

But, if we have $O(r^2/\varepsilon^2 \delta)$ samples, it does not guarantee the probability of $1 - \delta$.

(b) Suppose that we need only a weak estimate that is within $\varepsilon E[X]$ of $E[X]$ with probability at least 3/4. Argue that $O(r^2/\varepsilon^2)$ samples are enough for this weak estimate.

Answer: Probability of 3/4 means $\delta = 1/4$. By setting $\delta = 1/4$ in $O(r^2/\varepsilon^2 \delta)$, we have $O(4r^2/\varepsilon^2) = O(r^2/\varepsilon^2)$.

(c) Show that, by taking the median of $O(\log(1/\delta))$ weak estimates, we can obtain an estimate within $\varepsilon E[X]$ of $E[X]$ with probability at least $1-\delta$. Conclude that we need only $O((r^2 \log(1/\delta))/\varepsilon^2)$ samples.

Answer: If the median of the weak estimates satisfies the condition, it means less than half of the weak estimates are not within $\varepsilon E[X]$ of the true value of $E[X]$. Let’s use a new random variable X_i:

$$
X_i = \begin{cases}
1 & \text{if the } i\text{th weak estimate fall above } \varepsilon E(X) \text{ of } E(X) \\
0 & \text{if the } i\text{th weak estimate fall below } \varepsilon E(X) \text{ of } E(X)
\end{cases}
$$

X_i follows binomial distribution with probability of 1/4 or more to be 1 and 3/4 or less to be 0. For simplicity, we use 1/4 in this problem. Lower probability will need lower number of estimates.

If we use $X = \sum_{i=1}^{m} X_i$ to represent how many weak estimates fall above $(1 + \varepsilon)E(X)$, we will be able to use Chernoff bound to for the value of m so that $Pr(X >= m/2) < \delta$.

Chernoff bound gives:

$$
Pr(X \geq (1 + \delta')E(X)) \leq e^{-E(X)\delta'^2/3}
$$

where $E(X) = m/4$. Use $\delta' = 1$, we have

$$
Pr(X \geq m/2) \leq e^{-m/12}
$$

By using $m = 12 \cdot \log(1/\delta)$, we have $Pr(X \geq m/2) \leq \delta$, so that the probability that the median of weak estimates gives result within $\varepsilon E(X)$ is at least $1 - \delta$.

Each weak estimate uses $O(r^2/\varepsilon^2)$ samples, and there are $O(\log(1/\delta))$ weak estimates so that the total number of samples is $O(r^2 \log(1/\delta)/\varepsilon^2)$.