A Continuum of Bootstrapping Methods for Parsing Natural Languages

University of Rochester
Dec. 12, 2003

Rebecca Hwa
University of Pittsburgh
hwa@cs.pitt.edu
The Role of Parsing in Language Applications...

• As a stand-alone application
 – Grammar checker

• As a pre-processing step
 – Q&A, information extraction, dialogue systems

• As an integral part of a model
 – Speech Recognition
 • language models
 – Machine Translation
 • word alignment
Challenges in Building Parsers

• Disambiguation
 – Lexical disambiguation
 – Structural disambiguation

• Rule Exceptions
 – Many lexical dependencies

• Manual Grammar Construction
 – Limited coverage
 – Difficult to maintain
Meeting these Challenges: Statistical Parsing

• Disambiguation?
 – Resolve local ambiguities with global likelihood

• Rule Exceptions?
 – Lexicalized representation

• Manual Grammar Construction?
 – Automatic induction from large corpora
 – A new challenge: how to obtain enough suitable training corpora?
 – Make better use of both annotated and unprocessed text through an iterative process

Rebecca Hwa University of Pittsburgh
Roadmap

• Parsing as a learning problem
• Three bootstrapping methods
 – Sample selection
 – Co-training
 – Corrected co-training
• Conclusion and further directions
Parsing Ambiguities

Input: “I saw her duck with a telescope”
Disambiguation with Statistical Parsing

W = “I saw her duck with a telescope”

\[\Pr(T_1 | W) > \Pr(T_2 | W) \]
A Statistical Parsing Model

• Probabilistic Context-Free Grammar (PCFG)
• Associate probabilities with production rules
• Likelihood of the parse is computed from the rules used
• Learn rule probabilities from training data

Example of PCFG rules:

\[
\begin{align*}
0.7 & \text{ NP } \rightarrow \text{ DET } \text{ N} \\
0.3 & \text{ NP } \rightarrow \text{ PN} \\
0.5 & \text{ DET } \rightarrow \text{ a} \\
0.1 & \text{ DET } \rightarrow \text{ an} \\
0.4 & \text{ DET } \rightarrow \text{ the} \\
\end{align*}
\]

\[
\begin{align*}
\arg \max_{T_i \in \text{Trees}(W)} \Pr(T_i | W) &= \arg \max_{T_i \in \text{Trees}(W)} \frac{\Pr(T_i, W)}{\Pr(W)} \\
\Pr(T_i, W) &= \prod_r \Pr(\text{RHS}_r | \text{LHS}_r)
\end{align*}
\]
Handle Rule Exceptions with Lexicalized Representations

• Model relationship between words as well as structures
 – Modify the production rules to include words
 • Greibach Normal Form
 – Represent rules as tree fragments anchored by words
 • Lexicalized Tree Grammars
 – Parameterize the production rules with words
 • Collins Parsing Model
Example: Collins Parsing Model

- Rule probabilities are composed of probabilities of bi-lexical dependencies

\[\text{Pr}(S[\text{saw}] \rightarrow NP[I], VP[\text{saw}]) = \text{Pr}_H(\text{VP} | S, \text{saw}, \text{VB}) \times \text{Pr}_L(\text{NP}(I) | S, \text{VP}, \text{saw}, \text{VB}) \times \text{Pr}_L(\text{STOP} | S, \text{VP}, \text{saw}, \text{VB}) \times \text{Pr}_R(\text{STOP} | S, \text{VP}, \text{saw}, \text{VB}) \]
Machine Learning Avoids Manual Construction

• Supervised training
 – Training examples are pairs of problems (instances) and answers (labels)
 – Training examples for parsing: a collection of sentence, parse tree pairs (Treebank)

• New challenge: treebanks are difficult to obtain
 – Needs human experts
 – Takes years to complete
Learning to Classify

Train a model to decide: should a prepositional phrase modify the verb before it or the noun?

Training examples:

(v, saw, duck, with, telescope)
(n, saw, duck, with, feathers)
(v, saw, stars, with, telescope)
(n, saw, stars, with, Oscars)
...

Learning to Parse

Train a model to decide: what is the most likely parse for a sentence \(W \)?

\[
\begin{align*}
\text{[S} & \text{[NP-SBJ [NNP Ford] [NNP Motor] [NNP Co.]]} \\
& \text{[VP [VBD acquired]}} \\
& \text{[NP [NP [CD 5] [NN %]]}} \\
& \text{[PP [IN of]} \\
& \text{[NP [NP [DT the] [NNS shares]]} \\
& \text{[PP [IN in]} \\
& \text{[NP [NNP Jaguar] [NNP PLC]]]]]]]. \\
\text{[S} & \text{[NP-SBJ [NNP Pierre] [NNP Vinken]]} \\
& \text{[VP [MD will]}} \\
& \text{[VP [VB join]}} \\
& \text{[NP [DT the] [NN board]]} \\
& \text{[PP [IN as] [NP [DT a] [NN director]]].]}
\end{align*}
\]

...
Building Treebanks

<table>
<thead>
<tr>
<th>Language</th>
<th>Size of Treebank</th>
<th>Time to Develop</th>
<th>Parser Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>English (WSJ)</td>
<td>1M words 40k sent.</td>
<td>~5 years</td>
<td>~90%</td>
</tr>
<tr>
<td>Chinese (Xinhua News)</td>
<td>100K words 4k sent.</td>
<td>~2 years</td>
<td>~75%</td>
</tr>
<tr>
<td>Others (e.g., Hindi, Cebuano)</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
Our Approach

• Make use of both labeled and unlabeled data during training

• Bootstrapping
 – Improve the parsing model(s) iteratively

• Three methods:
 – Sample selection
 • Machine picks unlabeled data for human to label
 – Co-training
 • Machines label data for each other
 – Corrected Co-training
 • Combines sample selection and co-training
Roadmap

• Parsing as a learning problem

• Three bootstrapping methods
 – Sample selection
 – Co-training
 – Corrected Co-training

• Conclusion and further directions
Sample Selection Algorithm

Initialize
Train the parser on a small treebank (seed data) to get the initial parameter values.

Repeat
Create a candidate set by randomly sample a large unlabeled pool.
Estimate the Training Utility Value of each sentence in the candidate set with a scoring function, f.
Pick the n sentences with the highest score (according to f). Human labels these n sentences and add them to training set.
Re-train the parser with the updated training set.

Until (no more data) or (human stops).
Scoring Function

• Approximate the TUV of each sentence
 – True TUVs are not known

• Need relative ranking

• Ranking criteria
 – Knowledge about the domain
 • e.g., sentence clusters, sentence length, …
 – Output of the hypothesis
 • e.g., error-rate of the parse, uncertainty of the parse, …
Proposed Scoring Functions

• Using domain knowledge
 – f_{len} long sentences tend to be complex

• Uncertainty about the output of the parser
 – f_{te} tree entropy

• Minimize mistakes made by the parser
 – f_{error} use an oracle scoring function find sentences with the most parsing inaccuracies
Entropy

• Measure of uncertainty in a distribution
 – Uniform distribution ⇒ very uncertain
 – Spike distribution ⇒ very certain

• Expected number of bits for encoding a probability distribution, X

$$H(X) = -\sum_{x \in \mathcal{X}} p(x) \log p(x)$$
Tree Entropy Scoring Function

• Distribution over parse trees for sentence W:

$$\sum_{T_i \in Trees(W)} \Pr(T_i \mid W) = 1$$

• Tree entropy: uncertainty of the parse distribution

$$TE(W) = - \sum_{T_i \in Trees(W)} \Pr(T_i \mid W) \log \Pr(T_i \mid W)$$

• Scoring function: ratio of actual parse tree entropy to that of a uniform distribution

$$f_{te} = \frac{TE(W)}{\log(|Trees(W)|)}$$
Oracle Scoring Function

• \(f_{\text{error}} \) 1 - the accuracy rate of the most-likely parse
• Parse accuracy metric: f-score

f-score = harmonic mean of precision and recall

\[
\text{Precision} = \frac{\text{\# of correctly labeled constituents}}{\text{\# of constituents generated}}
\]

\[
\text{Recall} = \frac{\text{\# of correctly labeled constituents}}{\text{\# of constituents in correct answer}}
\]
Experimental Setup

• Parsing model:
 – Collins Model 2

• Candidate pool
 – WSJ sec 02-21, with the annotation stripped
 – Initial labeled examples: 500 sentences
 – Per iteration: add 100 sentences

• Testing metric: f-score (precision/recall)

• Test data:
 – ~2000 unseen sentences (from WSJ sec 00)

• Baseline
 – Annotate data in sequential order
Training Examples Vs. Parsing Performance

Number of Training Sentences

Parsing performance on Test Sentences (f-score)

- sequential
- length
- tree entropy
- oracle

Rebecca Hwa

University of Pittsburgh
Parsing Performance Vs. Constituents Labeled

Parsing Performance on Test Sentences (f-score)

- Baseline
- Length
- Tree Entropy
- Oracle
Roadmap

• Parsing as a learning problem
• Three bootstrapping methods
 – Sample selection
 – Co-training [joint work with Steedman et al.]
 – Corrected Co-training
• Conclusion and further directions
Co-Training

• Assumptions
 – Have a small treebank
 – No further human assistance
 – Have two different kinds of parsers

• A subset of each parser’s output becomes new training data for the other

• Goal:
 – select sentences that are labeled with confidence by one parser but labeled with uncertainty by the other parser.

Rebecca Hwa
Algorithm

Initialize
Train two parsers on a *small* treebank (seed data) to get the initial models.

Repeat
Create a candidate set by randomly sample a large unlabeled pool.
Each parser labels the candidate set and estimates *the accuracy of its output* with scoring function, f.
Choose examples according to some *selection method*, S (using the scores from f).
Add them to the parsers’ training sets.
Re-train parsers with the updated training sets.

Until (no more data).
Scoring Functions

• Evaluates the quality of each parser’s output
• Ideally, function measures accuracy
 – Oracle $f_{F\text{-score}}$
 • combined prec./rec. of the parse
• Practical scoring functions
 – Conditional probability f_{cprob}
 • Prob(parse | sentence)
 – Others (joint probability, entropy, etc.)
Selection Methods

• Above-n: $S_{\text{above-}n}$ [Blum & Mitchell, 1998]
 – The score of the teacher’s parse is greater than n

• Difference: $S_{\text{diff-}n}$
 – The score of the teacher’s parse is greater than that of the student’s parse by n

• Intersection: $S_{\text{int-}n}$
 – The score of the teacher’s parse is one of its $n\%$ highest while the score of the student’s parse for the same sentence is one of the student’s $n\%$ lowest
Experimental Setup

• Co-training parsers:
 – Lexicalized Tree Adjoining Grammar parser [Sarkar, 2002]
 – Lexicalized Context Free Grammar parser [Collins, 1997]
• Seed data: 1000 parsed sentences from WSJ sec02
• Unlabeled pool: rest of the WSJ sec02-21, stripped
• Consider 500 unlabeled sentences per iteration
• Development set: WSJ sec00
• Test set: WSJ sec23
• Results: graphs for the Collins parser
Selection Methods and Co-Training

• Two scoring functions: $f_{F\text{-score}}, f_{cprob}$
• Multiple view selection vs. one view selection
 – Three selection methods: $S_{\text{above-}n}, S_{\text{diff-}n}, S_{\text{int-}n}$

• Maximizing utility vs. minimizing error
 – For $f_{F\text{-score}}$, we vary n to control accuracy rate of the training data
 – Loose control
 • More sentences (avg. F-score of train set = 85%)
 – Tight control
 • Fewer sentences (avg. F-score of train set = 95%)
Co-Training using $f_{F\text{-score}}$ with Loose Control

![Graph showing parsing performance of the test set against number of training sentences. Legend includes lines for 'above-70%', 'diff-10%', 'int-60%', and 'Human'.]
Co-Training using $f_{F\text{-score}}$ with Tight Control
Co-Training using f_{cprob}

Parsing Performance of the test set

- above-70%
- diff-30%
- int-30%

Number of training sentences

Rebecca Hwa
Roadmap

• Parsing as a learning problem

• Three bootstrapping methods
 – Sample selection
 – Co-training
 – Corrected Co-training

• Conclusion and further directions
Corrected Co-Training

• Human **reviews** and **corrects** the machine outputs before they are added to the training set

• Can be seen as a variant of sample selection

• Has been applied to Base NP detection
 [*Pierce & Cardie*, 2001]
Algorithm

Initialize:
Train two parsers on a small treebank (seed data) to get the initial models.

Repeat
Create a candidate set by randomly sample a large unlabeled pool.
Each parser labels the candidate set and evaluates its output with scoring function, f.
Choose examples according to some selection method, S (using the scores from f).
Human reviews and corrects the chosen examples.
Add them to the parsers’ training sets.
Re-train parsers with the updated training sets.
Until (no more data) or (human stops).
Selection Methods and Corrected Co-Training

- Two scoring functions: $f_{F\text{-score}}$, f_{cprob}
- Three selection methods: $S_{above-n}$, S_{diff-n}, S_{int-n}

- Balance between reviews and corrections
 - Maximize training utility: fewer sentences to review
 - Minimize error: fewer corrections to make
 - Better parsing performance?
Corrected Co-Training using $f_{\text{F-score}}$ (Reviews)
Corrected Co-Training using $f_{F\text{-score}}$ (Corrections)

Rebecca Hwa

University of Pittsburgh
Corrected Co-Training using f_{cprob} (Reviews)
Corrected Co-Training using f_{cprob} (Corrections)

Parsing Performance of the test set above-70% diff-30% int-30% No selection

Number of constituents to correct in the training data
Conclusion

• Sample selection
 – Tree-entropy reduces the number of training examples by 35% and the number of labeled constituents by 23%.

• Co-training and corrected co-training
 – Selection methods that use multiple views improve learning
 – Selection methods need to balance (often conflicting) criteria
 • Maximize training utility
 • Minimize error
 – Maximizing training utility is beneficial even at the potential cost of reducing training set accuracy
Further Directions

• Machine learning methods for parsing
 – Better understanding of relationships between different learning techniques
 – Scoring functions for sample selection and co-training
 – Selection methods for co-training
 – Interaction with human in supervised training

• Applications of parsing: multilingual language processing
 – Word alignment
 – Structural correspondences
 – Machine translation