
Inducing Effective Pedagogical Strategies Using
Learning Context Features

Min Chi1, Kurt VanLehn2, Diane Litman3 and Pamela Jordan4

1 Machine Learning Department, Carnegie Mellon University, PA, 15213 USA
minchi@cs.cmu.edu

2 School of Computing and Informatics, Arizona State University, AZ, 85287 USA
Kurt.Vanlehn@asu.edu

3 Department of Computer Science, University of Pittsburgh, PA, 15260 USA
litman@cs.pitt.edu

4 Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA
15260 pjordan@pitt.edu

Abstract. Effective pedagogical strategies are important for e-learning
environments. While it is assumed that an effective learning environ-
ment should craft and adapt its actions to the user’s needs, it is often
not clear how to do so. In this paper, we used a Natural Language Tu-
toring System named Cordillera and applied Reinforcement Learning
(RL) to induce pedagogical strategies directly from pre-existing human
user interaction corpora. 50 features were explored to model the learning
context. Of these features, domain-oriented and system performance fea-
tures were the most influential while user performance and background
features were rarely selected. The induced pedagogical strategies were
then evaluated on real users and results were compared with pre-existing
human user interaction corpora. Overall, our results show that RL is a
feasible approach to induce effective, adaptive pedagogical strategies by
using a relatively small training corpus. Moreover, we believe that our
approach can be used to develop other adaptive and personalized learn-
ing environments.

1 Introduction

Natural Language (NL) Tutoring Systems are a form of Intelligent Tutoring Sys-
tems (ITSs) that use natural dialogue for instructional purposes such as helping
students to learn a subject by engaging in a natural language conversation.
Why2-Atlas and Why2-AutoTutor [1], for example, are NL tutoring systems
that teach students conceptual physics. One central component of NL Tutoring
Systems is the dialogue manager, which uses dialogue strategies to decide what
action to take at each point during the tutorial dialogue. For tutoring systems,
dialogue strategies are also referred to as pedagogical strategies.

It is commonly believed that an effective tutoring system would craft and
adapt its actions to the students’ needs based upon their current knowledge
level, general aptitude, and other salient features [2]. However, most pedagogi-
cal strategies for ITSs are encoded as hand-coded rules that seek to implement



cognitive and/or pedagogical theories. Typically, the theories are considerably
more general than the specific decisions that designers must make, which makes
it difficult to tell if a specific pedagogical strategy is consistent with the theory.
Moreover, it is often not easy to empirically evaluate these decisions because the
overall effectiveness of the system depends on many factors, such as the usabil-
ity of the system, how easily the dialogues are understood, and so on. Ideally,
several versions of a system are created, each employing a different pedagogical
strategy. Data is then collected with human subjects interacting with these dif-
ferent versions of the system and the results are compared. Due to the high cost
of experiments, only a handful of strategies are typically explored. Yet, many
such other reasonable ones are still possible.

In recent years, work on the design of NL non-tutoring Dialogue Systems
has involved an increasing number of data-driven methodologies. Among these,
Reinforcement Learning (RL) has been widely applied [3]. RL is a machine learn-
ing method that centers on the maximization of expected rewards. It has many
features well-suited to the problem of designing the dialogue manager such as
unobservable states, delayed rewards, and so on. Its primary advantage is its
ability to compute an optimal policy within a much larger search space, using
a relatively small training corpus. In this work, rather than implementing peda-
gogical strategies drawn from human experts or theories, we applied RL to derive
pedagogical strategies using pre-existing interactivity data.

While most previous work on using RL to train non-tutoring dialogue systems
has been successful [3], whether it can be used to improve the effectiveness of NL
tutoring systems is still an open question. One major source of uncertainty comes
from the fact that the rewards used in RL are much more delayed in NL tutoring
systems than those in non-tutoring dialogue systems. Much of this work in NL
non-tutoring Dialogue Systems is focused on systems that obtain information
or search databases such as querying bus schedules [4]. For example, in non-
tutoring Systems like the train scheduler, the interaction time is often less than 20
minutes, and the number of interactions within user-dialogue systems is generally
less than 20 turns [3]. In the training corpora reported here, the time is roughly
4-9 hours and the number of interactions is about 280 turns. More immediate
rewards are more effective than more delayed rewards for RL induction. This is
because the issue of assigning credit for a decision, attributing responsibility to
the relevant decision is substantially easier in the former case. The more we delay
rewards, the more difficult it becomes to identify the decision(s) responsible for
our success or failure. Additionally, to train an RL model, a large amount of
data is generally needed. In this work, we use human data only instead of data
from simulators as in applying RL in non-tutoring dialogue systems. This is
because the cause of human learning is still an open question and thus it would
be difficult to accurately simulate students’ responses to the tutor and simulate
how students would learn. Given the high cost of collecting human data, we were
more likely to encounter the issue of data sparsity.

For RL, as with all machine learning tasks, success is dependent upon an
effective state representation or state model. An effective state representation



should be an accurate and compact model of the learning context. Compared
with non-tutoring Dialogue Systems, where success is primarily a function of
communication efficiency, communication efficiency is only one of the factors de-
termining whether a student learns well from an NL tutoring system. Moreover,
the other factors are not well understood, so to be conservative, states need to
contain features for anything that is likely to affect learning. Hence, state models
for RL applications to tutoring systems tend to be much larger than state models
for non-tutoring applications. Unfortunately, as states increase in size and com-
plexity, we risk making the learning problem intractable or the decision space
too large to sample effectively. In order to obtain an effective state model that
both minimizes state size while retaining sufficient relevant information about
the learning context, we began with a large set of features to which we applied a
series of feature-selection methods in order to reduce them to a tractable subset.
Before describing our approach in detail, we will briefly describe the two types
of tutorial decisions covered by the induced pedagogical policies.

2 Two Types of Tutorial Decisions

Among the many tutorial decisions that must be made, we focus on two types of
decisions, Elicit/Tell (ET) and Justify/Skip-Justify (JS). The ET decision asks
“should the tutor elicit the next problem-solving step from the student, or should
he or she tell the student the next step directly?”. For example, when the next
step is to select a principle to apply and the target principle is the “definition of
Kinetic Energy’, the tutor can choose to elicit this from the student by asking
the question, “Which principle will help you calculate the rock’s kinetic energy
at T0?” By contrast, the tutor can elect to tell the student the step by stating,
“To calculate the rock’s kinetic energy at T0, let’s apply the definition of Kinetic
Energy.” The JS decision asks “should the tutor include a justify for a step just
taken or or not”. For example, after deciding to use the “definition of Kinetic
Energy”, the tutor can choose to ask the student why the principle is applicable
or to skip to ask. There is no widespread consensus on how or when any of these
actions should be taken [5–8]. This is why our research objective is to derive
policies for them from empirical data.

3 Applying RL to Induce Pedagogical Strategies

Previous research on using RL to improve non-tutoring dialogue systems (e.g.
[9]) has typically used Markov Decision Processes (MDPs) [10] to model dialogue
data. The central idea behind this approach is to transform the problem of
inducing effective pedagogical strategies into computing an optimal policy for
an agent that is choosing actions in an MDP. An MDP formally corresponds
to a 4-tuple (S, A, T, R), in which: S = {S1, · · · , Sn} is a state space; A =
{A1, · · · , Am} is an action space represented by a set of action variables; T :
S ×A×S → [0, 1] is a set of transition probabilities P (Sj |Si, Ak), which is the
probability that the model would transition from state Si to state Sj after the



agent takes action Ak; R : S × A × S → R assigns rewards to state transitions.
Finally, π : S → A is defined as a policy, which determines which action the
agent should take in each state in order to maximize the expected reward.

The set of possible actions, A, is small and well-defined. In our application,
we have A = {Elicit, T ell} for inducing pedagogical strategies on ET decisions
and A = {Justify, Skip− Justify} for inducing those on JS decisions. The set
of possible states, S, however is not well-defined in advance and can potentially
be astronomically large if we include everything that could possibly influence
the effectiveness of a tutorial action. In this study, we assumed that S is the
Cartesian product of a set of state features F = {F1, · · · , Fp} and our challenge
now becomes finding a set of features F to model the state or learning context
compactly and yet effectively. Features must be operational, in that there is
some way to determine their value prior to just before each tutor action in the
dialogue. For instance, one operational feature would be a count of the number
of words uttered by the student since the last tutor turn.

Each student-system interaction dialogue d can be viewed as a trajectory in
the chosen state space determined by the system actions and student responses:

S1
A1,R1−−−−→ S2

A2,R2−−−−→ · · ·Sn
An,Rn−−−−→

Here Si
Ai,Ri−−−−→ Si+1 indicated that at the ith turn in the tutorial dialogue

d, the system was in state Si, executed action Ai, received reward Ri, and then
transferred into state Si+1. Because our primary interest is to improve students’
learning, we used Normalized Learning Gain (NLG) as the reward because it
measures students’ gain irrespective of their incoming competence. The NLG
is defined as: NLG = posttest−pretest

1−pretest . Here posttest and pretest refer to the
students’ test scores before and after the training respectively; and 1 is the
maximum score. Given that a student’s NLG will not be available until the
entire tutorial dialogue is completed, only terminal dialogue states have non-
zero rewards. Thus for a tutorial dialogue d, R1 · · · , Rn−1 are all equal to 0 and
only the final reward equal to the student’s NLG × 100, which is in the range
of (-∞, 100].

Once the MDP structure {S, A, R} has been defined, the transition prob-
abilities T are estimated from the training corpus, which is the collection of
dialogues, as: T = {p(Sj |Si, Ak)}k=1,··· ,m

i,j=1,··· ,n. More specifically, p(Sj |Si, Ak) is cal-
culated by taking the number of times that the dialogue is in state Si, the tutor
took action Ak, and the dialogue was next in state Sj divided by the number
of times the dialogue was in Si and the tutor took Ak. The reliability of these
estimates clearly depends upon the size and structure of the training data. Once
a complete MDP is constructed, a dynamic programming approach can be used
to learn the optimal control policy π∗ and here we used the toolkit developed by
Tetreault and Litman [11]. The rest of this section presents a few critical details
of the process, but many others must be omitted to save space.



3.1 Knowledge Component (KC) Based Pedagogical Strategies

In the learning literature, it is commonly assumed that relevant knowledge in
domains such as math and science is structured as a set of independent but
co-occurring Knowledge Components (KCs) and that KC’s are learned indepen-
dently. A KC is “a generalization of everyday terms like concept, principle, fact,
or skill, and cognitive science terms like schema, production rule, misconception,
or facet” [12]. For the purposes of ITSs, these are the atomic units of knowledge.

The domain selected for this project is a subset of the physics work-energy
domain, which is characterized by eight primary KCs. For instance, one KC is
the definition of kinetic energy (KE = 1

2 ∗ m ∗ v2) and another is the definition
of gravitational potential energy (GPE = m∗g∗h). It is assumed that a tutorial
dialogue about one KC (e.g., kinetic energy) will have no impact on the student’s
understanding of any other KC (e.g, of potential energy). This is an idealization,
but it has served ITS developers well for many decades, and is a fundamental
assumption of many cognitive models [13, 14].

When dealing with a specific KC, the expectation is that the tutor’s best
policy for teaching that KC (e.g., when to Elicit vs, when to Tell) would be based
upon the student’s mastery of the KC in question, its intrinsic difficulty, and
other relevant, but not necessarily known, factors specific to that KC. In other
words, an optimal policy for one KC might not be optimal for another. Therefore,
one assumption made in this paper is that inducing pedagogical policies specific
to each KC would be more effective than inducing an overall KC-general policy.
In order to learn a policy for each KC, we annotated our tutoring dialogues
and action decisions with the KCs covered by each action. For each KC, the
final kappa was ≥ 0.77, which is fairly high given the complexity of the task.
Additionally, a domain expert also mapped the pre-/post test problems to the
sets of relevant KCs. This resulted in a KC-specific NLG score for each student.
Thus, for the decision of when to Elicit vs. Tell about the definition of kinetic
energy KC20, we consider all and only the dialogue about that KC and consider
only the learning gains on that KC.

Given these independence assumptions, the overall problem of inducing a
policy for ET decisions and a policy for JS decisions is decomposed into 8 sub-
problems of each kind, one per KC. Among the eight KCs, KC1 does not arise in
any JS decisions and thus only an ET policy was induced for it. For each of the
remaining seven KCs, a pairs of policies, one ET policy and one JS policy, were
induced. So we induced 15 KC-based NormGain policies. During the tutoring
process, there were some decision steps that did not involve any of the eight
primary KCs. For them, two KC-general policies, an ET policy and a JS policy,
were induced. To sum, a total of 17 NormGain policies were induced in this
study.

3.2 Training Corpora

In order to apply RL to induce pedagogical strategies and evaluate the induced
strategies, we used Cordillera. Cordillera is a NL tutoring system that teaches



introductory physics[12]. To reduce confounds due to imperfect NL understand-
ing, the NL understanding module was replaced with human wizards whose only
task is to match students’ answers to the closest response from a list of potential
responses and they cannot make the tutorial decisions. As the first step, we de-
veloped an initial version of Cordillera, called random-Cordillera on which both
ET and JS decisions on it were made randomly. 64 college students were then
trained on random-Cordillera in 2007 and the collected training data is called
the Exploratory corpus.

From the Exploratory corpus, we tried our first round of policy induction. It
is done by first defining 17 state features and then used some sort of greedy-like
procedure to search for a small subset of it as the state representation. For the
reward functions, we had dichotomized the NLGs scores so that there were only
two levels of reward and thus the derived policies were named DichGain policies.
We next tested our hypothesis that these RL-induced policies would improve the
effectiveness of a tutoring system. The version of Cordillera that implemented
the DichGain policies was named DichGain-Cordillera. Except following the poli-
cies (random vs. DichGain), the remaining components of Cordillera, including
the GUI interface, the same training problems, and the tutorial scripts, were
left untouched. DichGain-Cordillera’s effectiveness was tested by training a new
group of 37 college students in 2008. Results showed that although the DichGain
policies generated significantly different patterns of tutorial decisions than the
random policy, no significant difference was found between the two groups on
the pretest, posttest, or the NLGs.

3.3 Inducing NormGain Strategies

Although the previous experiment seemingly failed to confirm our hypothesis,
it did generate more training data. We now have three training corpora: the
Exploratory corpus in 2007, the DichGain corpus in 2008, and a combined train-
ing corpus dataset consisting of the 101 dialogues from both the Exploratory
and the DichGain corpora. This time we started with a larger set of possible
state features. We included 50 features based upon six categories of features
considered by previous research [15–17] to be relevant. They include not only
student’s performance and background related features such as student’s over-
all performance but also domain-oriented and system behavior related features.
Moreover, we explored more domain -general methods of searching the power
set of the 50 features and instead of dichotomizing learning gains as rewards, we
used the NLG×100 directly. Based on the reward function, the induced policies
are named normalized Gain (NormGain) policies in the following.

Figure 1 shows an example of a learned NormGain policy on KC20, “Defini-
tion of Kinetic Enegy”, for JS decisions. The policy involves five features. They
are:

TimeInSession: The total time spent in the current session. This feature reflects a
student’s fatigue level.

nKCs: The number of times the present KC has occurred in the current dialogue.
This feature reflects the students’ familiarity with the current KC.



pctElicit: The percentage of ET decisions turned out to be elicit during the dialogue.
This feature reflects how active a student is overall.

stuAverageWords: The average number of words per student turn. This reflects the
student’s level of activity and verbosity.

stuAverageConceptSession: The ratio of the number of the student’s turns which
involves at least one physics concept to all the student turns in this session. This
feature reflects how often the student’s answers involved at least one physics con-
cepts since the start of the training.

[Feature:]
TimeInSession: [0, 3040.80) → 0; [3040.8, ∞] → 1
nKCs: [0, 66) → 0; [66,∞] → 1
pctElicit: [0, 0.49) → 0; [0.49, 1) → 1
stuAverageWords: [0, 4.18) → 0; [4.18,∞] → 1
stuAverageConceptSession: [0, 0.29) → 0; [0.29, 1] → 1

[Policy:]
Justify:

0:0:0:0:0 0:0:1:1:0 0:1:0:0:1 0:0:1:0:0 0:1:0:1:1 0:1:1:0:0 0:1:1:0:1 0:1:1:1:0
0:1:1:1:1 1:0:0:0:0 1:0:0:1:0 1:0:1:0:0 1:0:1:0:1 1:0:1:1:0 1:0:1:1:1 1:1:0:0:1
1:1:1:0:0 1:1:1:0:1 1:1:1:1:0 1:1:1:1:1

Skip-Justify:
0:0:0:0:1 0:0:0:1:0 0:0:0:1:1 0:0:1:0:1 0:0:1:1:1 0:1:0:0:0 0:1:0:1:0 1:0:0:0:1
1:0:0:1:1 1:1:0:0:0 1:1:0:1:0 1:1:0:1:1

Fig. 1. An NormGain Policy on KC20 For JS Decisions

MDP generally requires discrete features and thus all the continous features
need to be discretized. Figure refFig.ExampleNormGainPolicy describes how
each of the five features was discretized. For example, for TimeInSession, if its
value is above 3040.80 sec (50.68 min), it is 1 otherwise, it is 0. There were a
total of 32 rules learned: in 20 situations the tutor should execute the justification
step, in the other 12 situations the tutor should skip. For example, 0:0:0:0:0 is
listed as the first situation under the [Justify], it means that when the student
has spend less than 50.68 min in this session, the occurrence of KC20 in the
student’s dialogue history is less than 66, the student has got less than 49%
of elicit in the past, the average number of words in student’s entries is less
than 4.18 words, and the percentage of times times that the student mention a
physics concept in his/her turn is less than 29%, then the tutor should execute
the justification. As you can see, the RL induced policies are very subtle and
adaptive to the learning context and they are not like most of the tutorial tactics
derived from analyzing human tutorial dialogues.

The resulting 17 NormGain policies were implemented back into Cordillera
yielding a new version of the system, named NormGain-Cordillera. In order to



test our hypothesis that RL can be used to improve tutoring systems, we tested
the effectiveness of NormGain-Cordillera on a new group of students as described
in the next section. The section is written as if one large experiment was done
with 3 conditions, when in fact the 3 groups of students were run sequentially,
as described above.

4 Methods

The purpose of this experiment is to compare the learning gains of students using
random-Cordillera, DichGain-Cordillera and NormGain-Cordillera respectively.
All participants were required to have basic knowledge of high-school algebra,
no experience with college-level physics, and were paid for their time. Each
participant took between six and fourteen hours (3-7 sessions) to finish the study
in a period of two to three weeks. Each session typically lasted about two hours.

The domain selected here is Physics work-energy domain as covered in a first-
year college physics course. The eight primary KCs were: the weight law (KC1),
definition of work (KC14), Definition of Kinetic Energy (KC20), Gravitational
Potential Energy (KC21), Spring Potential Energy (KC22), Total Mechanical
Energy (KC24), Conservation of Total Mechanical Energy (KC27), and Change
of Total Mechanical Energy (KC28).

All three groups experienced the identical procedure and materials. More
specifically, participants all completed a background survey; read a textbook
covering the target domain knowledge; took a pretest; solved the same seven
training problems in the same order on Cordillera; and finally took a posttest.
The pretest and posttest were identical.

Only three salient differences existed across the three groups:

1. The Exploratory group with a population of 64 was recruited in 2007; the
DichGain group with a population of 37 was recruited in 2008; and the
NormGain group with a population of 29 was recruited in 2009.

2. Random-Cordillera made random decisions and the DichGain-Cordillera and
NormGain-Cordillera followed the induced DichGain and NormGain policies
respectively.

3. A group of six human wizards were used by the Exploratory and DichGain
groups; but only one of six wizards were involved in the NormGain group.

4.1 Grading

All tests were graded by a single experienced grader who did not know which
student belonged to which group. For all identified relevant KCs in a test ques-
tion, a KC-based score for each KC application was given. We assigned an overall
competence to a student by the sum of these KC-based scores and normalizing
to a [0,1] interval. We also tried other methods of computing an overall score,
and this did not affect the pattern of results discussed below.



5 Results

The primary goal reported below is twofold: first, to test whether our improved
RL methodology and software produced more effective pedagogical strategies
than either random policies or the policies used by the DichGain group; and
second, to determine the features selected in the state models in the NormGain
policies.

5.1 Learning Results

A one-way ANOVA showed that there were no significant differences among the
three groups on overall training time: F (2, 122) = 1.831, p = .17. After solving
seven training problems on Cordillera, all three groups scored significantly higher
in the posttest than pretest: F (1, 126) = 10.40, p = 0.002 for the Exploratory
group, F (1, 72) = 7.20, p = 0.009 for the DichGain group, and F (1, 56) = 32.62,
p = 0.000 for the NormGain group respectively. The results suggested that the
basic practices and problems, domain exposure, and interactivity of Cordillera
might cause students to learn even from tutors with non-optimal pedagogical
skills.

A one-way ANOVA was used for comparing the learning performance differ-
ences among the three groups. While no significant pre-test score differences were
found: F (2, 127) = 0.53, p = 0.59, there were significant differences among the
three groups on both post-test scores and NLG scores: F (2, 127) = 5.16, p = .007
and F (2, 127) = 7.57, p = 0.001 respectively. Figure 2 compares the three groups
on the pre-test, post-test, and NLG scores. Moreover, a t-test comparison showed
that the NormGain group out-performed the DichGain on both post-test scores
and NLG scores: t(64) = 3.28, p = .002, d5 = 0.82 and t(64) = 3.68, p =
0.000, d = 0.95 respectively. Similar results were found between the NormGain
and Exploratory groups: t(91) = 2.76, p = .007, d = 0.63 on post-test, and
t(91) = 3.61, p = 0.000, d = 0.84 on NLG scores respectively.

To summarize, the comparison among the three groups shows that the Nor-
mGain group significantly outperformed both the Exploratory and DichGain
groups. These results were consistent both for the post-test scores and the NLGs
and the effect sizes were large by Cohen’s d criteria.

5.2 Feature Choices in INDUCED POLICIES

Only 30 out of 50 defined features occurred among the 17 NormGain policies.
Among them, the most frequent feature appeared seven times. Four features
appeared in more than three induced policies and they are:

StepDifficulty (7 Occurrences): which encodes a step’s difficulty level and its value
is roughly estimated from the Combined Corpus based on the percentage of answers
that were correct on the step.

5 Cohen’s d, which is defined as the mean learning gain of the experimental group
minus the mean learning gain of the control group, divided by the groups’ pooled
standard deviation.



Fig. 2. Compare Three Groups Learning Performance under Overall Grading

ConceptToWordRatio (5 Occurences): which represents the ratio of the physics
concepts to words in the tutor’s dialogue.

NumberTellsSinceElicit (5 Occurences): which represents the number of tells the
student has received since the last elicit.

TimeBetweenDecisions (4 Occurences): which represents the time since the last
tutorial decision was made on the current KC.

While StepDifficulty can be seen as domain-oriented feature, the remaining
three features are all the system-behavior related features. The high occurrence
of StepDifficulty in the NormGain policies is not very surprising because it has
been widely believed that difficulty level is an important factor for the system to
behave adaptively and effectively. The frequent involvement of System-behavior
related features in the induced policy maybe because these features might reflect
student’s general aptitude, the activeness of their knowledge on a specific KC,
and so on. For example, NumberTellsSinceElicit reflects how interactive a stu-
dent has been recently and TimeBetweenDecisions reflect how active a student’s
knowledge on the current KC is. When TimeBetweenDecisions is high, it means
that the tutor has not mentioned the KC recently so the student’s knowledge on
the current KC may be still or forgotten.

Much to our surprise, the features related to the students’ overall or re-
cent performance (e.g., error rate) and background (e.g., MSAT, VSAT, gender,
pretest score) appeared the least or none in the NormGain policies. Although
space does not permit a detailed discussion of the prevalence of features, it ap-
pears to be a mixture of easily anticipated dependencies (e.g., step difficulty)
and a few surprises (why doesn’t error rate matter?).



6 Conclusions

We presented a general data-driven method that can be used to improve NL
tutoring system over time. We built and improved a large NL tutoring system
using our methodology, and showed that RL is able to effectively search a very
large continous space of dialogue policies (After discretized, the space is ≥ 250 in
size) using a relatively small amount of training dialogue data (64 subjects in Ex-
ploratory group and 37 in the DichGain group). A post-hoc comparison showed
that our learned policy outperformed both sets of training policies in terms of
learning performance. This success supports the hypothesis that RL-induced
rules are effective and that the approach taken in this project was a feasible
one. However, inducing effective tutorial tactics was not trivial. The DichGain
tutorial tactics did not seem to be more effective than the random decisions in
Random-Cordillera. A number of factors were changed in deriving NormGain
policies from the process of inducing DichGain policies. These included the fea-
ture choices, the choice of training corpora, feature selection methods, and so
on. So it is still not clear which factor or factors caused a change in effectiveness.

Although the discussion of induced features has been cursory, it nonetheless
appears that the learning context features that make the most difference for
determining when to Tell vs. Elicit and when to Justify vs. Skip-Justify are not
always the ones that one would first think of given current theories of learning
and tutoring. For instance, it is widely believed that effective tutors adapt their
behavior to the individual student knowledge level. However, such feature did not
appear in the NormGain policies. Indeed, individualized tutoring is considered
a Grand Challenge by the National Academy of Engineering. However, such
features appeared to play little role in the effective tutorial policies induced from
our data. Overall, our results suggested that when building an accurate learning
context model, adding domain-oriented and the system behavior related features
would be beneficial.

Acknowledgments NSF (#0325054) supported this work and NSF (#SBE-
0836012) supported its publication. We thank Collin Lynch and the reviewers
for helpful comments.

References

1. VanLehn, K., Jordan, P.W., Rosé, C.P., Bhembe, D., et al.: The architecture
of why2-atlas: A coach for qualitative physics essay writing. In Cerri, S.A.,
Gouardères, G., Paraguaçu, F., eds.: Intelligent Tutoring Systems. Volume 2363
of Lecture Notes in Computer Science., Springer (2002) 158–167

2. Chi, M.T.H., Siler, S.A., Jeong, H., Yamauchi, T., Hausmann, R.G.: Learning from
human tutoring. Cognitive Science 25 (2001) 471–533

3. Singh, S.P., Litman, D.J., Kearns, M.J., Walker, M.A.: Optimizing dialogue man-
agement with reinforcement learning: Experiments with the njfun system. J. Artif.
Intell. Res. (JAIR) 16 (2002) 105–133



4. Raux, A., Langner, B., Bohus, D., Black, A.W., Eskenazi, M.: Let’s go public!
taking a spoken dialog system to the real world. In: Proceedings of Interspeech
(Eurospeech). (2005)

5. Collins, A., Brown, J.S., Newman, S.E.: Cognitive apprenticeship: Teaching the
craft of reading, writing and mathematics. In Resnick, L.B., ed.: Knowing, learning
and instruction: Essays in honor of Robert Glaser. Lawrence Erlbaum Associates:
Hillsdale New Jersey (1989) 453–494

6. Chi, M.T.H., de Leeuw, N., Chiu, M.H., LaVancher, C.: Eliciting self-explanations
improves understanding. Cognitive Science 18(3) (1994) 439–477

7. Conati, C., VanLehn, K.: Toward computer-based support of meta-cognitive skills:
a computational framework to coach self-explanation. International Journal of
Artificial Intelligence in Education 11 (2000) 398–415

8. Katz, S., ODonnell, G., Kay, H.: An approach to analyzing the role and structure
of reflective dialogue. International Journal of Artificial Intelligence and Education
11 (2000) 320–343

9. Singh, S.P., Kearns, M.J., Litman, D.J., Walker, M.A.: Reinforcement learning for
spoken dialogue systems. In Solla, S.A., Leen, T.K., Müller, K.R., eds.: NIPS, The
MIT Press (1999) 956–962

10. Sutton, R.S., Barto, A.G.: Reinforcement Learning. MIT Press Bradford Books
(1998)

11. Tetreault, J.R., Litman, D.J.: A reinforcement learning approach to evaluating
state representations in spoken dialogue systems. Speech Communication 50(8-9)
(2008) 683–696

12. VanLehn, K., Jordan, P.W., Litman, D.: Developing pedagogically effective tutorial
dialogue tactics: Experiments and a testbed. In: Proceedings of SLaTE Workshop
on Speech and Language Technology in Education ISCA Tutorial and Research
Workshop. (2007)

13. Anderson, J.R.: The architecture of cognition. Cambridge, Mass. : Harvard Uni-
versity Press (1983)

14. Newell, A., ed.: Unified Theories of Cognition. Harvard University Press; Reprint
edition (1994)

15. Moore, J.D., Porayska-Pomsta, K., Varges, S., Zinn, C.: Generating tutorial feed-
back with affect. In Barr, V., Markov, Z., eds.: FLAIRS Conference, AAAI Press
(2004)

16. Beck, J., Woolf, B.P., Beal, C.R.: Advisor: A machine learning architecture for
intelligent tutor construction. In: AAAI/IAAI, AAAI Press / The MIT Press
(2000) 552–557

17. Forbes-Riley, K., Litman, D.J., Purandare, A., Rotaru, M., Tetreault, J.R.: Com-
paring linguistic features for modeling learning in computer tutoring. In Luckin,
R., Koedinger, K.R., Greer, J.E., eds.: AIED. Volume 158 of Frontiers in Artificial
Intelligence and Applications., IOS Press (2007) 270–277


