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   Introduction 

 Speech and language researchers have shown that 
speaker uncertainty is associated with linguistic 
signals (Dijkstra, Krahmer, & Swerts,  2006 , 
Liscombe, Venditti, & Hirschberg,  2005 , Nicholas, 
Rotaru, & Litman,  2006 , Pon-Barry,  2008  ) , while 
tutoring researchers have    hypothesized that tutors 
use such signals to detect and address student 
uncertainty in order to improve performance met-
rics including student learning, persistence, and 

system usability (Aist, Kort, Reilly, Mostow, & 
Picard,  2002 , Litman, Moore, Dzikovska, & 
Farrow,  2009 , Tsukahara & Ward,  2001  ) . For 
example, VanLehn et al.  (  2003  )  propose that both 
student uncertainty and incorrectness signal “learn-
ing impasses,” i.e., student learning opportunities. 
While correlational studies have shown a link 
between learning and student uncertainty as well 
as the related notion of confusion in tutorial dia-
logue (Craig, Graesser, Sullins, & Gholson,  2004 , 
Forbes-Riley, Rotaru, & Litman,  2008b  ) , few con-
trolled    experiments have investigated whether 
responding to student impasses involving uncer-
tainty improves learning, and those that did yielded 
overall null results (e.g., (Pon-Barry et al.,  2006  ) ). 
To date, most computer dialogue tutors respond 
based only on student correctness. 
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  Abstract 

 We hypothesize that enhancing computer tutors to respond to student uncer-
tainty over and above correctness is one method for increasing both student 
learning and self-monitoring abilities. We test this hypothesis using spoken 
data from both wizarded and fully-automated versions of a spoken tutorial 
dialogue system, where tutor responses to uncertain and/or incorrect stu-
dent answers were manipulated. Although we fi nd no signifi cant improve-
ment in metacognitive metrics (computed using speech and language 
information) when responding to uncertainty and incorrectness as com-
pared to when responding only to incorrectness, we fi nd that some meta-
cognitive metrics signifi cantly correlate with student learning. Our results 
suggest that monitoring and responding to student uncertainty has the 
potential to improve both cognitive and metacognitive student abilities.      

      Towards Improving (Meta)cognition 
by Adapting to Student Uncertainty 
in Tutorial Dialogue       
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 In prior work, we experimentally compared 
learning gains across versions of a spoken  tutorial 
dialogue system that differed in whether and how 
they adapted to student uncertainty. In our experi-
mental conditions, the system provided additional 
knowledge at places of uncertainty; in the control 
conditions, the system either did not provide this 
knowledge, or provided such knowledge ran-
domly. In a  fi rst experiment we used a wizarded 
form of our system, where uncertainty and cor-
rectness were manually annotated in real time by 
a human “wizard” (Forbes-Riley & 
Litman,  2009a ,  2011b  ) . Our results demonstrated 
that responding to student uncertainty, over and 
above correctness, did indeed lead to performance 
improvements along cognitive dimensions. In a 
subsequent experiment we used a fully automated 
version of our system, where uncertainty in each 
student turn was (noisily) detected using acous-
tic-prosodic and lexical features extracted from 
the speech signal, as well as dialogue features. 
Our results were again that enhancing our system 
to respond to uncertainty yielded higher student 
learning gains than non-adaptive control systems, 
but here the difference was only signi fi cant for a 
subset of students after we controlled for the pro-
portion of additional tutoring content received 
during the tutoring interaction. In particular, stu-
dents who received the adaptation learned 
signi fi cantly more than students in a control con-
dition who randomly received an equal propor-
tion of additional tutoring content. Based on 
system error analyses we concluded that the 
uncertainty adaptation had only a small effect on 
learning in the fully automated system because 
the system did not automatically recognize stu-
dent uncertainty often enough and thus did not 
give the adaptation often enough (see  Forbes-
Riley & Litman  (  2011a  )  for further details). 

 In this chapter we turn our attention to student 
metacognition. First, we show how to construct 
measures of student metacognitive performance 
(e.g., monitoring accuracy, bias, discrimination) 
using the manually and automatically created tutor 
annotations of student uncertainty and correctness 
available from our prior wizarded and fully auto-
mated experiments, respectively. Next, we exam-
ine whether our prior tutor adaptations to student 

uncertainty—which have already been shown to 
improve cognition—can also improve metacogni-
tion. Finally, we examine whether our measures of 
metacognitive performance are correlated with our 
measures of cognitive performance (i.e., learning 
gain), and whether such correlations are robust to 
the noise introduced by speech and language pro-
cessing techniques. Analyses of the data from both 
our wizarded and fully automated experiments 
demonstrate that by responding to student uncer-
tainty in new ways, tutorial dialogue systems have 
the potential to further improve both cognitive and 
metacognitive performance.  

   Systems and Data 

 This research uses corpora of dialogues (see 
Figs. 25.2–25.3 for examples) between students 
and both ITSPOKE-WOZ and ITSPOKE-AUTO, 
wizarded and fully automated versions of 
ITSPOKE ( I ntelligent  T utoring  SPOKE n dia-
logue system), respectively. ITSPOKE in turn is a 
speech-enabled version of the Why2-Atlas quali-
tative physics tutor (VanLehn et al.,  2002  ) , which 
asks “why-type” questions relating to Newtonian 
physics. 1  The corpora were collected in our prior 
experiments evaluating the utility of enhancing 
ITSPOKE to respond to impasses involving student 
uncertainty over and above correctness, in wiz-
arded (Forbes-Riley & Litman,  2009a ,  2011b  )  and 
fully automated (Forbes-Riley & Litman,  2011a  )  
conditions. The target audience for ITSPOKE are 
novices, i.e., college students who have never 
taken college-level physics. 

 The conceptual framework of our work is based 
on the theory of learning impasses. Motivated 
by research that views uncertainty as well as 

   1   The version of ITSPOKE used here differs from the orig-
inal ITSPOKE and Why2-Atlas in that the system has 
been reimplemented using the TuTalk tools for authoring 
tutorial dialogue systems (Jordan, Hall, Ringenberg, Cui, 
& Rosé,  2007  )  and does not include the essay writing 
component of Why2-Atlas. As will be discussed, several 
versions of ITSPOKE used in the experiments reported 
here (in particular, in the experimental but not in the 
control conditions) have in addition been enhanced to 
detect and adapt to student uncertainty.  
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incorrectness as signals of “learning impasses” 
(VanLehn et al.,  2003  ) , i.e., opportunities for the 
student to learn the material that he/she is incor-
rect or uncertain about, the original version of 
ITSPOKE was modi fi ed to associate one of four 
impasse states with every student answer. The four 
impasse states correspond to all possible combina-
tions of binary student  uncertainty  (uncertain ( U ), 
nonuncertain ( nonU ) 2 ) and  correctness  (incorrect 
( I ), correct ( C )), as shown in Fig.  25.1 . 3  

 The incorrectness component of each state 
re fl ects the actual accuracy of the student’s answer, 
while the uncertainty component re fl ects the 
tutor’s perception of the student’s awareness of 
this accuracy. The scalar ranking of impasse states 
in terms of severity combines these two compo-
nents and will be discussed below. While the orig-
inal ITSPOKE only remediated incorrectness 
impasses (InonU and IU states), our uncertainty-
adaptive ITSPOKE also remediates all uncertainty 
impasses (CU states – note that IU impasses were 
already remediated in the original non-adaptive 
system). Impasse theory is similar to cognitive 
disequilibrium theory (Craig, Graesser, Sullins, 
& Gholson,  2004  ) , which predicts that confusion 
is likely to occur during cognitive disequilibrium, 
and that trying to restore equilibrium will lead to 
learning gains.  

   ITSPOKE-WOZ 

 The ITSPOKE-WOZ corpus consists of 405 dia-
logues between 81 students and ITSPOKE-WOZ, 
a semi-automatic version of ITSPOKE where a 
human “wizard” performed speech recognition 

as well as correctness and uncertainty annotation. 
That is, each student turn was annotated in real 
time by the wizard during the experiment, pro-
ducing the binary student uncertainty and cor-
rectness tags. 4

 
 Using a wizard allowed us to 

examine the impact of adapting to uncertainty 
impasses in upper-bound tutorial dialogue condi-
tions, that is, without the errors introduced by 
using automated speech and language processing 
components. In both human and automatic detec-
tion of uncertainty, common indicators of student 
uncertainty include lexical hedges (e.g.,“I think”), 
pitch features (e.g., rising intonation), temporal 
features (e.g., pausing), and energy features (e.g,. 
soft-spokeness). Such features have been vali-
dated both through interannotator agreement 
studies and automatic detection studies 
(c.f., Forbes-Riley & Litman  2011a  ) . 

 The experimental procedure for collecting the 
corpus was as follows: subjects who had never 
taken college physics read a short physics text, took 
a multiple-choice pretest, worked  fi ve problems 5  
(i.e., engaged in  fi ve dialogues) with ITSPOKE, 
took a survey 6 , and took an isomorphic posttest. 

 The experiment had two control and two 
experimental conditions. Complete details about 
these conditions are provided elsewhere (Forbes-
Riley & Litman,  2011b  ) ; here we brie fl y outline 
the differences between them.   

   2   A ‘nonuncertain’ answer may be certain or neutral.  

   3   For example, the 6,561 student turns in    the ITSPOKE-
WOZ corpus are distributed among these states as fol-
lows: 650 InonU (10%), 764 IU (12%), 727 CU (11%), 
and 4,420 CnonU (67%).  

  Fig. 25.1    Different Impasse 
State Severities       

   4   This wizard displayed interannotator agreement of 0.85 
and 0.62 Kappa on post-experimental labeling of correct-
ness and uncertainty, respectively, in prior studies (Forbes-
Riley & Litman,  2008  ) .  

   5   For example, the problem referred to in the dialogue 
excerpts in Figs. 25.2–25.3 is: “Suppose a man is running 
in a horizontal line at a constant velocity. He tosses a 
pumpkin vertically up while he is running. Where will the 
pumpkin land relative to the man? Assume that air resis-
tance is negligible.”  

   6   The survey is not used    in this paper; see (Forbes-Riley & 
Litman,  2009a  )  for the survey usage.  
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 The  nonAdapt  control condition remediated 
only incorrectness impasses ( InonU, IU ), as in 
the original ITSPOKE. An example dialogue 
excerpt from this condition is shown in Fig.  25.2  . 
As shown,  ITSPOKE2  provides feedback indi-
cating the    correctness of the  CU  answer and 
ignores the uncertainty. 

 In contrast, the two experimental conditions 
remediated both uncertainty and incorrectness 
impasses ( InonU, IU, CU ), but each used a differ-
ent approach. The  Simple  experimental condition 
used the same remediation for all impasse types, 
with only feedback phrases varying based on answer 
correctness (e.g., “That’s right” versus “That’s 
wrong”). An example dialogue excerpt is shown in 
Fig.  25.3  . As shown,  ITSPOKE2  provides feed-
back indicating the correctness of the  CU  answer 
and then responds to the uncertainty by providing 
the same remediation subdialogue (i.e., a series of 
additional questions) that would have been provided 
if the student answer were incorrect. Only the  fi rst 

question in this remediation subdialogue is shown. 
Note that  IU and InonU  answers already receive 
this remediation subdialogue (because they are 
incorrect). Therefore, the  Simple  uncertainty adap-
tation impacts only  CU  answers. 

 In contrast to the  Simple  experimental condi-
tion, the  Complex  experimental condition used 
different dialogue act presentations of the incor-
rect answer content (e.g., remediation subdia-
logue questions versus “bottom out” statements) 
 and  different feedback phrases (e.g., “That’s 
exactly right, but you seem unsure” for  CU  ver-
sus “Great try, but I think you know there is a 
mistake in your answer” for  IU ) to respond to 
each impasse type ( CU, IU, InonU ). Example 
dialogue excerpts for each impasse type are 
shown in Fig.  25.4  . As shown, in each case, 
 ITSPOKE2  provides feedback responding to the 
speci fi c impasse type of the answer and then pro-
vides the same additional content responding to 
the impasse, but the dialogue act used to present 

  Fig. 25.2    Example of  nonAdapt  ITSPOKE Response to  CU  Answers       

  Fig. 25.3    Example of  Simple  Uncertainty Adaptation (for  CU  Answers only)       

 

 



38925 Student Uncertainty in Tutorial Dialogue

this additional content depends on the speci fi c 
impasse type of the answer. 7  

 Finally, the  Random  control condition treated 
a percentage of random correct answers as incor-
rect, to control for the additional content in the 
experimental conditions. The motivation for and 
further details of each experimental condition are 
discussed in detail elsewhere (Forbes-Riley & 
Litman,  2009a ,  2011b  ) .   

   ITSPOKE-AUTO 

 The ITSPOKE-AUTO corpus consists of 360 dia-
logues between 72 students and ITSPOKE-AUTO, 
a fully automated version of ITSPOKE in which 
speech recognition as well as correctness and 
uncertainty annotation were automatically per-
formed by speech and language processing com-
ponents. Student speech was digitized from 
microphone input and sent to the Sphinx2 speech 
recognizer (Huang et al.,  1993  ) , whose stochastic 
language models were trained on the ITSPOKE-
WOZ corpus and prior ITSPOKE corpora. 
Correctness was automatically labeled on the 

  Fig. 25.4    Example of  Complex  Uncertainty Adaptation for  CU, IU, and InonU  Answers       

   7   The dialogue act variations were developed based on 
analysis of human tutor responses to uncertainty in a 
human tutoring corpus (see (Forbes-Riley & 
Litman,  2009a  )  for further details).  

 



390 D. Litman and K. Forbes-Riley

speech recognition output using the TuTalk seman-
tic analyzer (Jordan et al.,  2007  ) , which was trained 
on the ITSPOKE-WOZ corpus. Uncertainty was 
automatically labeled on the speech recognition 
output using an uncertainty model built with 
WEKA software (Witten & Frank,  1999  )  from 
features of the student speech and dialogue con-
text, including lexical, pitch, temporal, and energy 
features as well as tutor question and gender. The 
uncertainty model is a logistic regression equation 
that was trained on the ITSPOKE-WOZ corpus, 
where the wizard’s labels were the ground truth 
labels. The most important predictors of student 
uncertainty in the model were pitch and lexical 
features of the student’s current turn, as well as the 
type of tutor question in the preceding turn. 

 The ITSPOKE-AUTO corpus was collected 
using the procedure from the ITSPOKE-WOZ 
experiment, although the experimental condi-
tions were changed in two ways. First, the 
 Complex  experimental condition was removed. 
We removed this condition as only  Simple  yielded 
learning improvements for ITSPOKE-
WOZ (Forbes-Riley & Litman,  2009a ,  2011b  ) . 
Second,  Random  was changed so that ITSPOKE-
AUTO randomly remediated after only CnonU 
answers (non-impasse states). We changed this 
condition because in ITSPOKE-WOZ neither 
wizarded experimental condition outperformed 
 Random  (Forbes-Riley & Litman,  2009a ,  2011b  ) ; 
we hypothesized this was because CU impasses 
were sometimes adapted to in  Random . Full 
details of the ITSPOKE-AUTO system, includ-
ing a performance analysis of the speech and lan-
guage processing components and their impact 
on the learning results, are presented else-
where (Forbes-Riley & Litman,  2010 ,  2011a  ) .   

   Metacognitive Measures 

 In this section we introduce several ways of com-
bining the corpus uncertainty and correctness 
annotations into single quantitative performance 
measures. Note that all measures are computed 
on a per student basis (over all  fi ve dialogues). 

 Our  fi rst measure is based on a ranking of 
impasses by severity. In particular, we  fi rst  associate 

a scalar  impasse severity  value with each student 
answer in our corpus, based on either our wizard’s 
or automatically computed correctness and uncer-
tainty annotations. We then compute an average 
impasse severity per student, according to whether 
the impasses were due to uncertainty, incorrect-
ness, or both. Our severity values were proposed in 
our earlier work (Forbes-Riley, Litman, & Rotaru, 
 2008a  )  and are shown in Fig.  25.1 . According to 
our ranking, the most severe type of impasse (sever-
ity 3) occurs when a student is incorrect but not 
aware of it. States of severity 2 and 1 are of increas-
ingly lesser severity: the student is incorrect but 
aware that he/she might be, and the student is cor-
rect but uncertain about it, respectively. Finally, no 
impasse exists when a student is correct and not 
uncertain about it (severity 0). These severity rank-
ings re fl ect our belief that to resolve an impasse, a 
student must  fi rst perceive that it exists. Incorrectness 
simply indicates that the student has reached an 
impasse, while uncertainty—in a correct or incor-
rect answer—indicates that the student perceives 
he/she has reached an impasse. 

 From the standpoint of measuring metacogni-
tion, average impasse severity represents the sim-
plest of our measures. Each impasse state re fl ects 
a current state of “self-monitoring”: states 1 and 
3 are currently inaccurate self-monitoring, while 
states 0/2 are currently perfect self-monitoring. 
However, the ranking of states adds a further cog-
nitive component to the metric, by indicating how 
far the current self-monitoring state is from objec-
tive correctness. 

 The rest of our measures are taken from the 
metacognitive performance literature. The knowl-
edge monitoring accuracy measure that we use is 
the Hamann coef fi cient  (HC)  (Nietfeld, Enders, & 
Schraw,  2006  ) . 8  This measure has previously been 
used to measure the monitoring accuracy of one’s 
own knowledge (“feeling of knowing” (FOK)), 
which is closely related to uncertainty. 
Psycholinguistics research has shown that speakers 

   8   While the Gamma measure is often also used, there is a 
lack of consensus regarding the relative bene fi ts of Gamma 
versus HC (Nietfeld et al.,  2006  ) , and we have found HC 
to be more predictive for our corpus (Litman & Forbes-
Riley,  2009b  ) .  
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display FOK in conversation using linguistic 
cues (Smith & Clark,  1993  )  and that listeners can 
use the same cues to monitor the FOK of some-
one else (“feeling of another’s knowing” 
(FOAK)) (Brennan & Williams,  1995  ) . High and 
low FOK/FOAK judgments have also been asso-
ciated with speaker certainty and uncertainty, 
respectively (Dijkstra et al.,  2006  ) . 

 HC measures absolute knowledge monitoring 
accuracy, or the accuracy with which certainty 
re fl ects correctness. HC ranges in value from -1 (no 
knowledge monitoring accuracy) to 1 (perfect accu-
racy). We compute HC from our correctness and 
uncertainty annotations as shown below; the numer-
ator subtracts cases where (un)certainty is at odds 
with (in)correctness from cases where they corre-
spond, while the denominator sums over all cases.  

         

 To illustrate the reasoning behind HC and the 
other metacognitive performance measures used 
in this paper, consider an FOK-type experimental 
paradigm (Smith & Clark,  1993  ) , where subjects 
(1) respond to a set of general knowledge ques-
tions, (2) take a survey, judging whether or not 9  
they think they would be uncertain about the 
answer to each question in a multiple choice test, 
and (3) take such a multiple-choice test. In 
FOAK-type paradigms such as ours, the  tutor  
annotates the correctness and uncertainty for each 
student answer. As shown in Fig.  25.5  , such FOK 
or FOAK data can be summarized in an array 
where each cell represents a mutually exclusive 
option: the row labels represent the possible uncer-

tainty judgments (nonuncertain or uncertain), 
while the columns represent the possible correct-
ness results of the multiple-choice test (correct or 
incorrect). Given such an array, various relation-
ships between the correctness of answers, and the 
judged uncertainty of the answers, can then be 
computed. 

 Following Saadawi et al.  (  2009  ) , who investi-
gate the role of immediate feedback and other 
metacognitive scaffolds in a medical tutoring 
system, we additionally measure metacognitive 
performance in terms of  bias  and  discrimina-
tion  (Kelemen, Frost, & Weaver,  2000  ) . As with 
HC, we compute these measures using our tutor’s 
correctness and uncertainty annotations.  

 Bias measures the overall degree to which 
con fi dence matches correctness. Bias scores 
greater than and less than zero indicate 
overcon fi dence and undercon fi dence, respec-
tively, with zero indicating best metacognitive 
performance. We compute bias as shown below. 
The  fi rst term represents the relative proportion 
of con fi dent answers (certain cases/all cases); the 
second represents the relative proportion of cor-
rect answers. 

         

 Discrimination measures the ability to dis-
criminate performance in terms of (in)correct-
ness. Discrimination scores greater than zero 
indicate higher metacognitive performance. As 
shown below, the  fi rst term represents the propor-
tion of correct answers judged as certain, and the 
second term represents the proportion of incor-
rect answers judged as certain.  

         

 To illustrate the computation of our metacog-
nitive performance metrics, suppose the anno-
tated dialogue excerpt in Fig.  25.4   represented 
our entire dataset (from a single student). Then 
we would have the following values for our met-
rics for that student: 

(CnonU IU) (InonU CU)
HC

(CnonU IU) (InonU CU)

+ − +
=

+ + +

CnonU InonU
bias

CnonU InonU CU IU
CnonU CU

CnonU InonU CU IU

+
=

+ + +
+

−
+ + +

CnonU InonU
discrimination

CnonU CU InonU IU
= −

+ +

  Fig.  25.5    Measuring Student Metacognitive Performance       

   9   Likert scale rating schemes are also possible.  
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   Results 

 In this section we investigate whether the mea-
sures introduced in the previous section differ 
across our experimental conditions, and/or predict 
student learning gains, using the corpora from 
both the ITSPOKE-WOZ and ITSPOKE-AUTO 
experiments. We  fi rst run a one-way ANOVA with 
condition as the between-subject factor, along 
with a planned comparison for each pair of condi-
tions, hypothesizing the following performance 
ranking:  Complex > Simple > Random > non-
Adapt . Even though our experiment was designed 
to only impact learning gain, we hypothesized 
that the experimental conditions might still reduce 
impasse severity: by responding contingently to 
uncertainty the tutor responded to, and thus per-
haps resolved, more impasse types. For similar 
reasons, we hypothesized that the experimental 
conditions might also improve student accuracy 
in monitoring their own uncertainty (i.e., FOK), 
particularly in  Complex  where the tutor’s feeling 
of the student’s uncertainty (i.e., FOAK) was 
explicitly stated. Our HC metric measures inferred 
(rather than actual) student self-monitoring accu-
racy (because it was derived from our tutor’s 
uncertainty labels, rather than student judgments 

of their own uncertainty). We had similar hypoth-
eses for bias and discrimination.   

 Second, we compute a partial Pearson’s corre-
lation over all students between each metacogni-
tive measure and posttest score, controlled for 
pretest score to measure learning gain. We hypoth-
esized that even if we did not  fi nd any metacogni-
tive differences between conditions, lower impasse 
severities, higher self-monitoring accuracies, less 
bias, and better discrimination would still be bet-
ter for students overall, from a cognitive perspec-
tive. Our rational for this hypothesis was, simply 
put, that students who are more accurate in their 
self-monitoring know when their answers are 
incorrect, and thus know when to take steps to 
correct their errors after the system provides the 
correct answer and the reasoning behind it. 

   ITSPOKE-WOZ 

 The “Means” columns in Table 25.1 show the 
means per condition in the ITSPOKE-WOZ 
experiment, where each metacognitive measure 
was computed using the wizard’s uncertainty and 
correctness annotations. As predicted, both exper-
imental conditions had lower average impasse 
severity than  Random , and  Random  was lower 
than  nonAdapt . While a one-way ANOVA with 
post hoc Tukey showed no statistically signi fi cant 
differences or trends among these means ( p  = 
0.19), paired contrasts showed trends for individ-
ual differences between  Random  and  nonAdapt  
( p  = 0.10),  Simple  and  nonAdapt  ( p  = 0.06), and 
between  Complex  and  nonAdapt  ( p  = 0.08). With 
respect to both inferred self-monitoring accu-
racy (HC) and bias, the ANOVAs showed no 

(1 2 3)
impasse severity 2

3
(0 1) (1 1) 1

HC
(0 1) (1 1) 3

0 1 0 1 1 1
bias 0

0 1 1 1 0 1 1 1 3 3
0 1 0 1 1

discrimination
0 1 1 1 1 2

 

2

 

 

+ +
= =

+ − +
= =−

+ + +
+ +

= − = − =
+ + + + + +

= − = − =−
+ +

   Table 25.1    Means across ITSPOKE-WOZ experimental conditions and partial Correlations with posttest, for impasse 
severity, monitoring accuracy, bias, and discrimination   

 Means  Correlation 
 Measure  nonAdapt  Random  Simple  Complex   R    p  

 ( n =21)  ( n =20)  ( n =20)  ( n =20)  ( n =81) 
 Impasse severity  0.73  0.60  0.59  0.59   − 0.56  0.00 
 Monitoring accuracy  0.52  0.62  0.62  0.58  0.42  0.00 
 Bias   − 0.02   − 0.01   − 0.03   − 0.01   − 0.21  0.06 
 Discrimination  0.41  0.48  0.46  0.34  0.32  0.00 
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statistically signi fi cant differences or trends 
across conditions. However, for HC, the paired 
contrasts showed a trend for differences between 
 Simple  and  nonAdapt  ( p  = 0.06), and  Random  
and  nonAdapt  ( p  = 0.06) in the predicted direc-
tions. With respect to discrimination, the 
ANOVA indicated a trend for a difference among 
the means ( p  = 0.09), with paired contrasts 
showing signi fi cant differences between  Simple  
and  Complex  ( p  = 0.04), and between  Random  
and  Complex  ( p  = 0.02); note, however, that 
   contrary to our predictions, discrimination was 
lowest in  Complex . 

 Although we only  fi nd weak support for dif-
ferences in metacognitive performance between 
conditions, we still hypothesize that better meta-
cognitive performance is better for students from 
a learning perspective. The last two columns in 
Table 25.1 show the Pearson’s Correlation 
Coef fi cient (R) between each metacognitive mea-
sure and posttest after controlling for pretest, and 
the signi fi cance of the correlation (p), over all 81 
students. As predicted, average impasse severity 
is signi fi cantly negatively correlated with learn-
ing, 10  while inferred self-monitoring accuracy 
(HC) and discrimination are signi fi cantly posi-
tively correlated with learning. There is also a 
trend for bias to be negatively correlated with 
learning, suggesting that undercon fi dence is bet-
ter than overcon fi dence.  

   ITSPOKE-AUTO 

 The “Means” columns in Table 25.2 show the 
means per condition in the ITSPOKE-AUTO 
experiment, where each metacognitive measure 
was computed using the automatic uncertainty 
and correctness annotations. The table shows that 
the differences were typically not in the predicted 
directions, although nothing was statistically 
signi fi cant. 11  These results thus suggest that once 
noise is introduced after automating speech and 
language processing, we no longer see even weak 
support for improvements in metacognitive per-
formance for our experimental condition. 

 Nonetheless, we still hypothesize that even 
under noisy conditions, lower impasse severities, 
higher self-monitoring accuracies, less bias, and 
better discrimination will be predictive of better 
cognitive performance. Thus we again computed 
partial correlations with posttest over all students, 
as originally reported in Forbes-Riley and 
Litman  (  2010  ) . With the exception of discrimina-
tion, the ITSPOKE-AUTO correlations shown in 
the last two columns of Table 25.2 replicate the 
ITSPOKE-WOZ correlations of Table 25.1. 
Other comparisons between our wizarded and 
automated results (e.g., learning correlations with 
additional independent measures and regressions 
with multiple independent measures) can be 
found in Forbes-Riley and Litman  (  2010  ) .   

   10   In contrast, a measure of impasse  resolution  might posi-
tively correlate with learning, as resolving an impasse 
could reduce the severity of future impasse opportunities. 
In a prior ITSPOKE experiment, we in fact improved stu-
dent learning by detecting and re-remediating one particu-
lar type of unresolved incorrectness impasse (Rotaru & 
Litman,  2009  ) .  

   Table 25.2    Means across ITSPOKE-AUTO experimental conditions, and partial correlations with posttest, for impasse 
severity, monitoring accuracy, bias, and discrimination   

 Means  Correlation 

 Measure  nonAdapt  Random  Simple   R    p  
 ( n =25)  ( n =23)  ( n =24)  ( n =72) 

 Impasse severity  0.94  0.98  0.98   − 0.40  0.001 
 Monitoring accuracy  0.44  0.41  0.42  0.35  0.003 
 Bias  0.21  0.20  0.22   − 0.36  0.002 
 Discrimination  0.19  0.20  0.19   − 0.04  0.768 

   11   The p-values for the 4 ANOVAs comparing the meta-
cognitive metrics were respectively 0.83, 0.75, 0.72, 0.91. 
Due to both these extremely high p-values, and the fact 
that the means were not as predicted, we did not run the 
paired comparisons.  
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   Discussion 

 We presented an analysis of student metacogni-
tive performance using data from both wizarded 
and fully automated dialogue tutors that adapt to 
student uncertainty. The performance measures 
examined include several measures of metacog-
nitive performance taken from various literatures 
but have been adapted for our tutorial dialogue 
context by computing them from tutor annota-
tions of student uncertainty and correctness. We 
also introduce a new learning impasse severity 
measure derived from a theory of uncertainty and 
incorrectness as learning impasses. While in prior 
work we demonstrated that remediating after 
uncertainty impasses improves learning in both 
wizarded and fully automated conditions (Forbes-
Riley & Litman  2011a,   2011b  ) , our results here 
suggest that further investigation into better ways 
of remediating student uncertainty holds promise 
for further improving student cognitive as well as 
metacognitive performance. 

 With respect to improving cognitive perfor-
mance, our correlation results suggest that if we 
can enhance our tutor to improve metacognitive 
performance, we may also further improve cog-
nitive performance. Our correlations show that 
(tutor perception of)  impasse severity ,  self-
monitoring accuracy , and  bias  signi fi cantly or 
as a trend predict student learning (negatively, 
positively, and negatively, respectively) in both 
our wizarded and fully automated corpora. 
Although correlation does not imply causality, 
our  fi ndings motivate future modi fi cations of our 
system to increase student learning. For example, 
we plan to develop remediations that are better 
optimized for each impasse type, particularly for 
impasses with the highest severity. We also plan 
to enhance our tutor to not only remediate domain 
content after impasses (as in the current experi-
ment), but to also remediate inferred student 
knowledge monitoring abilities. 

 With respect to improving metacognition, our 
ANOVA results suggest that under upper-bound 
wizarded conditions, remediating student uncer-
tainty holds promise for improving student meta-
cognitive abilities (in our study, impasse severity 

and self-monitoring accuracy). However, the 
results with ITSPOKE-AUTO suggest that 
achieving this potential will require very high 
performing speech and language components. 

 In particular, while our ANOVAs for 
ITSPOKE-WOZ show that  impasse severity  
doesn’t differ signi fi cantly across conditions, the 
means are consistent with our predictions, and 
there are statistical pairwise trends suggesting 
improvement between all conditions and  non-
Adapt  (the original system). We also see similar 
results for  Simple  and  Random  compared to  non-
Adapt  with respect to inferred self-monitoring 
accuracy ( HC ). These are promising  fi ndings, as 
our current interventions were designed to 
improve only student correctness on the posttest, 
not to reduce impasse severity or increase moni-
toring accuracy. In the future we would like to 
enhance our interventions to directly target stu-
dent knowledge monitoring, and to better mea-
sure such improvements by incorporating FOK 
ratings into our testing. There is increasing inter-
est in using intelligent tutoring systems to teach 
metacognition and we plan to build on this litera-
ture (e.g., Aleven & Roll  2007 , Roll & 
Aleven  2008 , Saadawi et al.  2009  ) . 

 We found it surprising that neither experimen-
tal condition outperformed  Random , even after 
we changed  Random  in ITSPOKE-AUTO to only 
adapt after CnonU answers (non-impasse states). 
Since a “nonuncertain” (nonU) answer may actu-
ally be certain or neutral, we hypothesize that 
adapting to CnonUs might still be effective at 
increasing certainty. 

 Finally, we recently found interactions 
between learning and user classes based on user 
domain expertise and gender in the wizarded cor-
pus (Forbes-Riley & Litman,  2009b  ) ; we will 
investigate whether the interactions with these 
classes extend to the student metacognitive met-
rics discussed in this paper. 

 In conclusion, our work shows that the student 
speech signal holds important information about 
metacognition that most intelligent tutoring 
s ystems researchers have not yet mined. In par-
ticular, uncertainty is conveyed at least partially 
and sometimes most strongly through speech and 
tells us something about the student’s accuracy of 
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self-monitoring, which itself relates to learning. 
Although we have not yet attempted to dynami-
cally adapt to metacognitive performance in our 
dialogue tutor to help students learn better at the 
cognitive level, or even improve metacognitive 
abilities, our results suggest that this is a plausi-
ble approach for future directions.      
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