Intelligent Tutoring Systems for Ill-Defined Domains: Assessment and Feedback in Ill-Defined Domains

WORKSHOP CHAIRS
Vincent Aleven, Carnegie Mellon University, USA
Kevin Ashley, University of Pittsburgh, USA
Collin Lynch, University of Pittsburgh, USA
Niels Pinkwart, Clausthal University of Technology, Germany
Thanks to Program Committee!

Vincent Aleven, Carnegie Mellon University, USA
Jerry Andriessen, University of Utrecht, The Netherlands
Kevin Ashley, University of Pittsburgh, USA
Paul Brna, University of Glasgow, UK
Jill Burstein, Educational Testing Service, USA
Rebecca Crowley, University of Pittsburgh, USA
Andreas Harrer, University of Duisburg-Essen, Germany
H. Chad Lane, Institute For Creative Technologies, USC
Susanne Lajoie, McGill University, Canada
Collin Lynch, University of Pittsburgh, USA
Bruce McLaren, German Research Center for Artificial Intelligence, Germany
Antoinette Muntjewerff, University of Amsterdam, The Netherlands
Katsumi Nitta, Tokyo Institute of Technology, Japan
Niels Pinkwart, Clausthal University of Technology, Germany
Beverly Woolf, University of Massachusetts, USA
Defining “Ill-defined problems”

Ill-defined problems typically:
- lack formal methods to verify solutions;
- lack widely accepted domain theories characterizing relevant concepts and relations;
- involve designing novel artifacts rather than verifying existing results;
- rely on open-textured concepts subject to debate;
- do not decompose into independent subproblems.

3 types of ill-defined problems:
- Open-textured problems:
 - rely on open-textured concepts for their structure and definition.
- Open-specified problems:
 - have unstated specifications or goal criteria.
- Open-structured problems:
 - lack clear substructure allowing for definition of partial solutions or subproblems.

Solution processes in ill-defined problems cycle through:
- Recharacterize problem to specify undefined components, identify constraints, or select among alternatives;
- Explore consequences of given characterization in the problem space;
- Justify characterization in terms of relevant concepts or principles and to deflect anticipated attacks.

From Lynch, Ashley, Pinkwart, Aleven (submitted) “Concepts, Structures, and Goals: Redefining Ill-Definedness”
ITS Development in Ill-Defined Domains

<table>
<thead>
<tr>
<th></th>
<th>ITS 2006</th>
<th>AIED 2007</th>
<th>ITS 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical diagnosis</td>
<td></td>
<td>✓✓</td>
<td>✓</td>
</tr>
<tr>
<td>Legal reasoning</td>
<td>✓</td>
<td>✓✓</td>
<td>✓</td>
</tr>
<tr>
<td>Intercultural relations</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Ethical reasoning</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Language learning: vocabulary, grammar</td>
<td>✓✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Programming: Object-oriented design; logic programming; Database design</td>
<td>✓✓✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Robot arm operation</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Causal reasoning in public policy</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Psychology</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Inquiry learning in sciences</td>
<td>✓✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Methods for Assessment and Feedback in ITSs for Ill-Defined Domains

- Adaptive feedback on students’:
 - discussion posts based on simplified model of good posts, to tutee directly and indirectly via peer moderator (Walker, Ogan, Aleven, Jones)
 - selected actions in student-modified versions of pre-analyzed ethics narrative (Hodhod, Kudenko)

- Automatic generation of cloze (multiple choice) questions
 - with better-quality distractors (Pino, Heilman, Eskenazi)

- Compare student’s:
 - solution to template of solutions-plus-variations (Moritz, Blank)
 - problem-states-visited with mined patterns of partial problem spaces (Fournier-Viger, Nkambou, Mephu Nguifo)
 - diagrammatic reconstructions of arguments in terms of feedback-related features (Lynch, Pinkwart, Ashley, Aleven)

- Support self-assessment with expert decision map, visual representation of overall problem-solving process (Gauthier, Naismith, Lajoie, Wiseman)
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Presentations</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00 - 9:15</td>
<td>Introduction: Kevin D. Ashley</td>
<td></td>
</tr>
</tbody>
</table>
| 9:15 - 10:15 | **Opening Session** | 1. *Two Approaches for Providing Adaptive Support for Discussion in an Ill-Defined Domain* Erin Walker, Amy Ogan, Vincent Aleven, Chris Jones
2. *Interactive Narrative and Intelligent Tutoring for Ethics Domain* Rania Hodhod and Daniel Kudenko |
| 10:15 - 10:35 | **Coffee Break** | |
| 10:35 - 12:15 | **Prelunch Session** | 1. *A Selection Strategy to Improve Cloze Question Quality* Juan Pino, Michael Heilman, and Maxine Eskenazi
2. *Generating and Evaluating Object-Oriented Designs for Instructors and Novice Students* Sally Moritz and Glenn Blank
3. General Discussion |
| 12:15 - 1:30 | **Lunch** | |
| 1:30 - 2:30 | **Post-lunch Session** | 1. *A Sequential Pattern Mining Algorithm for Extracting Partial Problem Spaces from Logged User Interactions* Philippe Fournier-Viger, Roger Nkambou and Engelbert Mephu Nguifo
| 2:30 - 2:50 | **Tea Break** | |
| 2:50 - 4:00 | **Closing Session** | 1. *Using Expert Decision Maps to Promote Reflection and Self-Assessment in Medical Case-Based Instruction* Geneviève Gauthier, Laura Naismith, Susanne P. Lajoie, and Jeffrey Wiseman
2. Closing Discussion |

Paper presentations: 20 minutes each with 10 minutes for questions and discussion.