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Welcome to CS2410!

 This is a grad-level introduction to Computer Architecture

 Let’s take a look at the course info. Sheet

 Schedule

CS2410: Computer Architecture University of Pittsburgh

Computer architecture?

 A Computer Science discipline that explores:
• Principles and practices to exploit characteristics of hardware & 

software artifacts relevant for computer systems hardware design;
• Computer hardware design itself; and
• Changing interaction between hardware and software

 Goals
• Sustain the historic computer performance (what is performance?) 

improvement rate and expand a computer’s capabilities
• Keep the cost down
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Computer architecture?

Instruction Set Architecture

Processor Organization

VLSI Implementation

Software layers

“Architecture”

“Microarchitecture”

“Physical hardware”

CompilerOperating
systems

Applications,
e.g., games

Semiconductor technologies
“Technology push”

“Application pull”

architect



CS2410: Computer Architecture University of Pittsburgh

Uniprocessor performance

 Performance = 1 / time
 Time = IC  CPI  CCT

 Instructions/program
• Also called “instruction count” (IC above)
• Represents how many (dynamic) instructions are required to finish 

the program
• Highly depends on “architecture”

 Clocks/instruction
• Also called CPI (Clocks Per Instruction)
• Depends on pipelining and “microarchitecture” implementation

 Time/clocks
• Also called clock cycle time (inverse of frequency)
• Highly depends on circuit & VLSI chip realization
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Today’s topics

 Technology trends
• “Switches”
• Impact of CMOS scaling

 Cost
• IC chip cost

 Performance
• Benchmarks
• Summarizing performance measurements
• Quantitative approach to computer design

 Application trends
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Uniprocessor performance trend
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Uniprocessor performance hurdles

 Maximum power dissipation
• 100W ~ 150W

 Little instruction-level parallelism left
 Little-changing memory latency

 “We are dedicating all of our future product development to 
multicore designs. … This is a sea change in computing.”
• Paul Otellini, President, Intel (2004)
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Moore’s note (1965)
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How does technology scaling help?

 Time = (inst. count)(clocks per inst.)(clock cycle time)

 Faster circuit
• Scaling makes transistors not only smaller but also faster
• Faster clock  smaller clock cycle time

 More transistors
• Larger L2 caches (relatively simple design change)
• Smaller CPI

 Design changes enabled by scaling
• Deep pipeline using more pipeline registers
• Superscalar pipeline using more functional units
• Larger, more sophisticated branch predictors
• …
• Multicores
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Switches

 Building block for digital logic
• NAND, NOR, NOT, …

 Technology advances have provided designers with switches 
that are
• Faster;
• Lower power;
• More reliable (e.g., vacuum tube vs. transistor); and
• Smaller.

 Nano-scale technologies will not continue promising the 
same good properties
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History of switches

Called “relay”; Mark I (1944)

Vacuum tubes; ENIAC (1946, 18k tubes)

Bell lab. (1947); Kilby’s first IC (1957)

Solid-state MOS devices
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MOS transistors

 Today’s chips heavily depend on CMOS (complementary 
MOS)-style logic design
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MOS transistor scaling
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Impact of MOS transistor scaling

 In general
• Smaller transistors (i.e., density doubling with each new generation)
• Faster transistors (latency  L)
• Roughly constant wire delay ( relatively slow wires!)
• Lower supply voltage ( lower dynamic power)

 Downside
• Increased global wire delay
• Increased power density (W/cm2)
• Increased leakage power
• Increased susceptibility to noise and transient errors
• On-chip variation
• Cost of manufacturing
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Global wire delay



CS2410: Computer Architecture University of Pittsburgh

Power density
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Productivity

CS2410: Computer Architecture University of Pittsburgh

Component-level performance trend

 Four key components in a computer system
• Disks
• Memory
• Network
• Processors

 Compare ~1980 Archaic (or “Nostalgic”) vs. ~2000 Modern 
(or “Newfangled”)
• (Patterson)

 Metric
• Bandwidth: # operations or events per unit time
• Latency: elapsed time for a single operation or event
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Disk: Archaic vs. Modern

CDC Wren I, 1983
 3,600 RPM
 0.03 GB
 Tracks/inch: 800
 Bits/inch: 9,550
 Three 5.25” platters

 Bandwidth: 0.6 MB/s
 Latency: 48.3 ms
 Cache: none

Seagate 373453, 2003
 15,000 RPM (4x)
 73.4 GB (2,500x)
 Tracks/inch: 64,000 (80x)
 Bits/inch: 533,000 (60x)
 Four 2.5” platters

 Bandwidth: 86 MB/s (140x)
 Latency: 5.7 ms (8x)
 Cache: 8MB
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Memory: Archaic vs. Modern

 1980 DRAM
(asynchronous)

 0.06 Mbits/chip
 64,000 xtors, 35 mm2

 16-bit data bus per 
module, 16 pins/chip

 13 Mbytes/sec
 Latency: 225 ns
 (no block transfer)

 2000 Double Data Rate Synchr. 
(clocked) DRAM

 256.00 Mbits/chip (4000X)
 256,000,000 xtors, 204 mm2

 64-bit data bus per 
DIMM, 66 pins/chip (4X)

 1600 Mbytes/sec (120X)
 Latency: 52 ns (4X)
 Block transfers (page mode)
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LANs: Archaic vs. Modern

 Ethernet 802.3
 Year of Standard: 1978
 10 Mbits/s 

link speed 
 Latency: 3000 sec
 Shared media
 Coaxial cable

• Ethernet 802.3ae
• Year of Standard: 2003
• 10,000 Mbits/s (1000X)

link speed 
• Latency: 190 sec (15X)
• Switched media
• Category 5 copper wire

Coaxial Cable:

Copper core
Insulator

Braided outer conductor
Plastic Covering

Copper, 1mm thick, 
twisted to avoid antenna effect

Twisted Pair:
"Cat 5" is 4 twisted pairs in bundle
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CPUs: Archaic vs. Modern

 1982 Intel 80286 
 12.5 MHz
 2 MIPS (peak)
 Latency 320 ns
 134,000 xtors, 47 mm2

 16-bit data bus, 68 pins
 Microcode interpreter, 

separate FPU chip
 (no caches)

 2001 Intel Pentium 4
 1500 MHz (120X)
 4500 MIPS (peak) (2250X)
 Latency 15 ns (20X)
 42,000,000 xtors, 217 mm2

 64-bit data bus, 423 pins
 3-way superscalar,

Dynamic translation to RISC, 
Superpipelined (22 stage),
Out-of-Order execution

 On-chip 8KB Data caches, 
96KB Instr. Trace  cache, 
256KB L2 cache
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Latency lags bandwidth (last ~20 years)

 CPU
• 21x vs. 2250x

 Ethernet
• 16x vs. 1000x

 Memory module
• 4x vs. 120x

 Disk
• 8x vs. 143x

“Memory wall”
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Rule of thumbs: latency lagging BW

 In the time that bandwidth doubles, latency improves by no 
more than a factor of 1.2 to 1.4
• (Capacity improves faster than bandwidth)

 In other words, bandwidth improves by more than the 
square of the improvement in latency
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Cost trend

 Time
• Learning curve
• Change in yield

 Volume
• Decreases cost, increases 

efficiency
• “Shrinking” by deploying next-

generation technology (without 
changing the design itself)

 Commoditization
• Standards push this
• Multiple vendors compete
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IC (Integrated Circuit) cost

 Cost of IC = (cost of production) / (final test yield)

 Cost of production
• Cost of die
• Cost of testing die
• Cost of packaging and final test

 Cost of production at time line
• NRE (Non-Recurring Engineering) cost

R & D
Mask

• Chip production
“Front end”
“Back end” – packaging, etc.

• Test cost

 Cost of die = (cost of wafer) / ((dies per wafer)  (die yield))
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IC (Integrated Circuit) cost

area die2
diameterwafer 

area die
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IC (Integrated Circuit) cost
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area diedensitydefect 1  yield wafer  yield Die

 defect density = # defects in unit area
 defect density  die area will be then average # of defects 

per die

 : manufacturing complexity
 2006 CMOS process:  = 4.0
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Performance analysis

 Which computer is faster for what you want to do?
• Time matters
• Workload matters

 Throughput (jobs/sec) vs. latency (sec/job)
• Single processor vs. multiprocessor
• Pentium4 @2GHz vs. Pentium4 @4GHz

 Commonly used techniques
• Direct measurement
• Simulation
• Analytical modeling
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Performance analysis

 Combination of
• Measurement
• Interpretation
• Communication

 Overall performance vs. specific aspects
• Choice of metric

 Considerations in performance analysis
• Perturbation
• Accuracy
• Reproducibility
• …
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Performance report

 Reproducibility
• Provide all necessary details so that others can reproduce the same 

result
• Machine configuration, compiler flags, …

 Single number is attractive, but
• It does not show how a new feature affects different programs
• It may in fact mislead; a technique good for a program may be bad for 

others
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Performance analysis techniques

 Direct measurement
• Can provide the best result – no simplifying assumptions
• Not flexible (difficult to change parameters)
• Prone to perturbation (if instrumented)
• Made much easier these days by using performance counters

 Simulation
• Very flexible
• Time consuming
• Difficult to model details and validate

 Analytical modeling
• Quick insight for overall behaviors
• Limited applicability
• Used to confine simulation scope, validate simulations, etc.

CS2410: Computer Architecture University of Pittsburgh

Performance metrics

 (Preferably) single number that essentially extracts a desired 
characteristic
• Cache hit rate
• AMAT (Average Memory Access Time)
• IPC (Instructions Per Cycle)
• Time (or delay)
• Energy-delay product
• …
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Comparing two

 Two different machines
 Two different options (e.g., memory sizes) on a machine
 …

n
X

Y

timeExecution 
timeExecution 

“X is n times faster than Y”

Y

X

X

Y

ePerformanc
ePerformanc

timeExecution 
timeExecution 

n
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Benchmarks

 Real programs
 Benchmark suites: a set of real applications

• SPEC CPU 2006 (desktop and servers)
• EEMBC, SPECjvm (embedded)
• TPC-C, TPC-H, SPECjbb, ECperf (servers)
• …

 Kernels: important pieces of codes from real applications
• Livermore loops, …

 Toy programs: small programs that we easily understand
• Quicksort
• Sieves of Eratosthenes, …

 Synthetic program: to mimic a program behavior “uniformly”
• Dhrystone
• Whetstone, …
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SPEC CPU2006

 12 integer programs
• 9 use C
• 3 use C++

 17 floating-point 
programs
• 3 use C
• 4 use C++
• 6 use Fortran
• 4 use a mixture of C and 

Fortran

 Package available at 
/afs/cs.pitt.edu/projects
/spec-cpu2006
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Summarizing performance results

 Arithmetic mean
• When dealing with times

 Weighted arithmetic mean

 Geometric mean
• When dealing with ratios
• SPEC CPU uses this method

 In the case of SPEC, samplei is the SPECRatio for program i

n
n

i
i




1

samplemean Geometric
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SPEC2k scoring method

 Get execution time of each benchmark

 Get a ratio for each benchmark by dividing the time with 
that of the reference machine
• Sun Ultra 5_10, 300MHz SPARC, 256MB memory
• Its score is 100

 Get a geometric mean of all the computed ratios
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Amdahl’s law

 Optimization or parallelization usually applies to a portion
• Places “limitation” of the scope of an optimization
• Leads us to focus on “common cases”
• “Make common case fast and rare case accurate”

Timeunaffected Timeaffected

Timeunaffected

Timebefore

Timeafter



CS2410: Computer Architecture University of Pittsburgh

Principle of locality

 Locality found in memory access instructions
• Temporal locality: if an item is referenced, it will tend to be referenced 

again soon
• Spatial locality: if an item is referenced, items whose addresses are 

close by tend to be referenced soon
• …

 90/10 locality rule
• A program executes about 90% of its instructions in 10% of its code

 We will look at how this principle is exploited in various 
microarchitecture techniques
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Performance vs. performance-price
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Killer apps?

 Multimedia applications
 Games

• 3D graphics
• Physics simulation

 Virtual reality
 RMS (Recognition, Mining, and Synthesis)

• Speech recognition
• Video mining
• Voice synthesis
• …

 (Cf.) Software defined radio and other mobile applications
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Software defined radio
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HSxPA

IEEE
802.16e

GSM
GPRS

DECT

EDGE

FlashOFDM 
(802.20)

3G Evolution
& 

Beyond 3G
>2010

0.1
BlueTooth

UMTS

CDMA

EV-DO
EV-DV
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(IEEE 802.11a/g/n)

WLAN
(IEEE 802.11b)

© Siemens

3GPP-LTE

IEEE
802.16a,d
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Multimedia performance needs

(K. Uchiyama, ACSAC ‘07)


