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Welcome to CS2410!

= This is a grad-level introduction to Computer Architecture
= Let's take a look at the course info. Sheet

= Schedule
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Computer architecture?

= A Computer Science discipline that explores:

* Principles and practices to exploit characteristics of hardware &
software artifacts relevant for computer systems hardware design;

* Computer hardware design itself; and
* Changing interaction between hardware and software

« Goals

* Sustain the historic computer performance (what is performance?)
improvement rate and expand a computer’s capabilities

* Keep the cost down
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Computer architecture?

Applications,
e.g., games

Operating
systems

“Application pull” Software layers

B I S $ e =

Instruction Set Architecture |“Architecture” I

architect @ I
Processor Organization "Microarchitecture"l
I VLSI Implementation “Physical hardware”

“Technology push”
Semiconductor technologies
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Uniprocessor performance

Performance = 1 / time
Time = IC x CPI x CCT

Instructions/program
* Also called “instruction count” (IC above)

* Represents how many (dynamic) instructions are required to finish
the program

* Highly depends on “architecture”

Clocks/instruction
* Also called CPI (Clocks Per Instruction)
* Depends on pipelining and “microarchitecture” implementation

Time/clocks
* Also called clock cycle time (inverse of frequency)
* Highly depends on circuit & VLSI chip realization
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Today’s topics

Technology trends
* "“Switches”
* Impact of CMOS scaling

Cost
* |C chip cost

Performance
* Benchmarks
* Summarizing performance measurements
* Quantitative approach to computer design

Application trends
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Uniprocessor performance trend
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Uniprocessor performance hurdles

= Maximum power dissipation
« 100W ~ 150W

= Little instruction-level parallelism left
= Little-changing memory latency

= “We are dedicating all of our future product development to
multicore designs. ... This is a sea change in computing.”
e Paul Otellini, President, Intel (2004)
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Microprocessor Transistor Counts 1971-2011 & Moore’s Law
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How does technology scaling help?

Time = (inst. count)x(clocks per inst.)x(clock cycle time)

Faster circuit
* Scaling makes transistors not only smaller but also faster
* Faster clock = smaller clock cycle time

More transistors
* Larger L2 caches (relatively simple design change)
e Smaller CPI

Design changes enabled by scaling
* Deep pipeline using more pipeline registers
* Superscalar pipeline using more functional units
 Larger, more sophisticated branch predictors

e Multicores
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Switches

= Building block for digital logic
+ NAND, NOR, NOT, ...

= Technology advances have provided designers with switches
that are
* Faster;
* Lower power;
* More reliable (e.g., vacuum tube vs. transistor); and
* Smaller.

= Nano-scale technologies will not continue promising the
same good properties
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History of switches

Bell lab. (1947); Kilby's first IC (1957)
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MOS transistors

= Today’s chips heavily depend on CMOS (complementary
MOS)-style logic design
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MOS transistor scaling

Scaling Calculator + g w
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Impact of MOS transistor scaling

= In general

Smaller transistors (i.e., density doubling with each new generation)
Faster transistors (latency oc L)

Roughly constant wire delay (= relatively slow wires!)

Lower supply voltage (= lower dynamic power)

= Downside
* Increased global wire delay
* Increased power density (W/cm?)
* Increased leakage power
* Increased susceptibility to noise and transient errors
* On-chip variation
* Cost of manufacturing
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Global wire delay

Feature size (nm)
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Power density
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Component-level performance trend

= Four key components in a computer system
* Disks
* Memory
* Network
* Processors

= Compare ~1980 Archaic (or “Nostalgic”) vs. ~2000 Modern
(or “Newfangled”)
e (Patterson)

= Metric
* Bandwidth: # operations or events per unit time
* Latency: elapsed time for a single operation or event
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Disk: Archaic vs. Modern

CDC Wren |, 1983 Seagate 373453, 2003

= 3,600 RPM = 15,000 RPM (4x)

= 0.03GB = 73.4GB (2,500x)
= Tracks/inch: 800 = Tracks/inch: 64,000 (80x)

= Bits/inch: 9,550 = Bits/inch: 533,000 (60x)

= Three 5.25" platters = Four 2.5" platters

= Bandwidth: 0.6 MB/s = Bandwidth: 86 MB/s (140x)

= Latency: 48.3 ms = Latency: 5.7 ms (8x)

= Cache: none = Cache: 8MB
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Memory: Archaic vs. Modern

= 1980 DRAM = 2000 Double Data Rate Synchr.
(asynchronous) (clocked) DRAM
= 0.06 Mbits/chip = 256.00 Mbits/chip (4000X)
= 64,000 xtors, 35 mm2 = 256,000,000 xtors, 204 mm?
= 16-bit data bus per = 64-bit data bus per
module, 16 pins/chip DIMM, 66 pins/chip (4X)
= 13 Mbytes/sec = 1600 Mbytes/sec (120X)
= Latency: 225 ns = Latency: 52 ns (4X)

= (no block transfer) Block transfers (page mode)
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LANs: Archaic vs. Modern

= Ethernet 802.3 e Ethernet 802.3ae

= Year of Standard: 1978 °* Year of Standard: 2003

= 10 Mbits/s * 10,000 Mbits/s (1000X)
link speed link speed

- Latency: 3000 psec * Latency: 190 usec  (15X)

= Shared media e Switched media

= Coaxial cable * Category 5 copper wire

"Cat 5" is 4 twisted pairs in bundle

Coaxial Cable: Plastic Covering Twisted Pair:
d/ Braided outer conductor
Insulator
Z ; — Copper core Copper, Tmm thick,

—— twisted to avoid antenna effect
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CPUs: Archaic vs. Modern

1982 Intel 80286

12.5 MHz

2 MIPS (peak)

Latency 320 ns

134,000 xtors, 47 mm?
16-bit data bus, 68 pins

Microcode interpreter,
separate FPU chip

(no caches)
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2001 Intel Pentium 4

1500 MHz (120X)
4500 MIPS (peak) (2250X)
Latency 15 ns (20X)

42,000,000 xtors, 217 mm?
64-bit data bus, 423 pins

3-way superscalar,

Dynamic translation to RISC,
Superpipelined (22 stage),
Out-of-Order execution
On-chip 8KB Data caches,
96KB Instr. Trace cache,
256KB L2 cache

University of Pittsburgh

Latency lags bandwidth (last ~20 years)
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= CPU
e 21x vs. 2250x

Ethernet

* 16x vs. 1000x
Memory module
* 4x vs. 120x
Disk

* 8x vs. 143x
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Rule of thumbs: latency lagging BW

= In the time that bandwidth doubles, latency improves by no
more than a factor of 1.2 to 1.4
* (Capacity improves faster than bandwidth)

= In other words, bandwidth improves by more than the
square of the improvement in latency
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Cost trend

Time
* Learning curve
* Changein yield

Volume
* Decreases cost, increases
efficiency
* “Shrinking” by deploying next-
generation technology (without
changing the design itself)

Commoditization
* Standards push this
* Multiple vendors compete
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IC (Integrated Circuit) cost

= Cost of IC = (cost of production) / (final test yield)

= Cost of production
* Cost of die
* Cost of testing die
* Cost of packaging and final test

= Cost of production at time line

* NRE (Non-Recurring Engineering) cost
« R&D
« Mask

* Chip production
« "“Front end”
+ "Back end” — packaging, etc.

e Test cost

= Cost of die = (cost of wafer) / ((dies per wafer) x (die yield))
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IC (Integrated Circuit) cost

. | .
7 x (wafer diameter/2)* 1 y x wafer diameter :

Dies per wafer = -
P die area 1 v2xdie area |
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IC (Integrated Circuit) cost

defect density x die area}“
1+
(94

Die yield = wafer yield x(

= defect density = # defects in unit area

= defect density x die area will be then average # of defects
per die

= o manufacturing complexity
= 2006 CMOS process: a = 4.0
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Performance analysis

= Which computer is faster for what you want to do?
¢ Time matters
* Workload matters

= Throughput (jobs/sec) vs. latency (sec/job)
* Single processor vs. multiprocessor
e Pentium4 @2GHz vs. Pentium4 @4GHz

= Commonly used techniques
* Direct measurement
* Simulation
* Analytical modeling
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Performance analysis

= Combination of
* Measurement
* Interpretation
¢ Communication

= Overall performance vs. specific aspects
* Choice of metric

= Considerations in performance analysis
* Perturbation
* Accuracy
* Reproducibility
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Performance report

= Reproducibility
* Provide all necessary details so that others can reproduce the same
result
* Machine configuration, compiler flags, ...

= Single number is attractive, but
* It does not show how a new feature affects different programs

* It may in fact mislead; a technique good for a program may be bad for
others
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Performance analysis techniques

= Direct measurement

Can provide the best result — no simplifying assumptions

Not flexible (difficult to change parameters)

Prone to perturbation (if instrumented)

Made much easier these days by using performance counters

= Simulation

Very flexible
Time consuming
Difficult to model details and validate

= Analytical modeling

Quick insight for overall behaviors
Limited applicability
Used to confine simulation scope, validate simulations, etc.
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Performance metrics

= (Preferably) single number that essentially extracts a desired
characteristic

Cache hit rate

AMAT (Average Memory Access Time)
IPC (Instructions Per Cycle)

Time (or delay)

Energy-delay product
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Comparing two

Execution time,,
Execution time,

“Xis n times faster than Y”

= Two different machines
= Two different options (e.g., memory sizes) on a machine

e Execution time,, _ Performance,
Execution time,, ~ Performance,
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Benchmarks

= Real programs

= Benchmark suites: a set of real applications
e SPEC CPU 2006 (desktop and servers)
* EEMBC, SPECjvm (embedded)
* TPC-C, TPC-H, SPECjbb, ECperf (servers)

= Kernels: important pieces of codes from real applications
* Livermore loops, ...
= Toy programs: small programs that we easily understand
e Quicksort
* Sieves of Eratosthenes, ...
= Synthetic program: to mimic a program behavior “uniformly”
* Dhrystone
* Whetstone, ...
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SPEC CPU2006

Benchmark name by SPEC generation

SPEC2006 benchmark description SPEC2006 SPEC2000 SPECSS SPECS2 SPECES
GNU C compiler poe
espre:
i
Compre: egmott
oy
m&Bksim
Jarser
fpppp
tomcaty
doduc
nasa?
spice
Sam matri
tydro2d
suZcor

facerec
ammp
tucas

| tma3d
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12 integer programs
* QuseC
* 3useC++
17 floating-point
programs
e 3useC
* 4use C++
* 6 use Fortran

e 4 use a mixture of C and
Fortran

Package available at
/afs/cs.pitt.edu/projects
/spec-cpu2006

University of Pittsburgh

Summarizing performance results

=  Arithmetic mean

* When dealing with times
= Weighted arithmetic mean

= Geometric mean

* When dealing with ratios
* SPEC CPU uses this method

n
Geometric mean = n/l_[samplei
i=1

= In the case of SPEC, sample; is the SPECRatio for program i
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SPEC2k scoring method

= Get execution time of each benchmark

= Get a ratio for each benchmark by dividing the time with
that of the reference machine
e Sun Ultra 5_10, 300MHz SPARC, 256MB memory
* |ts scoreis 100

= Get a geometric mean of all the computed ratios
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Amdahl’'s law

= Optimization or parallelization usually applies to a portion
* Places “limitation” of the scope of an optimization
* Leads us to focus on “common cases”
* "“Make common case fast and rare case accurate”
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Principle of locality

= Locality found in memory access instructions

* Temporal locality: if an item is referenced, it will tend to be referenced
again soon

* Spatial locality: if an item is referenced, items whose addresses are
close by tend to be referenced soon

= 90/10 locality rule

* A program executes about 90% of its instructions in 10% of its code

= We will look at how this principle is exploited in various
microarchitecture techniques
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Performance vs. performance-price
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Killer apps?

= Multimedia applications P
= Games
* 3D graphics
* Physics simulation
= Virtual reality
= RMS (Recognition, Mlnlng, and Synthe5|s)
* Speech recognition
* Video mining
* Voice synthesis

(Cf.) Software defined radio and other mobile applications
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Software defined radio
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Multimedia Performance Needs

» Audio:
= High-end set top box 800 MIPS
» Graphics (HD 720p, 30fps):
=OpenGL 1.1 -> 240 Ops/Pixels 7 GOPS
=0penGL 2.0 -> 400 Ops/Pixels 11 GOPS
» H.264 encode (HD 720p, 30fps)
=Video pipeline coder : 8 GOPS
=Bit stream processor: 8 GOPS
=Deblocking filter: 8 GOPS
=Hierarchical motion estimation: 25~160 GOPS
» Digital TV
=2004: 9000 Ops/Pixel 450 GOPS
=2008: 18000 Ops/Pixels 900 GOPS

yz

Unwersny of Plttsburgh _

MP-SoC, Aug. 2006 18-
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Multimedia performance needs
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GOPS: Giga Operations Per Second
(K. Uchiyama, ACSAC '07)
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