Chips get hotter

Power density continues to get worse

- Nuclear Reactor
- Rocket
- Nozzle
- Sun’s Surface
- Hot plate
- Pentium III™ processor
- Pentium II™ processor
- Pentium Pro™ processor
- Pentium™ processor
- i386
- i486

Surpassed hot-plate power density in 0.5µ.
Not too long to reach nuclear reactor

Pollack (Intel)
Power is important

- Maximum power limit
 - Imposed by reliability requirements, power supply design and environmental considerations
 - $<100W$ usually
 - This limit is not going to be relaxed any time soon
 - When you approach this limit, you may need to reduce power consumption by slowing down processor speeds

- Battery life
 - Needs more aggressive energy saving techniques

- Power is as important as performance today

Some metrics

- Power
 - W (watt)
 - A time-varying quantity

- Energy
 - J (joule)
 - Wh (watt-hour)

- Power density
 - W/cm^3

- Optimizing one metric may not always optimize others

- Energy-delay product (EDP)
 - ED
 - E^mD^n
Power basics

- Charge (Q) is property of fundamental particles
 - Coulomb (6.24 × 10^{18} \times \text{charge on an electron})
 - Charge is conserved

- Current (I) is the flow of (positive) charge
 - \(I = \frac{dQ}{dt} \)
 - Amperes = Coulombs / second

- Voltage (V) is the energy change from moving some charge
 - \(V = \frac{dE}{dQ} \)
 - Volts = Joules / Coulomb
 - Synonymous with potential
 - Always relative
 - Often to an implicit reference (e.g., ground = 0V)

- Power is energy per time
 - \(P = \frac{dE}{dt} = \left(\frac{dE}{dQ} \right) \times \left(\frac{dQ}{dt} \right) = VI \)
 - Watts = Joules per second

- Energy and power are often confused
 - Energy is an amount: joules, calories, kWh
 - Power is a rate: watts, horsepower

- Mechanics and thermodynamics
 - Energy ↔ work
 - Energy ↔ heat
Power basics

- **Resistor**
 - Circuit element that impedes the flow of charge
 - Ohm (Ω)
 - \(I = V/R; \ V = IR \)

- **Capacitor**
 - Capacitors store energy in the electric field created by an accumulation of charge
 - \(C = dQ/dV; \ Q = CV \)

Energy stored in a capacitor

- \(E = \int V \ dQ = \int q/C \ dQ = Q^2/2C \)
- Since \(Q = CV \), \(E = (CV)^2/2C = 0.5CV^2 \)

- Some energy is lost when charging from a constant voltage, say \(V_{DD} \)
 - Energy lost is \(0.5CV_{DD}^2 \)

- Total energy to charge the capacitor = \(CV_{DD}^2 \)
Power in CMOS circuits

- \(P(t) = I_{DD}(t)V_{DD} \)
- \(P_{\text{total}} = P_{\text{dynamic}} + P_{\text{static}} \)
- **Dynamic power**
 - Charging and discharging of load capacitances
 - “Short-circuit” current while both pMOS and nMOS networks are on
- **Static power**
 - Sub-threshold conduction through off transistors
 - Leakage current through reverse-biased diodes

Dynamic power

- **Switching power**
 - Charging and discharging of load capacitances
 - \(P \propto \alpha CV^2f \)
- **Short-circuit current**
 - Current flows from VDD to GND while both nMOS and pMOS transistors are on when input changes
 - Typically less than 10% of switching power
Reducing dynamic power

- \(P \propto \alpha CV^2f \)
- Reduce \(\alpha C \)
- Reduce \(V \)
- Reduce \(f \)

Reducing \(\alpha C \)

- Guiding principle
 - Stop “unnecessary” activities
 - E.g., clock gating

- Okay to increase \(C \) if you can decrease \(\alpha \) more
 - E.g., separate input registers for adder, logic unit, shifter, …
ALU example

"System"-level clock gating

- Turn off functional units that are not used
 - E.g., MP3 decoding logic in a cell phone while you talk to the other party
Reducing V

- V has quadratic impact on power
 - V has (linear) impact on performance (f)

- New technologies allow lower V
 - 1.8V @180nm
 - 1.2V @130nm
 - 1.0V @90nm

- DVS (Dynamic Voltage and Frequency Scaling)
 - Crusoe example
 - Intel SpeedStep

Reducing f

- Guiding principle
 - Don’t be “too” fast

- Lowering f has linear impact on P

- With a lower f, V can be made lower also! (DVS)
 - Care must be taken not to cause circuit failure due to “too” low V for a given f
 - Processor vendor provides a table with safe V-f pairs
Reducing f

- Steps to reduce f
 - First reduce f
 - Then reduce V

- Steps to increase f
 - First increase V
 - Then increase f

Reducing f via parallel processing

- Based on the “same throughput” assumption

(Borkar. Micro 2006.)
Energy saving via parallel processing

- Based on the “same throughput” assumption

\[\text{Improvement in Dynamic Energy} = \left(\frac{1}{s + \frac{p}{N^{(n-1)/n}}} \right)^n \]

Energy saving via parallel processing

- Effect of processor speeds on energy?
Energy saving via parallel processing

- Target speed and energy savings?

Energy saving via parallel processing

- Benefit of per-core “turn-off” capability

Reducing static power

- Static power due to
 - Sub-threshold current
 - Gate leakage
 - Reverse-biased junction leakage

- Inherent to CMOS transistors
- Static power is increasing faster than dynamic power in advanced technologies

- There is no “pure” architectural solution here

- Following slides are based on Morad and Walter, 2004.

Sub-threshold leakage

- Caused by weak inversion
- Grows exponentially with the lowering of V_{TH}
- Grows exponentially with increasing temperature
- Grows linearly with total widths of transistors

$$I_{sub} = K_1 W e^{V_{th}/nkT} (1 - e^{-V/kT})$$

Use high V_{th}

Disconnect the power supply
High V_{TH} vs. low V_{TH}

- Technology scaling results in low-V_{TH} devices
 - Faster but leaky
 - Lowering V_{DD} is slower

- High-speed logic implementations
 - Use low-V_{TH} devices for performance critical parts
 - Use high-V_{TH} devices for others

Gate-oxide leakage

- Increases exponentially with the decreasing of T_{OX}
- Can be solved by high-k materials
- Proportional to gate width

\[I_{ox} = K_2 W \left(\frac{V}{T_{ox}} \right)^2 e^{-\alpha T_{ox} / V} \]
Reverse-biased PN leakage

- PN junction in reverse bias
- Leakage proportional to diffusion area
- Exponentially sensitive to high temperature and high voltage

\[I_{pn} = J_{leakage, p+n} \left(e^{\frac{qV}{kT}} - 1 \right) A \]

Memory leakage

- Leakage constitutes 70% of cache power
- Cell leakage, bitline leakage

- State-preserving vs. state-destructive circuit techniques
State-preserving technique

- Dual V_{DD}
 - Adaptive Body Bias (ABB)
 - Apply body bias voltage

State-destructive technique

- Gated-V_{DD}
Comparison of different techniques

<table>
<thead>
<tr>
<th></th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>Leakage power in low power mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>DVS</td>
<td>Retains cell information in low-power mode.</td>
<td>Process variation dependent.</td>
<td>6.24nW</td>
</tr>
<tr>
<td></td>
<td>Fast switching between power modes.</td>
<td>More SEU noise susceptible.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Easy implementation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>More power reduction than ABB-MTCMOS.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABB-MTCMOS</td>
<td>Retains cell information in low-power mode.</td>
<td>Higher leakage power.</td>
<td>13.20nW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slower switching between power modes.</td>
<td></td>
</tr>
<tr>
<td>Gated-V$_{DD}$</td>
<td>Largest power reduction.</td>
<td>Loses cell information in low-power mode.</td>
<td>0.02nW</td>
</tr>
<tr>
<td></td>
<td>Fast switching between power modes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Easy implementation.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Final remarks

- Computer architecture is a changing sub-field of computer science
 - New technologies are continuously developed and deployed
 - More demanding applications emerge
 - Higher performance and affordability requirements

- Current and future technical focuses
 - Optimized multicore hardware designs
 - That can be programmed easily
 - Specifying and enforcing application’s quality of service
 - Virtualization – esp. server consolidation
 - Low power and energy
 - Reliability