CS2410: Computer Architecture

Power and energy

Sangyeun Cho

Computer Science Department University of Pittsburgh

Chips get hotter

Pollack (Intel)

Power is important

- Maximum power limit
 - Imposed by reliability requirements, power supply design and environmental considerations
 - <100W usually</p>
 - This limit is not going to be relaxed any time soon
 - When you approach this limit, you may need to reduce power consumption by slowing down processor speeds

Battery life

- Needs more aggressive energy saving techniques
- Power is as important as performance today

CS2410: Computer Architecture

University of Pittsburgh

Some metrics

- Power
 - W (watt)
 - A time-varying quantity
- Energy
 - J (joule)
 - Wh (watt-hour)
- Power density
 - W/cm³

- Optimizing one metric may not always optimize others
- Energy-delay product (EDP)
 - ED
 - EⁿD^m

Power basics

- Charge (Q) is property of fundamental particles
 - Coulomb (6.24 \times 10¹⁸ \times charge on an electron)
 - Charge is conserved
- Current (I) is the flow of (positive) charge
 - I = dQ/dt
 - Amperes = Coulombs / second
- Voltage (V) is the energy change from moving some charge
 - V = dE/dQ
 - Volts = Joules / Coulomb
 - Synonymous with potential
 - Always relative
 - Often to an implicit reference (e.g., ground = 0V)

CS2410: Computer Architecture

University of Pittsburgh

Power basics

- Power is energy per time
 - $P = dE/dt = (dE/dQ) \times (dQ/dt) = VI$
 - Watts = Joules per second
- Energy and power are often confused
 - Energy is an amount: joules, calories, kWh
 - Power is a rate: watts, horsepower
- Mechanics and thermodynamics
 - Energy \leftrightarrow work
 - Energy \leftrightarrow heat

- Resistor ->>>>
 - · Circuit element that impedes the flow of charge
 - Ohm (Ω)
 - I = V/R; V = IR
- Capacitor
 - Capacitors store energy in the electric field created by an accumulation of charge
 - C = dQ/dV; Q = CV

CS2410: Computer Architecture

University of Pittsburgh

Power basics

- Energy stored in a capacitor
 - $E = \int V dQ = \int q/C dQ = Q^2/2C$
 - Since Q = CV, $E = (CV)^2/2C = 0.5CV^2$
- Some energy is lost when charging from a constant voltage, say V_{DD}
 - Energy lost is 0.5CV_{DD}²
- Total energy to charge the capacitor = CV_{DD}²

Power in CMOS circuits

- $P(t) = I_{DD}(t)V_{DD}$
- $P_{total} = P_{dynamic} + P_{static}$
- Dynamic power
 - Charging and discharging of load capacitances
 - "Short-circuit" current while both pMOS and nMOS networks are on
- Static power
 - Sub-threshold conduction through off transistors
 - Leakage current through reversebiased diodes

CS2410: Computer Architecture

University of Pittsburgh

Dynamic power

- Switching power
 - Charging and discharging of load capacitances
 - $P \propto \alpha CV^2 f$
- Short-circuit current
 - Current flows from VDD to GND while both nMOS and pMOS transistors are on when input changes
 - Typically less than 10% of switching power

Reducing dynamic power

- $P \propto \alpha CV^2 f$
- Reduce αC
- Reduce V
- Reduce f

CS2410: Computer Architecture

University of Pittsburgh

Reducing αC

- Guiding principle
 - Stop "unnecessary" activities
 - E.g., clock gating

- Okay to increase C if you can decrease α more
 - E.g., separate input registers for adder, logic unit, shifter, ...

ALU example

"System"-level clock gating

- Turn off functional units that are not used
 - E.g., MP3 decoding logic in a cell phone while you talk to the other party

CS2410: Computer Architecture

Reducing V

- V has quadratic impact on power
 - V has (linear) impact on performance (f)
- New technologies allow lower V
 - 1.8V @180nm
 - 1.2V @130nm
 - 1.0V @90nm
- DVS (Dynamic Voltage and Frequency Scaling)
 - Crusoe example
 - Intel SpeedStep

CS2410: Computer Architecture

University of Pittsburgh

Reducing f

- Guiding principle
 - Don't be "too" fast
- Lowering f has linear impact on P
- With a lower f, V can be made lower also! (DVS)
 - Care must be taken not to cause circuit failure due to "too" low V for a given f
 - Processor vendor provides a table with safe V-f pairs

CS2410: Computer Architecture

Energy saving via parallel processing

Energy saving via parallel processing

Target speed and energy savings?

Energy saving via parallel processing

Benefit of per-core "turn-off" capability

(Cho and Melhem. Computer Architecture Letters, 2007.)

Reducing static power

- Static power due to
 - Sub-threshold current
 - Gate leakage
 - Reverse-biased junction leakage
- Inherent to CMOS transistors
- Static power is increasing faster than dynamic power in advanced technologies
- There is no "pure" architectural solution here
- Following slides are based on Morad and Walter, 2004.

CS2410: Computer Architecture

University of Pittsburgh

Sub-threshold leakage

- Caused by weak inversion
- Grows exponentially with the lowering of V_{TH}
- Grows exponentially with increasing temperature
- Grows linearly with total widths of transistors

 $I_{sub} = K_1 W e^{-V_{tb}/nkT} (1 + 1)$ Use high Vth

High V_{TH} vs. low V_{TH}

- Technology scaling results in low-V_{TH} devices
 - Faster but leaky
 - Lowering V_{DD} is slower
- High-speed logic implementations
 - Use low-V_{TH} devices for performance critical parts
 - Use high-V_{TH} devices for others

CS2410: Computer Architecture

University of Pittsburgh

Gate-oxide leakage

- Increases exponentially with the decreasing of T_{ox}
- Can be solved by high-k materials
- Proportional to gate width

$$I_{ox} = K_2 W \left(\frac{V}{T_{ox}}\right)^2 e^{-\alpha T_{ox}/V}$$

P-SUB=GND

Reverse-biased PN leakage

- PN junction in reverse bias
- Leakage proportional to diffusion area
- Exponentially sensitive to high temperature and high voltage

CS2410: Computer Architecture

University of Pittsburgh

Memory leakage

- Leakage constitutes 70% of cache power
- Cell leakage, bitline leakage

State-preserving vs. state-destructive circuit techniques

State-preserving technique

- Adaptive Body Bias (ABB)
 - Apply body bias voltage

CS2410: Computer Architecture

University of Pittsburgh

State-destructive technique

• Gated-V_{DD}

Comparison of different techniques

	Advantages	Disadvantages	Leakage power in low power mode
DVS	 Retains cell information in low-power mode. Fast switching between power modes. Easy implementation. More power reduction than ABB-MTCMOS. 	 Process variation dependent. More SEU noise susceptible. 	6.24nW
ABB- MTCMOS	Retains cell information in low-power mode.	Higher leakage power.Slower switching between power modes.	13.20nW
Gated-V _{DD}	 Largest power reduction. Fast switching between power modes. Easy implementation. 	Loses cell information in low-power mode.	0.02nW

CS2410: Computer Architecture

University of Pittsburgh

Final remarks

- Computer architecture is a changing sub-field of computer science
 - New technologies are continuously developed and deployed
 - More demanding applications emerge
 - Higher performance and affordability requirements
- Current and future technical focuses
 - Optimized multicore hardware designs
 - That can be programmed easily
 - Specifying and enforcing application's quality of service
 - Virtualization esp. server consolidation
 - Low power and energy
 - Reliability