CS2410: Computer Architecture

Pipelining

Sangyeun Cho

Computer Science Department
University of Pittsburgh

Instr. execution — impl. view

= Single (long) cycle implementation
= Multi-cycle implementation

= Pipelined implementation

CS2410: Computer Architecture

University of Pittsburgh

“Processing” an instruction

= Fetch instruction from memory

* Separate instruction memory (“Harvard” architecture) vs. single
memory (“Von Neumann” architecture)

= Decode instruction
= Read operands
= Perform specified computation

= Access memory
* This need be done before computation if memory provides an
operand
* Address computation must be done before accessing memory
= Update machine state
* Register or memory

CS2410: Computer Architecture University of Pittsburgh

“Processing” an instruction

Instnction decods/ perruey Memory

Instructs faich
iy et tagiste fetch cakoukifion aceess

; |
pree et i
4— - - 257 | oo
— —~
- P[:]-o—.- [- -| M| l\
r 1 Clas o
instruction | Alb—=x) \] r 1|
memory [~ | [Pegsece =)| a0 |
(w M ovtpue 11
b —={8 = u [~ e Data | | yp | ofM)
i mamary| jut
= | | ‘
16 [sgn | 32 —
= etena | =
p

CS2410: Computer Architecture

University of Pittsburgh

Pipelining datapath

_I — EXMEM MEMWE

IDVES
4 .-\....\'-\;:|"M\|
ADD}+| U ool S Branch
:} 1) -irmu takan |
[| s10 |
e | (—y| .
R ™~
-I] |mewucon| R b N1 ‘l; -t s -! : f—ﬂ'\ \i:l I
| memonfl—|I] meswwe n |Fessstes > yAwgt
r | Daza =y
| 1 O e
| r u
L J IS . SRR | S ™
\ ~ . | 1
1 \
= Sgn- LT
t ilnxlw_nL =
oo | & -
pipeline registers
CS2410: Computer Architecture University of Pittsburgh

Pipelining

IF ID EX MEM WB

reryY \r v
o | e WS

ccl cc2 cc3 cc4 cc5 cc6 cc7 cc8 cc9
ADD IF ID EX MEM WB
SuB IF ID EX MEM WB
AND IF ID * EX MEM WB
CS2410: Computer Architecture University of Pittsburgh

Pipelining facts

= Pipeline increases instruction throughput
* Does not improve instruction latency

= Clock cycle time is limited by the longest pipeline stage

= Multiple instructions are overlapped and are in different
stages

= Potential speedup = # of stages

= Time to fill pipeline and time to drain may affect
performance

CS2410: Computer Architecture University of Pittsburgh

Pipelining hazards

= Hazards deter instruction execution

e Structural hazard: HW can’t support a specific sequence of
instructions due to lack of resources; later instruction must wait

» Data hazard: an instruction can’t proceed, waiting for an operand
produced by a prior instruction still in execution

» Control hazard: can’t decide if an instruction is going to be executed
because a prior control instruction is still in execution

= Pipeline interlock

* Hardware mechanism to detect hazard conditions and prevent
instructions from being unduly executed

CS2410: Computer Architecture University of Pittsburgh

Tackling hazards Data hazard example

= Ensuring correctness

Time (i clock cycies]

* Hardware interlock cer
+ Automatic detection of hazard conditions and enforcement of safe 1 H "
instruction execution g ooommm]| B
* Software approach
+ Compiler inserts NOP instructions s A s
= Improving performance b aomne
 Data forwarding
+ Not through register file, but through dedicated forwarding paths T
» Software approach
+ Compiler (statically) schedules instructions to minimize stall times due to LR
hazards
C52410: Computer Architecture University of Pittsburgh C52410: Computer Architecture University of Pittsburgh

Data forwarding hardware Data forwarding example

Time (n chock cycies) e
oEx EXMEM MEMMWE
=4 - w2 cca co4 cos coce
—) [~ — -
| | = - at]! L
E DADD R R R | M T feg |,-' i EiJ_,-’ . _].. ol =_ . Iigg
- - -
5 3 [" _____]
¥ osunmam,ns w — - ",,q—|_ k)j - _[_‘I o me
= } " LA)/ 1 L
§ L v] L~ L=
] — == .
H [M J [
g 1 - P 1
E AND R, 1, A7 I I = Pog l j 3 om H
1 o 4 miZei I
r I P
L *] 3
Of RB, R1, RD ~ T Mg | I hE 7
. L | 4 L~ {
XOR R0, A1, ATT))
Ely iy
| Bl

CS2410: Computer Architecture University of Pittsburgh €S2410: Computer Architecture University of Pittsburgh

Control hazard example

branch

correct instr.

CS2410: Computer Architecture University of Pittsburgh

Impact of branch stalls

= When (base) CPI = 1, 20% of instructions are branches, 3-
cycle stall per branch
e CPl=1+20%x3=1.6

= How to minimize the impact?
* Reduce stall delay
« Determine early if branch is taken or not
+ Compute branch target address early
e (Branch prediction)

= Example
* Move zero test to ID stage
* Provide a separate adder to calculate new PCin ID stage

€S2410: Computer Architecture University of Pittsburgh

Modified pipeline

added hardware

1™y
’)ADD:
IFAD L ’ EXMEM MEMWE
P LI,M\. ~{ zoro?
>ma |} —
=l A
1" B [|
PCH | Wi .
| Instruction | IR} ; -H sl - I +
momery MEMWE 1R | Fegisters e BN
] r = (L] p Daza S
I—— | | e oy ..L/ Ram]
Y n |) |
16 ";91\ 2 L]
e g |- - . | "
_/
CS2410: Computer Architecture University of Pittsburgh

Branch processing strategies

Stall until branch direction is known

Predict “NOT TAKEN"
* Execute fall-off instructions that follow
» Squash (or cancel) instructions in pipeline if branch is actually taken
* (PC+4) already computed, so use it to get next instruction

Predict “TAKEN"

* As soon as the target address is available, fetch from there
* 67% MIPS branches taken on average

Delayed branch

CS2410: Computer Architecture University of Pittsburgh

Delayed branch

= Assume that we have N (delay) slots after a branch

* The instructions in the slots are executed regardless of the branch
outcome

 If you don’t have instructions to fill the slots, put NOPs there

= Simple hardware — no branch interlock

= Possibly more performance - if slots are filled with
instructions

= Compiler will have to fill the slots
= Code size will increase

CS2410: Computer Architecture University of Pittsburgh

Delayed branch

fa} From batore [} From target €} From tall-Bucegh

DADD A1, R2, i3 DADD A1, A2, R3
DSUB A4, RS, RS =—
£ A2 = 0 then I A1 =0 then
DADO At A A3 [ovaysar |
if A1 = 0 then OR A7, k8, R
= c Dolay siot DSUB R4, RS, A8 =
becomes becomes becomes
| " L : -
DSUB R4, RS, R DADD A1, A2, A3
A2 = 0 then - WA =0 then
DADE A1, Az, A3 | DADD A1, A2, A3 [oRFrRa R |
Rt = 0 than -
- : [osusRarsRe | DSUB R4, RS, RE =—!
CS2410: Computer Architecture University of Pittsburgh

Precise exception

= Exception (or fault)
* Exception is a condition which changes the control flow of processor

« e.g., Page fault, TLB miss, divide-by-zero, software trap, undefined opcode,
memory protection error, ...

+ Processor mode change may occur
. c.f., interrupt
 Instructions may generate exceptions at different pipeline stages

= Pipeline implements precise exception if the pipeline can be
stopped so that the instructions before the faulting instructions
are completed and those after it can be restarted from scratch

= Implementing precise exception can be complicated if out-of-order
completion is desired and]f instructions take various cycles (e.g.,
floating-point or complex instructions)

» Smith and Pleszkun (course web page) discusses how to
implement precise exception in pipelined processors

CS2410: Computer Architecture University of Pittsburgh

Pipeline key points

Hazards result in inefficiency in pipelined instruction execution
* Higher CPI

Data hazards require that dependent instructions wait for
operands to become available

» Data forwarding

 Stalls may still be required in certain cases

Control hazards require control-dependent instructions wait for
the branch outcome to be resolved

Out-of-order execution (in-order completion) techniques have been
used to improve the efficiency of pipelining

CS2410: Computer Architecture University of Pittsburgh

