
CS2410: Computer Architecture

Pipelining

Sangyeun Cho

Computer Science Department
University of Pittsburgh

CS2410: Computer Architecture University of Pittsburgh

Instr. execution – impl. view

 Single (long) cycle implementation

 Multi-cycle implementation

 Pipelined implementation

CS2410: Computer Architecture University of Pittsburgh

“Processing” an instruction

 Fetch instruction from memory
• Separate instruction memory (“Harvard” architecture) vs. single

memory (“Von Neumann” architecture)

 Decode instruction
 Read operands
 Perform specified computation
 Access memory

• This need be done before computation if memory provides an
operand

• Address computation must be done before accessing memory

 Update machine state
• Register or memory

CS2410: Computer Architecture University of Pittsburgh

“Processing” an instruction

CS2410: Computer Architecture University of Pittsburgh

Pipelining datapath

pipeline registers

CS2410: Computer Architecture University of Pittsburgh

Pipelining

cc1 cc2 cc3 cc4 cc5 cc6 cc7 cc8 cc9

IF ID EX MEM WB

ADD IF ID EX MEM WB

SUB IF ID EX MEM WB

LOAD IF ID EX MEM WB

AND IF ID EX MEM WB

OR IF ID EX MEM

CS2410: Computer Architecture University of Pittsburgh

Pipelining facts

 Pipeline increases instruction throughput
• Does not improve instruction latency

 Clock cycle time is limited by the longest pipeline stage
 Multiple instructions are overlapped and are in different

stages
 Potential speedup = # of stages
 Time to fill pipeline and time to drain may affect

performance

CS2410: Computer Architecture University of Pittsburgh

Pipelining hazards

 Hazards deter instruction execution
• Structural hazard: HW can’t support a specific sequence of

instructions due to lack of resources; later instruction must wait
• Data hazard: an instruction can’t proceed, waiting for an operand

produced by a prior instruction still in execution
• Control hazard: can’t decide if an instruction is going to be executed

because a prior control instruction is still in execution

 Pipeline interlock
• Hardware mechanism to detect hazard conditions and prevent

instructions from being unduly executed

CS2410: Computer Architecture University of Pittsburgh

Tackling hazards

 Ensuring correctness
• Hardware interlock

Automatic detection of hazard conditions and enforcement of safe
instruction execution

• Software approach
Compiler inserts NOP instructions

 Improving performance
• Data forwarding

Not through register file, but through dedicated forwarding paths

• Software approach
Compiler (statically) schedules instructions to minimize stall times due to
hazards

CS2410: Computer Architecture University of Pittsburgh

Data hazard example

CS2410: Computer Architecture University of Pittsburgh

Data forwarding hardware

CS2410: Computer Architecture University of Pittsburgh

Data forwarding example

CS2410: Computer Architecture University of Pittsburgh

Control hazard example

branch

I1

I2

I3

correct instr.

CS2410: Computer Architecture University of Pittsburgh

Impact of branch stalls

 When (base) CPI = 1, 20% of instructions are branches, 3-
cycle stall per branch
• CPI = 1 + 20% 3 = 1.6

 How to minimize the impact?
• Reduce stall delay

Determine early if branch is taken or not
Compute branch target address early

• (Branch prediction)

 Example
• Move zero test to ID stage
• Provide a separate adder to calculate new PC in ID stage

CS2410: Computer Architecture University of Pittsburgh

Modified pipeline

added hardware

CS2410: Computer Architecture University of Pittsburgh

Branch processing strategies

 Stall until branch direction is known

 Predict “NOT TAKEN”
• Execute fall-off instructions that follow
• Squash (or cancel) instructions in pipeline if branch is actually taken
• (PC+4) already computed, so use it to get next instruction

 Predict “TAKEN”
• As soon as the target address is available, fetch from there
• 67% MIPS branches taken on average

 Delayed branch

CS2410: Computer Architecture University of Pittsburgh

Delayed branch

 Assume that we have N (delay) slots after a branch
• The instructions in the slots are executed regardless of the branch

outcome
• If you don’t have instructions to fill the slots, put NOPs there

 Simple hardware – no branch interlock
 Possibly more performance – if slots are filled with

instructions

 Compiler will have to fill the slots
 Code size will increase

CS2410: Computer Architecture University of Pittsburgh

Delayed branch

CS2410: Computer Architecture University of Pittsburgh

Precise exception

 Exception (or fault)
• Exception is a condition which changes the control flow of processor

e.g., Page fault, TLB miss, divide-by-zero, software trap, undefined opcode,
memory protection error, …
Processor mode change may occur
c.f., interrupt

• Instructions may generate exceptions at different pipeline stages

 Pipeline implements precise exception if the pipeline can be
stopped so that the instructions before the faulting instructions
are completed and those after it can be restarted from scratch

 Implementing precise exception can be complicated if out-of-order
completion is desired and if instructions take various cycles (e.g.,
floating-point or complex instructions)

 Smith and Pleszkun (course web page) discusses how to
implement precise exception in pipelined processors

CS2410: Computer Architecture University of Pittsburgh

Pipeline key points

 Hazards result in inefficiency in pipelined instruction execution
• Higher CPI

 Data hazards require that dependent instructions wait for
operands to become available
• Data forwarding
• Stalls may still be required in certain cases

 Control hazards require control-dependent instructions wait for
the branch outcome to be resolved

 Out-of-order execution (in-order completion) techniques have been
used to improve the efficiency of pipelining

