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Instr. execution — impl. view

= Single (long) cycle implementation
= Multi-cycle implementation

= Pipelined implementation
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“Processing” an instruction

= Fetch instruction from memory

* Separate instruction memory (“Harvard” architecture) vs. single
memory (“Von Neumann” architecture)

= Decode instruction
= Read operands
= Perform specified computation

= Access memory
* This need be done before computation if memory provides an
operand
* Address computation must be done before accessing memory
= Update machine state
* Register or memory
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“Processing” an instruction
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Pipelining datapath
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Pipelining
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Pipelining facts

= Pipeline increases instruction throughput
* Does not improve instruction latency

= Clock cycle time is limited by the longest pipeline stage

= Multiple instructions are overlapped and are in different
stages

= Potential speedup = # of stages

= Time to fill pipeline and time to drain may affect
performance
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Pipelining hazards

= Hazards deter instruction execution

e Structural hazard: HW can’t support a specific sequence of
instructions due to lack of resources; later instruction must wait

» Data hazard: an instruction can’t proceed, waiting for an operand
produced by a prior instruction still in execution

» Control hazard: can’t decide if an instruction is going to be executed
because a prior control instruction is still in execution

= Pipeline interlock

* Hardware mechanism to detect hazard conditions and prevent
instructions from being unduly executed
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Tackling hazards Data hazard example

= Ensuring correctness

Time (i clock cycies]

* Hardware interlock cer
+ Automatic detection of hazard conditions and enforcement of safe 1 H "
instruction execution g ooommm]| B
* Software approach
+ Compiler inserts NOP instructions s A s
= Improving performance b aomne
 Data forwarding
+ Not through register file, but through dedicated forwarding paths T
» Software approach
+ Compiler (statically) schedules instructions to minimize stall times due to LR
hazards
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Data forwarding hardware Data forwarding example
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Control hazard example

branch

correct instr.
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Impact of branch stalls

= When (base) CPI = 1, 20% of instructions are branches, 3-
cycle stall per branch
e CPl=1+20%x3=1.6

= How to minimize the impact?
* Reduce stall delay
« Determine early if branch is taken or not
+ Compute branch target address early
e (Branch prediction)

= Example
* Move zero test to ID stage
* Provide a separate adder to calculate new PCin ID stage
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Modified pipeline

added hardware
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Branch processing strategies

Stall until branch direction is known

Predict “NOT TAKEN"
* Execute fall-off instructions that follow
» Squash (or cancel) instructions in pipeline if branch is actually taken
* (PC+4) already computed, so use it to get next instruction

Predict “TAKEN"

* As soon as the target address is available, fetch from there
* 67% MIPS branches taken on average

Delayed branch
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Delayed branch

= Assume that we have N (delay) slots after a branch

* The instructions in the slots are executed regardless of the branch
outcome

 If you don’t have instructions to fill the slots, put NOPs there

= Simple hardware — no branch interlock

= Possibly more performance - if slots are filled with
instructions

= Compiler will have to fill the slots
= Code size will increase
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Delayed branch
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Precise exception

= Exception (or fault)
* Exception is a condition which changes the control flow of processor

« e.g., Page fault, TLB miss, divide-by-zero, software trap, undefined opcode,
memory protection error, ...

+ Processor mode change may occur
. c.f., interrupt
 Instructions may generate exceptions at different pipeline stages

= Pipeline implements precise exception if the pipeline can be
stopped so that the instructions before the faulting instructions
are completed and those after it can be restarted from scratch

= Implementing precise exception can be complicated if out-of-order
completion is desired and ]f instructions take various cycles (e.g.,
floating-point or complex instructions)

» Smith and Pleszkun (course web page) discusses how to
implement precise exception in pipelined processors
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Pipeline key points

Hazards result in inefficiency in pipelined instruction execution
* Higher CPI

Data hazards require that dependent instructions wait for
operands to become available

» Data forwarding

 Stalls may still be required in certain cases

Control hazards require control-dependent instructions wait for
the branch outcome to be resolved

Out-of-order execution (in-order completion) techniques have been
used to improve the efficiency of pipelining
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