CS2410: Computer Architecture

Pipelining

Sangyeun Cho

Computer Science Department
University of Pittsburgh

Instr. execution — impl. view

= Single (long) cycle implementation
= Multi-cycle implementation

= Pipelined implementation

CS2410: Computer Architecture University of Pittsburgh

“Processing” an instruction

= Fetch instruction from memory

* Separate instruction memory (“Harvard” architecture) vs. single
memory (“Von Neumann” architecture)

= Decode instruction
= Read operands
= Perform specified computation

= Access memory

* This need be done before computation if memory provides an
operand

* Address computation must be done before accessing memory

= Update machine state
* Register or memory

CS2410: Computer Architecture University of Pittsburgh

“Processing” an instruction

Instruction decoda/ Exmeais) Wi
Instruction fetch PR e address Memary rite

register fetch calculation aCoRSS back

Instruction "
Registers
memory | IR |—<D egi

16 @gn_ 32
{extend

CS2410: Computer Architecture University of Pittsburgh

Pipelining datapath

MEM/WE

"Re.10
Ri1.15
1 MEMWEIR Registers
Data
o Memory | —ed
16 Sign- a2 J
extend|
= - =
T\
pipeline registers
C€S2410: Computer Architecture University of Pittsburgh
P | | I L} n
‘ IF ‘ ID ‘ EX ‘MEIV‘I WB‘
ccl cc2 cc3 ccd cc5 ccb cc?7 cc8 cc9
ADD IF ID EX MEM WB
SUB IF ID EX MEM WB
LOAD IF ID EX MEM WB
AND IF ID * EX MEM | WB
OR IF * ID EX MEM

CS2410: Computer Architecture

University of Pittsburgh

Pipelining facts

= Pipeline increases instruction throughput
* Does not improve instruction latency

= Clock cycle time is limited by the longest pipeline stage

= Multiple instructions are overlapped and are in different
stages

= Potential speedup = # of stages

= Time to fill pipeline and time to drain may affect
performance

CS2410: Computer Architecture University of Pittsburgh

Pipelining hazards

» Hazards deter instruction execution

 Structural hazard: HW can’t support a specific sequence of
instructions due to lack of resources; later instruction must wait

» Data hazard: an instruction can’t proceed, waiting for an operand
produced by a prior instruction still in execution

* Control hazard: can’t decide if an instruction is going to be executed
because a prior control instruction is still in execution

= Pipeline interlock

* Hardware mechanism to detect hazard conditions and prevent
instructions from being unduly executed

CS2410: Computer Architecture University of Pittsburgh

Tackling hazards

= Ensuring correctness

e Hardware interlock

« Automatic detection of hazard conditions and enforcement of safe
instruction execution

* Software approach
+ Compiler inserts NOP instructions

. Improving performance
* Data forwarding
+ Not through register file, but through dedicated forwarding paths

* Software approach

+ Compiler (statically) schedules instructions to minimize stall times due to
hazards

CS2410: Computer Architecture University of Pittsburgh

Data hazard example

Time (in clock cycles]

oo ccz cc3 cc4 ccs cce
DADO A1, A2, A3 | L Reg R#J - — N:Q
s pizd IS B

< e [t [
=2 =1 1
§ DSUBRARLRAS L L . R"g_ — DMJJ_ "‘fﬁ
5 = 1—] :I By
¥ ANDRS, R, A7 M : Pog 2H 1 om [
1 | = /_ L~ J’f —L ki

Of 8, A1, RY T’ '|: “"“__ _Q

XOR R10, A1, A11

CS2410: Computer Architecture University of Pittsburgh

Data forwarding hardware

IDEX EXMEM MEMWE

C€S2410: Computer Architecture University of Pittsburgh

Data forwarding example

e THE L
i

1

CS2410: Computer Architecture University of Pittsburgh

Control hazard example

branch

correct instr.

CS2410: Computer Architecture University of Pittsburgh

Impact of branch stalls

= When (base) CPl = 1, 20% of instructions are branches, 3-
cycle stall per branch
« CPl=1+20%x3=1.6

= How to minimize the impact?

* Reduce stall delay
+ Determine early if branch is taken or not
+ Compute branch target address early

* (Branch prediction)

= Example
* Move zero test to ID stage
* Provide a separate adder to calculate new PC in ID stage

CS2410: Computer Architecture University of Pittsburgh

Modified pipeline

added hardware

EXMEM MEM/WB

I IHﬂ 10 i
PC
IR
11.15
instruction | IR .
memory I MEMWa.IR | Registers —-
Data
memory [—= f—= ':‘
16 [Sign- | 32 J
" extend

CS2410: Computer Architecture University of Pittsburgh

Branch processing strategies

Stall until branch direction is known

Predict “NOT TAKEN"
* Execute fall-off instructions that follow
* Squash (or cancel) instructions in pipeline if branch is actually taken
* (PC+4) already computed, so use it to get next instruction

Predict “TAKEN"
* As soon as the target address is available, fetch from there
* 67% MIPS branches taken on average

Delayed branch

CS2410: Computer Architecture University of Pittsburgh

Delayed branch

Assume that we have N (delay) slots after a branch

* The instructions in the slots are executed regardless of the branch

outcome

* If you don’t have instructions to fill the slots, put NOPs there

= Simple hardware — no branch interlock

= Possibly more performance — if slots are filled with

instructions

= Compiler will have to fill the slots

= Code size will increase

CS2410: Computer Architecture

University of Pittsburgh

Delayed branch

CS2410: Computer Architecture

{a) From befora {b) From target () From fall-through
DADD R1, R2, R3 DADD R, R2, R3
DSUB R4, A5, A6 =
if A2 = 0 then ifR1 =0then
it R =0 then OR R7, R8, R9
becomes becomes becomes
DSUB R4, RS, RE DADD R1, R2, R3
It A2 = 0 then i A1 = 0 then
DADD R1, A2, A3 DADD R1, A2, A3 OR A7, A8, R9
it R1 =0 then - -
— DSUB R4, RS, RS DSUB R4, RS, R

University of Pittsburgh

Precise exception

Exception (or fault)

* Exception is a condition which changes the control flow of processor

+ e.g., Page fault, TLB miss, divide-by-zero, software trap, undefined opcode,
memory protection error, ...

+ Processor mode change may occur
. c.f., interrupt
* Instructions may generate exceptions at different pipeline stages

» Pipeline implements precise exception if the pipeline can be
stopped so that the instructions before the faulting instructions
are completed and those after it can be restarted from scratch

» Implementing precise exception can be complicated if out-of-order
completion is desired and if instructions take various cycles (e.g.,
floating-point or complex instructions)

= Smith and Pleszkun (course web page) discusses how to
implement precise exception in pipelined processors

CS2410: Computer Architecture University of Pittsburgh

Pipeline key points

= Hazards result in inefficiency in pipelined instruction execution
* Higher CPI

= Data hazards require that dependent instructions wait for
operands to become available
* Data forwarding
* Stalls may still be required in certain cases

= Control hazards require control-dependent instructions wait for
the branch outcome to be resolved

= Out-of-order execution (in-order completion) techniques have been
used to improve the efficiency of pipelining

CS2410: Computer Architecture University of Pittsburgh

