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Why memory hierarchy?
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Memory hierarchy
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Memory hierarchy goals

 To provide CPU with necessary data (and instructions) as 
quickly as possible
• To achieve this goal, a cache should keep frequently used data
• “Cache hit” when CPU finds a requested data in cache
• Hit rate = # of cache hits/# of cache accesses
• Average memory access latency (AMAL) = cache hit time + (1 – cache 

hit rate) × miss penalty
To decrease AMAL, reduce hit time, increase hit rate, and reduce miss 
penalty

 To reduce traffic on memory bus
• Cache becomes a “filter”
• Reduces the bandwidth requirements from the main memory
• Typically, max. L1 bandwidth (to CPU) > max. L2 bandwidth (to L1) > 

max. memory bandwidth
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Cache organization

 Caches use “blocks” or “lines” (block > byte) as their granule of 
management

 Memory > cache: we can only keep a subset of memory blocks
 Cache is in essence a fixed-width hash table; the memory blocks kept 

in a cache are thus associated with their addresses (or “tagged”)
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L1 cache vs. L2 cache

 Their basic parameters are similar
• Associativity, block size, and cache size (the capacity of data array)

 Address used to index
• L1: typically virtual address (to quickly index first)

Using a virtual address causes some complexities

• L2: typically physical address 
Physical address is available by then

 System visibility
• L1: not visible
• L2: page coloring can affect hit rate

 Hardware organization (esp. in multicores)
• L1: private
• L2: often shared among cores
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Key questions

 Where to place a block?
 How to find a block?

 Which block to replace for a new block?

 How to handle a write?
• Writes make a cache design much more complex!
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Where to place a block?

 Block placement is a matter of mapping
 If you have a simple rule to place data, you can find them later 

using the same rule
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Direct-mapped cache

 2B byte block
 2M entries
 N-bit address
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2-way set-associative cache

 2B byte block
 2M entries
 N-bit address
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Fully associative cache

 2B byte block
 2M entries
 N-bit address

 CAM (Content addressable memory)
• Input: content
• Output: index
• Used for the tag memory
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Why caches work (or do not work)

 Principle of locality
• Temporal locality

If the location A is accessed now, it’ll be accessed again soon
• Spatial locality

If the location A is accessed now, the location nearby (e.g., A+1) will be 
accessed soon

 Can you explain how locality is manifested in your program (at the 
source code level)?
• Data
• Instructions

 Can you write the same program twice, having
• A high degree of locality
• Badly low locality
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Which block to replace?

 Which block to replace, to make room for a new block on a miss?
 Goal: minimize the # of total misses
 Trivial in a direct-mapped cache
 N choices in N-way associative cache

 What is the optimal policy?
• MRU (most remotely used) is considered optimal
• This is an oracle scheme – we do not know the future

 Replacement approaches
• LRU (least recently used) – look at the past to predict the future
• FIFO (first in first out) – honor the new ones
• Random – don’t remember anything
• Cost-based – what is the cost (e.g., latency) of bringing this block again?
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How to handle a write?

 Design considerations
• Performance
• Design complexity

 Allocation policy (on a miss)
• Write-allocate
• No-write-allocate
• Write-validate

 Update policy
• Write-through
• Write-back

 Typical combinations
• Write-back with write-allocate
• Write-through with no-write-allocate
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Write-through vs. write-back

 L1 cache: advantages of write-through + no-write-allocate
• Simple control
• No stalls for evicting dirty data on L1 miss with L2 hit
• Avoids L1 cache pollution with results that are not read for a while
• Avoids problems with coherence (L2 is consistent with L1)
• Allows efficient transient error handling: parity protection in L1 and ECC in L2
• What about high traffic between L1 and L2, esp. in a multicore processor?

 L2 cache: advantages of write-back + write-allocate
• Typically reduces overall bus traffic by filtering all L1 write-through traffic
• Better able to capture temporal locality of infrequently written memory locations
• Provides a safety net for programs where write-allocate helps a lot

Garbage-collected heaps
Write-followed-by-read situations
Linking loaders (if unified cache, need not be flushed before execution)

 Some ISA/caches support explicitly installing cache blocks with empty 
contents or common values (e.g., zero)
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Alpha 21264 example

64 × 1024 = 64kB

2 ways

64B block
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More examples

 IBM Power5
• L1I: 64kB 2-way 128B block LRU
• L1D: 32kB 4-way 128B block write-through LRU
• L2: 1.875MB (3 banks) 10-way 128B block pseudo LRU

 Intel Core Duo
• L1I: 32kB 8-way 64B block LRU
• L1D: 32kB 8-way 64B block LRU write-through
• L2: 2MB 8-way 64B line LRU write-back

 Sun Niagara
• L1I: 16kB 4-way 32B block random
• L1D: 8kB 4-way 16B block random write-through write no-allocate
• L2: 3MB 4 banks 64B block 12-way write-back
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Impact of caches on performance

 Average memory access latency (AMAL) = cache hit time + (1 –
cache hit rate) × miss penalty

 Example 1
• Hit time = 1 cycle
• Miss penalty = 100 cycles
• Miss rate = 2%
• Average memory access latency?

 Example 2
• 1GHz processor
• Two configurations: 16kB direct-mapped, 16kB 2-way
• Two miss rates: 3%, 2%
• Hit time = 1 cycle, but clock cycle time is stretched by 1.1 in 2-way
• Miss penalty = 100ns (how many cycles?)
• Average memory access latency?
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1. Reducing miss penalty

 Multi-level caches
• miss penaltyL1 = hit timeL2 + miss rateL2 × miss penaltyL2

 Critical word first and early restart
• When L2-L1 bus width is smaller than L1 cache block

 Giving priority to read misses
• Esp. in dynamically scheduled processors

 Merging write buffer
 Victim caches
 Non-blocking caches

• Esp. in dynamically scheduled processors
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Victim cache

 Jouppi, “Improving direct-mapped cache performance by the addition 
of a small fully-associative cache and prefetch buffers,” ISCA 1990.
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Categorizing misses

 Compulsory
• “I’ve not met this block before…”

 Capacity
• “Working set is larger than my cache…”

 Conflict
• “Cache has space but blocks in use map to busy sets…”

 How can you measure contributions from different miss 
categories?
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2. Reducing miss rate

 Larger block size
• Reduces compulsory misses

 Larger cache size
• Tackles capacity misses

 Higher associativity
• Attacks conflict misses

 Prefetching
• Relevancy issues (due to pollution)

 Pseudo-associative caches

 Compiler optimizations
• Loop interchange
• Blocking
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3. Reducing hit time

 Small & simple cache (e.g., direct-mapped cache)
• Test different cache configurations using cacti 

(http://quid.hpl.hp.com:9082/cacti/)

 Avoid address translation during cache indexing
 Pipeline access
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Prefetching

 Memory hierarchy generally works well
• L1 cache: 1- ~ 3-cycle latency
• L2 cache: 8- ~ 13-cycle latency
• Main memory: 100- ~ 300-cycle latency
• Cache hit rates are critical to high performance

 Prefetching: if we know what data we’ll need from level-N 
cache a priori, get data from level-(N+1) and place it in 
level-N cache before the data is accessed by the processor

 What are design goals and issues?
• E.g., shall we load prefetched block in L1 or not?
• E.g., instruction prefetch vs. data prefetch
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Evaluating a prefetching scheme

 Coverage
• By applying a prefetching scheme, how many misses are covered?

 Timeliness
• Are prefetched data arriving early enough so that the (otherwise) miss 

latency is effectively hidden?

 Relevance and usefulness
• Are prefetched blocks actually used?
• Do they replace other useful data?

 How would program execution time change?
• Especially, dynamically scheduled processors have intrinsic ability to 

tolerate long latencies to a degree
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Hardware schemes

 Prefetch data under hardware control
• Without software modification
• Without increasing instruction count

 Hardware prefetch engines
• Programmable engines

Program this engine with data access pattern information
Who programs this engine, then?

• Automatic
Hardware detects access behavior
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Stride detection

 A popular method using a reference prediction table
• Load instruction PC
• Last address Ai-1

• Last stride S = Ai-1 – Ai-2

• Other flags, e.g., confidence, time stamp, …
• Next address for this PC Ai = Ai-1 + S

 In practice, simpler stream buffer like methods are often 
used
• IBM Power4/5 use 8 stream buffers between L1 & L2, L2 & L3 (or main 

memory)
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Power4 example

 8 stream buffers: ascending/descending
• Requires at least 4 sequential misses to install a stream

 Supports L2 to L1, L3 to L2, memory to L3

 Based on physical address
• When page boundary is met, stop there

 Software interface
• To explicitly (and quickly) install a stream
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Software schemes

 Use prefetch instruction – needs ISA support
• Check if the desired block is in cache already

If not, bring the cache block into the cache
If yes, do nothing

• In any case, prefetch request is a performance hint and not a 
correctness requirement

Not acting on it must not affect program output

 Compiler or programmer then inserts prefetch instructions in 
programs

 Hardware prefetch vs. software prefetch
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Software prefetch example

for (int i=0; i<100; ++i)

{

a[i] = b[i] + c[i];

}

prefetch(&b[0]);

prefetch(&c[0]);

for (i=0; i<100; i++)

{

prefetch (&b[i+4]);

prefetch (&c[i+4]);

a[i] = b[i] + c[i];

}


