CS2410: Computer Architecture

L1 cache design

Sangyeun Cho

Computer Science Department
University of Pittsburgh

Why memory hierarchy?

100,000
10,000 |

1000

Performance

Year

CS2410: Computer Architecture University of Pittsburgh

Memory hierarchy

Smaller
Faster
More expensive per byte
a
L1 cache
SRAM
SRAM
|
Larger
Slower
I DRAM Cheaper per byte
v
Magnetics
CS2410: Computer Architecture University of Pittsburgh

Memory hierarchy goals

= To provide CPU with necessary data (and instructions) as
quickly as possible
* To achieve this goal, a cache should keep frequently used data
* "“Cache hit” when CPU finds a requested data in cache
* Hit rate = # of cache hits/# of cache accesses

* Average memory access latency (AMAL) = cache hit time + (1 — cache
hit rate) X miss penalty

+ To decrease AMAL, reduce hit time, increase hit rate, and reduce miss
penalty

= To reduce traffic on memory bus
* Cache becomes a “filter”
* Reduces the bandwidth requirements from the main memory

* Typically, max. L1 bandwidth (to CPU) > max. L2 bandwidth (to L1) >
max. memory bandwidth

CS2410: Computer Architecture University of Pittsburgh

Cache organization

= Caches use “blocks” or “lines” (block > byte) as their granule of
management

= Memory > cache: we can only keep a subset of memory blocks

= Cache is in essence a fixed-width hash table; the memory blocks kept
in a cache are thus associated with their addresses (or “tagged”)

m—> M—> addr table data table
N bits N bits

2N words

supporting circuitry
Hit/miss

Specified data word Specified data word

CS2410: Computer Architecture University of Pittsburgh

L1 cache vs. L2 cache

= Their basic parameters are similar
* Associativity, block size, and cache size (the capacity of data array)

= Address used to index
* L1: typically virtual address (to quickly index first)
+ Using a virtual address causes some complexities
* L2: typically physical address
+ Physical address is available by then
= System visibility
* L1: not visible
* L2: page coloring can affect hit rate
= Hardware organization (esp. in multicores)
e L1: private
* L2: often shared among cores

CS2410: Computer Architecture University of Pittsburgh

Key questions

Where to place a block?

= How to find a block?
= Which block to replace for a new block?
= How to handle a write?
* Writes make a cache design much more complex!
CS2410: Computer Architecture University of Pittsburgh

Where to place a block?

= Block placement is a matter of mapping

» If you have a simple rule to place data, you can find them later
using the same rule

Fully associative: Direct mapped: Set associative:

block 12 can go block 12 can go block 12 can go

anywhere only into block 4 anywhere in set 0
(12 mod 8) (12 mod 4)

Block 01234567 Block 01234567 Block 01234567

Cache

Sel Set Set Set
g 1 2 3
Block frame address

EBlock 1
n. 01234567890

Memory

CS2410: Computer Architecture University of Pittsburgh

Direct-mapped cache

= 2B byte block
= 2Mentries
= N-bit address

(N-B-M) bits M bits B bits
— > —r—>

Address

Hit/miss Data

C€S2410: Computer Architecture University of Pittsburgh

2-way set-associative cache

= 28 byte block
=« 2Mentries
= N-bit address

N bits

Address DM Cache DM Cache
2M-1) entries 2M-1) entries

Hit/miss Data

CS2410: Computer Architecture University of Pittsburgh

Fully associative cache

= 2B byte block
= 2Mentries
= N-bit address

= CAM (Content addressable memory)
* Input: content (N-B) bits 28 bytes
e Output: index
¢ Used for the tag memory

(N-B) bits B bits

Address

Hit/miss Data

CS2410: Computer Architecture University of Pittsburgh

Why caches work (or do not work)

= Principle of locality

* Temporal locality
« If the location A is accessed now, it'll be accessed again soon

* Spatial locality

+ If the location A is accessed now, the location nearby (e.g., A+1) will be
accessed soon

= Can you explain how locality is manifested in your program (at the
source code level)?
* Data
* Instructions

= Can you write the same program twice, having
* A high degree of locality
* Badly low locality

CS2410: Computer Architecture University of Pittsburgh

Which block to replace?

= Which block to replace, to make room for a new block on a miss?
= Goal: minimize the # of total misses

= Trivial in a direct-mapped cache

= N choices in N-way associative cache

= What is the optimal policy?
* MRU (most remotely used) is considered optimal
e This is an oracle scheme — we do not know the future

= Replacement approaches
* LRU (least recently used) — look at the past to predict the future
* FIFO (first in first out) — honor the new ones
* Random - don’t remember anything
* Cost-based — what is the cost (e.g., latency) of bringing this block again?

CS2410: Computer Architecture University of Pittsburgh

How to handle a write?

= Design considerations
e Performance
* Design complexity
Allocation policy (on a miss)
* Write-allocate
* No-write-allocate
* Write-validate
Update policy
* Write-through
e Write-back

Typical combinations
* Write-back with write-allocate
* Write-through with no-write-allocate

CS2410: Computer Architecture University of Pittsburgh

Write-through vs. write-back

= L1 cache: advantages of write-through + no-write-allocate
* Simple control
* No stalls for evicting dirty data on L1 miss with L2 hit
* Avoids L1 cache pollution with results that are not read for a while
* Avoids problems with coherence (L2 is consistent with L1)
* Allows efficient transient error handling: parity protection in L1 and ECC in L2
* What about high traffic between L1 and L2, esp. in a multicore processor?

= L2 cache: advantages of write-back + write-allocate
* Typically reduces overall bus traffic by filtering all L1 write-through traffic
* Better able to capture temporal locality of infrequently written memory locations
* Provides a safety net for programs where write-allocate helps a lot
« Garbage-collected heaps
+ Write-followed-by-read situations
«+ Linking loaders (if unified cache, need not be flushed before execution)

= Some ISA/caches support explicitly installing cache blocks with empty
contents or common values (e.g., zero)

CS2410: Computer Architecture University of Pittsburgh

Alpha 21264 example

/ 64B block
Block
Block Q / [CFl
29> >
Data D
L Taﬂ%“;)/ | o

N
e 5 [
(512 @
blocks) T
64 x 1024 = 64kB @B
=7

Lower-level memol

CS2410: Computer Architecture University of Pittsburgh

More examples

= IBM Power5
e L1I: 64kB 2-way 128B block LRU
* L1D: 32kB 4-way 128B block write-through LRU
e L2:1.875MB (3 banks) 10-way 128B block pseudo LRU

= Intel Core Duo
* L11: 32kB 8-way 64B block LRU
* L1D: 32kB 8-way 64B block LRU write-through
e L2: 2MB 8-way 64B line LRU write-back

= Sun Niagara
* L11: 16kB 4-way 32B block random
* L1D: 8kB 4-way 16B block random write-through write no-allocate
e L2: 3MB 4 banks 64B block 12-way write-back

CS2410: Computer Architecture University of Pittsburgh

Impact of caches on performance

= Average memory access latency (AMAL) = cache hit time + (1 -
cache hit rate) X miss penalty

= Example 1
* Hit time = 1 cycle
* Miss penalty = 100 cycles
* Miss rate = 2%
* Average memory access latency?
= Example 2
* 1GHz processor
* Two configurations: 16kB direct-mapped, 16kB 2-way
e Two miss rates: 3%, 2%
* Hit time = 1 cycle, but clock cycle time is stretched by 1.1 in 2-way
* Miss penalty = 100ns (how many cycles?)
* Average memory access latency?

CS2410: Computer Architecture University of Pittsburgh

1. Reducing miss penalty

Multi-level caches
* miss penalty,; = hit time_, + miss rate;, X miss penalty,,

= Critical word first and early restart
e When L2-L1 bus width is smaller than L1 cache block

= Giving priority to read misses
* Esp. in dynamically scheduled processors

= Merging write buffer
= Victim caches

= Non-blocking caches
* Esp. in dynamically scheduled processors

CS2410: Computer Architecture University of Pittsburgh

Victim cache

wj/o victim cache w/ victim cache
Requests and - =~ ~ ” - >
replacements / ~

— I

L1 cache L2 cache

€—

Data

>
‘ L2 cache

\
/
\ /

Requests ghd

. replacements Replacements /
N |
N \ I Y4
N\ -
~ — -

= Jouppi, “Improving direct-mapped cache performance by the addition
of a small fully-associative cache and prefetch buffers,” ISCA 1990.

CS2410: Computer Architecture University of Pittsburgh

Categorizing misses

= Compulsory

e "“I've not met this block before...”

= Capacity

* "Working set is larger than my cache...”

= Conflict

* "Cache has space but blocks in use map to busy sets...”

= How can you measure contributions from different miss

categories?

CS2410: Computer Architecture

University of Pittsburgh

2. Reducing miss

Larger block size
* Reduces compulsory misses
= Larger cache size
* Tackles capacity misses
= Higher associativity
* Attacks conflict misses

= Prefetching

rate
10% | i
. 5% [
hﬁ_x“‘“—-n. . e 16k

s
) 256K
56

Block size

* Relevancy issues (due to pollution)

= Pseudo-associative caches

= Compiler optimizations
* Loop interchange
* Blocking

CS2410: Computer Architecture

University of Pittsburgh

3. Reducing hit time

= Small & simple cache (e.g., direct-mapped cache)

* Test different cache configurations using cacti
(http://quid.hpl.hp.com:9082/cacti/)

= Avoid address translation during cache indexing
= Pipeline access

CS2410: Computer Architecture University of Pittsburgh

Prefetching

= Memory hierarchy generally works well
* L1 cache: 1- ~ 3-cycle latency
* L2 cache: 8- ~ 13-cycle latency
* Main memory: 100- ~ 300-cycle latency
* Cache hit rates are critical to high performance

= Prefetching: if we know what data we'll need from level-N
cache a priori, get data from level-(N+1) and place it in
level-N cache before the data is accessed by the processor

= What are design goals and issues?
* E.g., shall we load prefetched block in L1 or not?
* E.g., instruction prefetch vs. data prefetch

CS2410: Computer Architecture University of Pittsburgh

Evaluating a prefetching scheme

Coverage
* By applying a prefetching scheme, how many misses are covered?

Timeliness
* Are prefetched data arriving early enough so that the (otherwise) miss
latency is effectively hidden?
Relevance and usefulness
* Are prefetched blocks actually used?
* Do they replace other useful data?

How would program execution time change?

* Especially, dynamically scheduled processors have intrinsic ability to
tolerate long latencies to a degree

CS2410: Computer Architecture University of Pittsburgh

Hardware schemes

= Prefetch data under hardware control
e Without software modification
* Without increasing instruction count

= Hardware prefetch engines

* Programmable engines
+ Program this engine with data access pattern information
+ Who programs this engine, then?

* Automatic
+ Hardware detects access behavior

CS2410: Computer Architecture University of Pittsburgh

Stride detection

= A popular method using a reference prediction table
* Load instruction PC
* Last address A,
* LaststrideS=A_,-A,
* Other flags, e.g., confidence, time stamp, ...
* Next address for this PCA, = A, + S

= In practice, simpler stream buffer like methods are often

used
e |BM Power4/5 use 8 stream buffers between L1 & L2, L2 & L3 (or main
memory)
CS2410: Computer Architecture University of Pittsburgh

Power4 example

8 stream buffers: ascending/descending
* Requires at least 4 sequential misses to install a stream

Supports L2 to L1, L3 to L2, memory to L3

Based on physical address
* When page boundary is met, stop there

Software interface
* To explicitly (and quickly) install a stream

CS2410: Computer Architecture University of Pittsburgh

Software schemes

= Use prefetch instruction — needs ISA support

* Check if the desired block is in cache already
+ If not, bring the cache block into the cache
+ If yes, do nothing

* In any case, prefetch request is a performance hint and not a
correctness requirement
« Not acting on it must not affect program output

= Compiler or programmer then inserts prefetch instructions in
programs

= Hardware prefetch vs. software prefetch

CS2410: Computer Architecture University of Pittsburgh

Software prefetch example

prefetch(&b[0]);
for (int i=0; i<100; ++i) prefetch(&c[0]);
{ for (i=0; 1<100; i++)
a[i] = b[i] + c[il: {
3} prefetch (&b[i+4]);

prefetch (&c[i+4]);
ali] = b[i] + c[i];

CS2410: Computer Architecture University of Pittsburgh

