
CS2410: Computer Architecture

L1 cache design

Sangyeun Cho

Computer Science Department
University of Pittsburgh

CS2410: Computer Architecture University of Pittsburgh

Why memory hierarchy?



CS2410: Computer Architecture University of Pittsburgh

Memory hierarchy

CPU

L1 cache

L2 cache

Hard disk

Regs

Main memory

Smaller
Faster
More expensive per byte

Larger
Slower
Cheaper per byte

SRAM

DRAM

Magnetics

SRAM

CS2410: Computer Architecture University of Pittsburgh

Memory hierarchy goals

 To provide CPU with necessary data (and instructions) as 
quickly as possible
• To achieve this goal, a cache should keep frequently used data
• “Cache hit” when CPU finds a requested data in cache
• Hit rate = # of cache hits/# of cache accesses
• Average memory access latency (AMAL) = cache hit time + (1 – cache 

hit rate) × miss penalty
To decrease AMAL, reduce hit time, increase hit rate, and reduce miss 
penalty

 To reduce traffic on memory bus
• Cache becomes a “filter”
• Reduces the bandwidth requirements from the main memory
• Typically, max. L1 bandwidth (to CPU) > max. L2 bandwidth (to L1) > 

max. memory bandwidth



CS2410: Computer Architecture University of Pittsburgh

Cache organization

 Caches use “blocks” or “lines” (block > byte) as their granule of 
management

 Memory > cache: we can only keep a subset of memory blocks
 Cache is in essence a fixed-width hash table; the memory blocks kept 

in a cache are thus associated with their addresses (or “tagged”)

Memoryaddr
N bits

2N words

Specified data word

addr table data tableaddr
N bits

Specified data word

supporting circuitry

Hit/miss

CS2410: Computer Architecture University of Pittsburgh

L1 cache vs. L2 cache

 Their basic parameters are similar
• Associativity, block size, and cache size (the capacity of data array)

 Address used to index
• L1: typically virtual address (to quickly index first)

Using a virtual address causes some complexities

• L2: typically physical address 
Physical address is available by then

 System visibility
• L1: not visible
• L2: page coloring can affect hit rate

 Hardware organization (esp. in multicores)
• L1: private
• L2: often shared among cores



CS2410: Computer Architecture University of Pittsburgh

Key questions

 Where to place a block?
 How to find a block?

 Which block to replace for a new block?

 How to handle a write?
• Writes make a cache design much more complex!

CS2410: Computer Architecture University of Pittsburgh

Where to place a block?

 Block placement is a matter of mapping
 If you have a simple rule to place data, you can find them later 

using the same rule



CS2410: Computer Architecture University of Pittsburgh

Direct-mapped cache

 2B byte block
 2M entries
 N-bit address

Tag

M bits

Hit/miss

Data

B bits

Address

(N-B-M) bits

(N-B-M) bits 2B bytes

=?

Data

CS2410: Computer Architecture University of Pittsburgh

2-way set-associative cache

 2B byte block
 2M entries
 N-bit address

Address

N bits

DM Cache
2(M-1) entries

DM Cache
2(M-1) entries

2M entries

Hit/miss Data



CS2410: Computer Architecture University of Pittsburgh

Fully associative cache

 2B byte block
 2M entries
 N-bit address

 CAM (Content addressable memory)
• Input: content
• Output: index
• Used for the tag memory

B bits

Address

(N-B) bits Tag

Hit/miss

Data

(N-B) bits 2B bytes

Data

M-bit index

CS2410: Computer Architecture University of Pittsburgh

Why caches work (or do not work)

 Principle of locality
• Temporal locality

If the location A is accessed now, it’ll be accessed again soon
• Spatial locality

If the location A is accessed now, the location nearby (e.g., A+1) will be 
accessed soon

 Can you explain how locality is manifested in your program (at the 
source code level)?
• Data
• Instructions

 Can you write the same program twice, having
• A high degree of locality
• Badly low locality



CS2410: Computer Architecture University of Pittsburgh

Which block to replace?

 Which block to replace, to make room for a new block on a miss?
 Goal: minimize the # of total misses
 Trivial in a direct-mapped cache
 N choices in N-way associative cache

 What is the optimal policy?
• MRU (most remotely used) is considered optimal
• This is an oracle scheme – we do not know the future

 Replacement approaches
• LRU (least recently used) – look at the past to predict the future
• FIFO (first in first out) – honor the new ones
• Random – don’t remember anything
• Cost-based – what is the cost (e.g., latency) of bringing this block again?

CS2410: Computer Architecture University of Pittsburgh

How to handle a write?

 Design considerations
• Performance
• Design complexity

 Allocation policy (on a miss)
• Write-allocate
• No-write-allocate
• Write-validate

 Update policy
• Write-through
• Write-back

 Typical combinations
• Write-back with write-allocate
• Write-through with no-write-allocate



CS2410: Computer Architecture University of Pittsburgh

Write-through vs. write-back

 L1 cache: advantages of write-through + no-write-allocate
• Simple control
• No stalls for evicting dirty data on L1 miss with L2 hit
• Avoids L1 cache pollution with results that are not read for a while
• Avoids problems with coherence (L2 is consistent with L1)
• Allows efficient transient error handling: parity protection in L1 and ECC in L2
• What about high traffic between L1 and L2, esp. in a multicore processor?

 L2 cache: advantages of write-back + write-allocate
• Typically reduces overall bus traffic by filtering all L1 write-through traffic
• Better able to capture temporal locality of infrequently written memory locations
• Provides a safety net for programs where write-allocate helps a lot

Garbage-collected heaps
Write-followed-by-read situations
Linking loaders (if unified cache, need not be flushed before execution)

 Some ISA/caches support explicitly installing cache blocks with empty 
contents or common values (e.g., zero)

CS2410: Computer Architecture University of Pittsburgh

Alpha 21264 example

64 × 1024 = 64kB

2 ways

64B block



CS2410: Computer Architecture University of Pittsburgh

More examples

 IBM Power5
• L1I: 64kB 2-way 128B block LRU
• L1D: 32kB 4-way 128B block write-through LRU
• L2: 1.875MB (3 banks) 10-way 128B block pseudo LRU

 Intel Core Duo
• L1I: 32kB 8-way 64B block LRU
• L1D: 32kB 8-way 64B block LRU write-through
• L2: 2MB 8-way 64B line LRU write-back

 Sun Niagara
• L1I: 16kB 4-way 32B block random
• L1D: 8kB 4-way 16B block random write-through write no-allocate
• L2: 3MB 4 banks 64B block 12-way write-back

CS2410: Computer Architecture University of Pittsburgh

Impact of caches on performance

 Average memory access latency (AMAL) = cache hit time + (1 –
cache hit rate) × miss penalty

 Example 1
• Hit time = 1 cycle
• Miss penalty = 100 cycles
• Miss rate = 2%
• Average memory access latency?

 Example 2
• 1GHz processor
• Two configurations: 16kB direct-mapped, 16kB 2-way
• Two miss rates: 3%, 2%
• Hit time = 1 cycle, but clock cycle time is stretched by 1.1 in 2-way
• Miss penalty = 100ns (how many cycles?)
• Average memory access latency?



CS2410: Computer Architecture University of Pittsburgh

1. Reducing miss penalty

 Multi-level caches
• miss penaltyL1 = hit timeL2 + miss rateL2 × miss penaltyL2

 Critical word first and early restart
• When L2-L1 bus width is smaller than L1 cache block

 Giving priority to read misses
• Esp. in dynamically scheduled processors

 Merging write buffer
 Victim caches
 Non-blocking caches

• Esp. in dynamically scheduled processors

CS2410: Computer Architecture University of Pittsburgh

Victim cache

 Jouppi, “Improving direct-mapped cache performance by the addition 
of a small fully-associative cache and prefetch buffers,” ISCA 1990.

L1 cache L2 cache

Victim
cache

L1 cache L2 cache

Requests and
replacements

Data

2:
1

Requests

Requests and
replacements Replacements

w/o victim cache w/ victim cache



CS2410: Computer Architecture University of Pittsburgh

Categorizing misses

 Compulsory
• “I’ve not met this block before…”

 Capacity
• “Working set is larger than my cache…”

 Conflict
• “Cache has space but blocks in use map to busy sets…”

 How can you measure contributions from different miss 
categories?

CS2410: Computer Architecture University of Pittsburgh

2. Reducing miss rate

 Larger block size
• Reduces compulsory misses

 Larger cache size
• Tackles capacity misses

 Higher associativity
• Attacks conflict misses

 Prefetching
• Relevancy issues (due to pollution)

 Pseudo-associative caches

 Compiler optimizations
• Loop interchange
• Blocking



CS2410: Computer Architecture University of Pittsburgh

3. Reducing hit time

 Small & simple cache (e.g., direct-mapped cache)
• Test different cache configurations using cacti 

(http://quid.hpl.hp.com:9082/cacti/)

 Avoid address translation during cache indexing
 Pipeline access

CS2410: Computer Architecture University of Pittsburgh

Prefetching

 Memory hierarchy generally works well
• L1 cache: 1- ~ 3-cycle latency
• L2 cache: 8- ~ 13-cycle latency
• Main memory: 100- ~ 300-cycle latency
• Cache hit rates are critical to high performance

 Prefetching: if we know what data we’ll need from level-N 
cache a priori, get data from level-(N+1) and place it in 
level-N cache before the data is accessed by the processor

 What are design goals and issues?
• E.g., shall we load prefetched block in L1 or not?
• E.g., instruction prefetch vs. data prefetch



CS2410: Computer Architecture University of Pittsburgh

Evaluating a prefetching scheme

 Coverage
• By applying a prefetching scheme, how many misses are covered?

 Timeliness
• Are prefetched data arriving early enough so that the (otherwise) miss 

latency is effectively hidden?

 Relevance and usefulness
• Are prefetched blocks actually used?
• Do they replace other useful data?

 How would program execution time change?
• Especially, dynamically scheduled processors have intrinsic ability to 

tolerate long latencies to a degree

CS2410: Computer Architecture University of Pittsburgh

Hardware schemes

 Prefetch data under hardware control
• Without software modification
• Without increasing instruction count

 Hardware prefetch engines
• Programmable engines

Program this engine with data access pattern information
Who programs this engine, then?

• Automatic
Hardware detects access behavior



CS2410: Computer Architecture University of Pittsburgh

Stride detection

 A popular method using a reference prediction table
• Load instruction PC
• Last address Ai-1

• Last stride S = Ai-1 – Ai-2

• Other flags, e.g., confidence, time stamp, …
• Next address for this PC Ai = Ai-1 + S

 In practice, simpler stream buffer like methods are often 
used
• IBM Power4/5 use 8 stream buffers between L1 & L2, L2 & L3 (or main 

memory)

CS2410: Computer Architecture University of Pittsburgh

Power4 example

 8 stream buffers: ascending/descending
• Requires at least 4 sequential misses to install a stream

 Supports L2 to L1, L3 to L2, memory to L3

 Based on physical address
• When page boundary is met, stop there

 Software interface
• To explicitly (and quickly) install a stream



CS2410: Computer Architecture University of Pittsburgh

Software schemes

 Use prefetch instruction – needs ISA support
• Check if the desired block is in cache already

If not, bring the cache block into the cache
If yes, do nothing

• In any case, prefetch request is a performance hint and not a 
correctness requirement

Not acting on it must not affect program output

 Compiler or programmer then inserts prefetch instructions in 
programs

 Hardware prefetch vs. software prefetch

CS2410: Computer Architecture University of Pittsburgh

Software prefetch example

for (int i=0; i<100; ++i)

{

a[i] = b[i] + c[i];

}

prefetch(&b[0]);

prefetch(&c[0]);

for (i=0; i<100; i++)

{

prefetch (&b[i+4]);

prefetch (&c[i+4]);

a[i] = b[i] + c[i];

}


