
CS2410: Computer Architecture

Instruction set architecture
principles and examples

Sangyeun Cho

Computer Science Department
University of Pittsburgh

CS2410: Computer Architecture University of Pittsburgh

C to binary to electrical signals

swap:
muli $2, $5, 4
add $2, $4, $2
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)
jr $31

void swap(int v[], int k)
{

int temp;
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

}

00000000101000010…
00000000000110000…
10001100011000100…
10001100111100100…
10101100111100100…
10101100011000100…
00000011111000000…

Control signals

CS2410: Computer Architecture University of Pittsburgh

ISA?

 ISA components:
• Data types supported (e.g., bytes, half words, words–signed, unsigned)
• Registers as a storage of data or information

General registers: e.g., R0~R7
Special registers: e.g., PSR (processor status register), return address from exception, …

• Processor modes
User mode, privileged mode, …

• Register view in different modes
• Instruction definitions

Basic semantics: e.g., add, multiply
Exception behaviors: e.g., load – misaligned access, TLB miss, …
Some instructions may behave differently in different modes
Some instructions are not available in user mode (e.g., privileged instructions)
…

 ABI (application binary interface)
•  ISA
• Defines low-level binary interface between an application and the OS

Calling convention
System call mechanism
Binary format, …

CS2410: Computer Architecture University of Pittsburgh

ISA design considerations

 Target application
• General-purpose processor
• Application-specific processor

 Roadmap

 Properties generally considered desirable
• Completeness
• Orthogonality
• Regularity and simplicity
• Compactness–code size

• Ease of programming
• Ease of implementation
• Ease of extension



CS2410: Computer Architecture University of Pittsburgh

Machine instructions

 Operation – “what” to do?
• How many operations?
• What kind of operations?

Early processors omitted “multiply”
Floating-point operations were also absent

 Operands – what do we operate on?
• How many operands?
• Where are they stored?
• How to specify?

 Format
• Fixed N byte or variable size
• What are necessary subfields?
• How are subfields laid out?

CS2410: Computer Architecture University of Pittsburgh

Operand location

 Stack
• Implicit – use data on the top of the stack

 Accumulator
• Implicit – there is one accumulator

 Register

 Memory

CS2410: Computer Architecture University of Pittsburgh

Operand location

CS2410: Computer Architecture University of Pittsburgh

Number of operands

 Stack
• 0 address add tos tos + next

 Accumulator
• 1 address add A acc  acc + mem[A]

 Register/memory
• 2 addresses add A B A  A + B
• 3 addresses add A B C A  B + C

 Load store architectures disallow operation and memory 
access in a single instruction



CS2410: Computer Architecture University of Pittsburgh

Sample code sequence

C = A + B

CS2410: Computer Architecture University of Pittsburgh

Specifying operands

 “Addressing mode”

 Register direct add R1, R2, R3
 Immediate add R1, R1, #1

 Memory
• Direct (absolute) load R1, @(10000)
• Register indirect load R1, @(R2)
• Memory indirect load R1, @((R2))
• Displacement load R1, @(R2+100)
• Indexed load R1, @(R2+R3)
• Scaled load R1, @(R2+R3d+100)
• Auto-increment/decrement load R1, @(R2+/)

CS2410: Computer Architecture University of Pittsburgh

Usage of addressing modes

(VAX)

CS2410: Computer Architecture University of Pittsburgh

Endian-ness and data alignment

 Big endian vs. little endian
• Defines byte ordering inside a larger data type stored in memory

 Alignment
• Data A is aligned if (addr(A) % sizeof(A) == 0) is true
• What is the implication on hardware implementation (esp. memory 

system)?

1

24567

0 2

1 03

3 4 5 6 7

(MSB) (LSB)

(addr)

(addr)



CS2410: Computer Architecture University of Pittsburgh

Displacement size

(Alpha)

CS2410: Computer Architecture University of Pittsburgh

Immediate size

(VAX)

CS2410: Computer Architecture University of Pittsburgh

Operations

 Arithmetic
• add, sub, mul, div, …

 Logical
• and, or, xor, not, …

 Shift
• shift-left, shift-right, shift-right-arithmetic, …

 Memory access
• load, store, prefetch, …

 Control
• branches, jumps, procedure call/return, …

 System-related
• trap, break, …

CS2410: Computer Architecture University of Pittsburgh

Frequent operations



CS2410: Computer Architecture University of Pittsburgh

Control flow instructions

CS2410: Computer Architecture University of Pittsburgh

Operands of control flow inst.

 Target description
• Instruction with an immediate value

PC-relative or absolute

• In register
Typically absolute

 Condition description
• Condition bit (zero, carry, overflow, …)

sub R1, R2, R3; bz LABEL

• Condition register
cmp R1, R2, R3; bgtz R1, LABEL

• Compare-and-branch
bgt R1, R2, LABEL

CS2410: Computer Architecture University of Pittsburgh

Branch distance

CS2410: Computer Architecture University of Pittsburgh

Comparison types



CS2410: Computer Architecture University of Pittsburgh

Instruction format

CS2410: Computer Architecture University of Pittsburgh

How to help compiler writers

 At least 16 GPRs

 Provide regularity
• Orthogonality
• No restrictions on register usage

 Provide primitives, not solutions
• e.g., HLL-like operations

 Simplify trade-offs in alternatives

 Provide instructions that bind constants

CS2410: Computer Architecture University of Pittsburgh

MIPS example

 Thirty-two 32-bit GPR
• R0 wired to 0
• Separate 32/16 SP/DP (single-/double-

precision) FP registers

 Byte/half/word/dword, SP/DP FP 
data types

 Immediate and displacement 
addressing modes

 32-bit fixed instruction encoding

CS2410: Computer Architecture University of Pittsburgh

ARM example

 Sixteen 32-bit GPR
• R14 is link register
• R15 is PC

 Different CPU modes have 
different register view

 Immediate and 
displacement addressing 
modes

 “Thumb” mode supports 
16-bit instruction encoding



CS2410: Computer Architecture University of Pittsburgh

ARM example

CS2410: Computer Architecture University of Pittsburgh

ARM example, cont’d

CS2410: Computer Architecture University of Pittsburgh

ARM example

(Phelan, ’03)

CS2410: Computer Architecture University of Pittsburgh

Summary

 Instruction set design requires understanding of
• Application
• Roadmap
• Properties affecting hardware implementation
• Properties affecting software design (e.g., application, compiler, …)

 Binary compatibility has been a key market driver
• Legacy binaries

 Dynamic binary translation technology may weaken the 
dependency


