C to binary to electrical signals

void swap(int v[], int k)

{
int temp;
CS2410: C ter Architect - i = i1
- muli $2, 95,4 v[k] = v[k+1];
. Lomputer Architecture . e Vit 1] = tomo:
Iw $15, 0($2) }
Iw $16, 4($2)
Instruction set architecture sw $16,0(52)
.. sw $15, 4($2)
j 31
prlnClpIeS and examples r s 00000000101000010...
00000000000110000...
10001100011000100...
10001100111100100...
Sangyeun Cho 10101100111100100...
10101100011000100...
00000011111000000...
Computer Science Department .
University of Pittsburgh Control signals
CS2410: Computer Architecture University of Pittsburgh

ISA? ISA design considerations

= ISA components: = Target application

» Data types supported (e.g., bytes, half words, words—signed, unsigned) « General-purpose processor
* Registers as a storage of data or information « Applicati ifi

General registers: e.g., RO~R7 pPp |cat|on-speC| IC processor

Special registers: e.g., PSR (processor status register), return address from exception, ...
* Processor modes

User mode, privileged mode, ... " Roadmap
* Register view in different modes
* Instruction definitions . . .

Basic semantics: e.g., add, multiply = Properties generally considered desirable

Exceptliorl bet:.aviors: e.%, :10ad (}zlisali%lneld z{:fcfess, ILB n'(]iiss, . Completeness

ome Instructions ma; ehave dirteren In adirrerent modes H
Some instructions areynot available in us);r mode (e.g., privileged instructions) ° Orthogonallty
* Regularity and simplicity

» Compactness—code size
= ABI (application binary interface)
: EEA low-level bi interface bet licati d the OS * Easeof programming
M erines low-level binary interface between an application an e f .
Calling convention * Ease of |mp|en_1entat|on
System call mechanism » Ease of extension
Binary format, ...

CS2410: Computer Architecture University of Pittsburgh €52410: Computer Architecture University of Pittsburgh

Machine instructions

= Operation — “what” to do?
* How many operations?
* What kind of operations?
+ Early processors omitted “multiply”
+ Floating-point operations were also absent
= Operands — what do we operate on?
* How many operands?
* Where are they stored?
* How to specify?
= Format
* Fixed N byte or variable size
* What are necessary subfields?
e How are subfields laid out?

CS2410: Computer Architecture University of Pittsburgh

Operand location

= Stack
 Implicit — use data on the top of the stack

= Accumulator
* Implicit - there is one accumulator

= Register
= Memory
CS2410: Computer Architecture University of Pittsburgh

Operand location

(a) Stack b} Accumulator {c) Register-mamory (d) Register-registerioad-siore

I
Processor

|
Mamary

©2007 Einester . A8 g resarved

CS2410: Computer Architecture University of Pittsburgh

Number of operands

= Stack
¢ 0 address add tos < tos + next

= Accumulator

e 1 address add A acc < acc + mem[A]

= Register/memory
e 2 addresses add AB A<~ A+B
e 3 addresses add ABC A«<B+C

= Load store architectures disallow operation and memory
access in a single instruction

CS2410: Computer Architecture University of Pittsburgh

Sample code sequence

C=A+8B
Register
Stack Accumulator (register-memory) Register (load-store)
Push A Load A Load RI,A Load RIL,A
Push B Add B Add R3,R1,B Load RZ,B
Add Store C Store R3,C Add R3,R1,R2
Pop C Store R3,C
CS2410: Computer Architecture University of Pittsburgh

Specifying operands

= “Addressing mode”

= Register direct add R1, R2, R3

= Immediate add R1, R1, #1

= Memory
* Direct (absolute) load R1, @(10000)
* Register indirect load R1, @(R2)
* Memory indirect load R1, @((R2))
» Displacement load R1, @(R2+100)
* |ndexed load R1, @(R2+R3)
* Scaled load R1, @(R2+R3xd+100)
e Auto-increment/decrement load R1, @(R2+/-)

CS2410: Computer Architecture University of Pittsburgh

Usage of addressing modes

TeX 1%
Memory indirect spice 6% (VAX)
gcee l]‘!o
TeX |0%
Scaled spice 16%
gec M 6%
TeX 24%

Register indirect spice

3%
gec N 119

TeX 43%
Immediate spice 17%
gec . 307
TeX 32%
Displacement gpice _ 55%
gec [407
0% 10% 20% 30% 40% 50% 60%

Frequency of the addressing mode

03007 Evter . 48 gt resarent

CS2410: Computer Architecture University of Pittsburgh

Endian-ness and data alignment

= Big endian vs. little endian
 Defines byte ordering inside a larger data type stored in memory

(MsB) (LSB)

war [0f1]2]3]a]s5]6]7]

win |7]6]s5]al3]2]1]0o]

= Alignment
» Data Ais aligned if (addr(A) % sizeof(A) == 0) is true

* What is the implication on hardware implementation (esp. memory
system)?

CS2410: Computer Architecture University of Pittsburgh

Displacement size

(Alpha)

Integer average

30%

25%
Percentage of A
displacemant 20%

Flaating-point average

0 1 2 3 4 5 [7 8 9 10 11 12 13 14 15
Number of bits of displacement

©2007 Eluvier, inc. All ights resaresd

CS2410: Computer Architecture University of Pittsburgh

Immediate size

(VAX)

Floating-point average

Parcentage of
mmadiates
Integer average
o 1 2 3 4 5 6 7 B8 a8 10 n 12 13 14 15
Number of bits needed for immediate
©2007 Elviar, Ine. Al rights resarved
€S2410: Computer Architecture University of Pittsburgh

Operations

= Arithmetic

* add, sub, mul, div, ...
= Logical

* and, or, xor, not, ...
= Shift

* shift-left, shift-right, shift-right-arithmetic, ...
= Memory access

* load, store, prefetch, ...
= Control

* branches, jumps, procedure call/return, ...
= System-related

* trap, break, ...

CS2410: Computer Architecture University of Pittsburgh

Frequent operations

Integer average

Rank 80x86 instruction (% total executed)
1 load 22%
2 conditional branch 20%
3 compare 16%
4 store 12%
5 add 8%
(i and 6%
i sub 5%
8 move register-register 4%
9 call 1%
10 return 1%

‘Total 96%
T :

C€S2410: Computer Architecture University of Pittsburgh

Control flow instructions

8%

Call/return M Integer average

B Floating-point average

Jump
82%
Conditional branch 75%
' 1 1 i
0% 25% 50% 75% 100%
Frequency of branch instructions
€ 2007 Emeviar, e Al gt reuarved
CS2410: Computer Architecture University of Pittsburgh

Operands of control flow inst.

= Target description
 Instruction with an immediate value
+ PC-relative or absolute
* In register
« Typically absolute

= Condition description
» Condition bit (zero, carry, overflow, ...)
+ sub R1, R2, R3; bz LABEL
* Condition register
. cmp R1, R2, R3; bgtz R1, LABEL
* Compare-and-branch
+ bgtR1, R2, LABEL

€S2410: Computer Architecture

University of Pittsburgh

Branch distance

Integar
Percentage average
of distance

Floating-point average

Bits of branch displacement
© 2007 Eisevier, inc. Allrights reserved.

CS2410: Computer Architecture

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

University of Pittsburgh

Comparison types

Mot equal

B Integer average

E Floating-point average

Equal

Greater than or equal

Greater than

Less than or equal

Less than

0% 10% 20% 30% 40% 50%

Frequency of comparison types in branches
€007 D, . 4 g e

C€S2410: Computer Architecture

University of Pittsburgh

Instruction format

[Operation and | Address Address . » o | Address Addrass
no. of operands | specifier 1 field 1 specifier n field n
{a) Variable (e.g., Intel B0x86, VAX)
Operation Address Address Address
field 1 field 2 field 3

{b) Fixed (e.g., Alpha, ARM, MIPS, PowerPC, SPARC, SuperH)

Operation Address Address
specifier field
Op d
specifier 1 specifier 2 field
Operation Addi Add ddi
specifier field 1 field 2

(c) Hybrid (e.g., IBM 360/370, MIPS16, Thumb, TI TMS320C54x)

3007 Eiumer o 4 e et

CS2410: Computer Architecture

How to help compiler writers

= At least 16 GPRs

= Provide regularity
* Orthogonality
* No restrictions on register usage

= Provide primitives, not solutions
* e.g., HLL-like operations

= Simplify trade-offs in alternatives

= Provide instructions that bind constants

University of Pittsburgh €S2410: Computer Architecture University of Pittsburgh
MIPS example ARM example
= Thirty-two 32-bit GPR . = Sixteen 32-bit GPR =
* RO wired to 0 e B * R14 is link register
* Separate 32/16 SP/DP (single-/double- ‘ m[Sl l * R15isPC W e =
precision) FP registers Fleresailirag s i el bt = . T
T%‘?;’;Ei:.?ﬁ;;%“ﬁ?:ﬁém‘u‘:‘”““’ = Different CPU modes have = = = T = T = 1
- Byte/half/word/dword, SP/DP FP wwessese different register view =1 =
data types g Opoude (s n | shami hm’ . - " " v |
RngFeamvmgsInr.lLUDpormw: rd - s funct 1t " Immedlate and . - :' — - o~
)) riorsthgeoeryinbroe el it displacement addressing = : — e
= Immediate and displacement Pra—— modes T N
. 6 26 i 3 - Py, mi
addressing modes o Co—— o N T T e
o _ _ Pt = “Thumb” mode supports =T —=f—=f =f={ = { =
= 32-bit fixed instruction encoding 16-bit instruction encoding = crrimmm e
CS2410: Computer Architecture University of Pittsburgh C€S2410: Computer Architecture

University of Pittsburgh

ARM example

Dt processing immedists uht

o Colatitnst ARUTENL
See Figuew 33

Dt processing regisier shil 2]
Micabma nabusony
Sen Figum 33

Multiplas, axvs badutoes
Sen Figuee 33

Dl processing emedians (7]

Uratubied insteucson (]

Morve immedinie |0 statis regaier |

Loadvions immdists ofes

Load siore regisier sfiset

Urtabined rutneson

Undwhond Patmacton T |11 1 0

Lt cutple

Ul inatrucson j4) |1 1 1 11

edff] [0 0 0

("

it ot

walo| mn

candt] [0 0 8[t 0 wafofs xnxmnmnnannanufofseauf
ot 1] (000 An wl | Ry [ojme 1| Re
cond]t] [0 0 81 " srxa o nfofs s
cndft] 000w » s av s nenmwwsnunaftfesn
wdfl] (00 1| opcede (5| Rn] l,n. oo
et [1] |0 0 1|t 0|xjo ofx . se R TEEEET R RS x|
=0 <'xm-l et
#a -
RAd wmn:|.m.1| R
..........,.i-l....:
reguter it

Branch st branch it ek | eond{1] (1 0 1 || 240t ltasd
"“;'.'.?.a'i?’-‘n'?'u‘u?ﬂ.‘.’". v afvo] et et
Copracassor loadivtors and dotle | conafs |t 1 0 [Plufn W #in chn | op e Bt st
Coprcmtsnt duts processing | cond (5] |1 1 1 0 epsdet | CRA cR | o Mn.‘!"l =
Coprocmsacs registes trarmbers | cond |5 1 1 1 0 jopcodet|L| €A R B ouw-.|| A
Sofmun itargt | cona 1] o i
TPt OISR PR FRFRFE P ————

CS2410: Computer Architecture

University of Pittsburgh

ARM example, cont’d

The Condition Field

Ell 28 27 o

e | |
=

Condition Field

0000 = EQ (equal) - Zset
0001 = ME (notequal) - Zclear
0010 = CS (unsigned higher or same) - C set

0011 = CC (unsigned lower) = Cclesr

0100 = M (negative) - Msat

0101 = PL (positive or zero) - M clear

01 = VS joverfiow) = Vst

0111 = VT (nooverflaw) = V clear

1000 = HI (unsigned higher) C sat and Z clear
1001 = LS (unsigned icwer or same) C ciear or Z sa!

N setand V set, or N clear and V clear

N set and V clear, or N clear and /' set

2 clear, and either N set and VVset, or N clear and ' clear
Z set, or N set and \ clear, or N clear and 'V sat

always

never

1010 = GE ({greater or equal)
1011 = LT (less than)

1100 = GT (greater than)

1101 = LE (less than or equal)
101 = AL

1M1= NV

€S2410: Computer Architecture University of Pittsburgh

ARM example

Code Size

CS2410: Computer Architecture

DOARM
B Thumb-2
OThumb

Performance

TARM
B Thumb-2
0 Thumb

(Phelan, '03)

University of Pittsburgh

Summary

= Instruction set design requires understanding of
* Application
* Roadmap
* Properties affecting hardware implementation
* Properties affecting software design (e.g., application, compiler, ...)

= Binary compatibility has been a key market driver
* Legacy binaries

= Dynamic binary translation technology may weaken the
dependency

CS2410: Computer Architecture University of Pittsburgh

