CS2410: Computer Architecture

Instruction set architecture
principles and examples

Sangyeun Cho

Computer Science Department

University of Pittsburgh

C to binary to electrical signals

swap:

muli $2, $5, 4
add $2, $4, $2
Iw $15, 0($2)
w $16, 4($2)
sw $16, 0($2)
swW $15, 4($2)
ir $31

Control signals

CS2410: Computer Architecture

void swap(int v[], int k)

{
int temp;
temp = v[k];
vik] = v[k+1];
vik+1] = temp;

00000000101000010...
00000000000110000...
10001100011000100...
10001100111100100...
10101100111100100...
10101100011000100...
00000011111000000...

University of Pittsburgh

ISA?

= ISA components:

* Data types supported (e.g., bytes, half words, words—signed, unsigned)

* Registers as a storage of data or information
+ General registers: e.g., RO~R7

« Special registers: e.g., PSR (processor status register), return address from exception, ...

* Processor modes
- User mode, privileged mode, ...
* Register view in different modes
* Instruction definitions
+ Basic semantics: e.g., add, multiply
« Exception behaviors: e.g., load — misaligned access, TLB miss, ...
+ Some instructions may behave differently in different modes

. Some instructions are not available in user mode (e.g., privileged instructions)

= ABI (application binary interface)
e #I[ISA

* Defines low-level binary interface between an application and the OS

« Calling convention
- System call mechanism
« Binary format, ...

CS2410: Computer Architecture

University of Pittsburgh

ISA design considerations

= Target application
* General-purpose processor
* Application-specific processor

= Roadmap

= Properties generally considered desirable
* Completeness
* Orthogonality
* Regularity and simplicity
» Compactness—code size

* Ease of programming

* Ease of implementation
e Ease of extension

CS2410: Computer Architecture

University of Pittsburgh

Machine instructions

= Operation — “what” to do?
* How many operations?
* What kind of operations?
. Early processors omitted “multiply”
+ Floating-point operations were also absent
= Operands — what do we operate on?
* How many operands?
* Where are they stored?
* How to specify?
= Format
* Fixed N byte or variable size
* What are necessary subfields?
* How are subfields laid out?

CS2410: Computer Architecture University of Pittsburgh

Operand location

» Stack

* Implicit — use data on the top of the stack

Accumulator
* Implicit — there is one accumulator

Register

Memory

CS2410: Computer Architecture University of Pittsburgh

Operand location

(a) Stack {b) Accumulator (c) Register-memory {d) Register-registerioad-store

|
Processor

ros-L]

k&

Memory

©2007 Elnvier, inc. Al rights reserved.

C€S2410: Computer Architecture University of Pittsburgh

Number of operands

Stack

e 0 address add tos « tos + next

Accumulator
e 1 address add A acc « acc + meml[A]

Register/memory
e 2 addresses add AB A«—A+B
e 3 addresses add ABC A«<B+C

Load store architectures disallow operation and memory
access in a single instruction

CS2410: Computer Architecture University of Pittsburgh

Sample code sequence

C=A+8B
Register
Stack Accumulator (register-memory) Register (load-store)
Push A Load A Load RI,A Load RI1,A
Push B Add B Add R3,RI1,B Load R2,B
Add Store C Store R3,C Add R3,R1,R2
Pop C Store R3,C
CS2410: Computer Architecture University of Pittsburgh

Specifying operands

= "“Addressing mode”

= Register direct
= Immediate

= Memory
* Direct (absolute)
* Register indirect
* Memory indirect
* Displacement
* Indexed
e Scaled
* Auto-increment/decrement

CS2410: Computer Architecture

add R1, R2, R3
add R1, R1, #1

load R1, @(10000)

load R1, @(R2)

load R1, @((R2))

load R1, @(R2+100)

load R1, @(R2+R3)

load R1, @(R2+R3xd+100)
load R1, @(R2+/-)

University of Pittsburgh

Usage of addressing modes

TeX 1%

Memory indirect spice 6% (VAX)
gee | 1%
TeX |0%
Scaled spice 16%
gcc M 6%
TeX 24%

Register indirect spice

3%
gec N 11%

TeX 43%
Immediate spice 17%
o/
gec [3o
TeX 32%
Displacement gpjce 55%
gec [<0°:
0% 10% 20% 30% 40% 50% 60%
Frequency of the addressing mode
1©2007 Eluaier, inc. All rights reserved.
CS2410: Computer Architecture University of Pittsburgh

Endian-ness and data alignment

= Big endian vs. little endian
* Defines byte ordering inside a larger data type stored in memory

(MsB) (LsB)
way [0]1]2]3]a]s5]6]7]

@ [7]6]5]a]3]2]1]0]

= Alignment
* Data A is aligned if (addr(A) % sizeof(A) == 0) is true
* What is the implication on hardware implementation (esp. memory
system)?

CS2410: Computer Architecture University of Pittsburgh

Displacement size

40%
L

(Alpha)

35%

Integer average

30%

25%

Percentage of
displacement 20%

Floating-point average

15%

10%

o L
-]

" n L I " I H

0% s
c 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of bits of displacement
1©2007 Elsevier, Inc. Al rights reserved.

C€S2410: Computer Architecture University of Pittsburgh

Immediate size

45%

40% |
(VAX)
35%
Floating-point average
30%

Percentage of
immediates 20% N

Integer average

10%

0% L L 1 L

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

Number of bits needed for immediate
1©2007 Elsevier, Inc. All rights reserved.

CS2410: Computer Architecture University of Pittsburgh

Operations

Arithmetic

e add, sub, mul, div, .

= Logical
* and, or, xor, not, ...

= Shift

* shift-left, shift-right, shift-right-arithmetic, ...

= Memory access

* load, store, prefetch, ...

= Control

* branches, jumps, procedure call/return, ...

= System-related
* trap, break, ...

CS2410: Computer Architecture

University of Pittsburgh

Frequent operations

Integer average

Rank 80x86 instruction (% total executed)
1 load 22%
2 conditional branch 20%
3 compare 16%
4 store 12%
5 add 8%
6 and 6%
7 sub 5%
8 move register-register 4%
9 call 1%
10 return 1%

Total 96%
-

CS2410: Computer Architecture

University of Pittsburgh

Control flow instructions

B Floating-point average
B Integer average

8%

Call/return

Jump

82%
Conditional branch 75%

0% 25% 50% 75% 100%

Frequency of branch instructions

1€ 2007 Exsevier, Inc. All rights resarved.

C€S2410: Computer Architecture University of Pittsburgh

Operands of control flow inst.

= Target description
* Instruction with an immediate value
+ PC-relative or absolute
* In register
+ Typically absolute

= Condition description
» Condition bit (zero, carry, overflow, ...)
+ sub R1, R2, R3; bz LABEL
* Condition register
. cmp R1, R2, R3; bgtz R1, LABEL
* Compare-and-branch
+ bgtR1, R2, LABEL

CS2410: Computer Architecture University of Pittsburgh

Branch distance

30%
25% |

20%
Integer
Percentage ” average
of distance 15%
Floating-point average

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Bits of branch displacement
1©2007 Elsevier, Inc. All rights reserved

C€S2410: Computer Architecture University of Pittsburgh

Comparison types

sol"‘ o
2%

Not equal
B Floating-point average

B Integer average

16%
18%

Equal

00."‘0
Greater than or equal _ 11%

0%

Greater than 0%

Less than or equal

Less than 35%
0% 10% 20% 30% 40% 50%
Frequency of comparison types in branches
€ 2007 Elavier, . Al gt riarves

CS2410: Computer Architecture University of Pittsburgh

Instruction format

- Operation and ' Address Address o o o | Address | Adaress
no. of operands | specifier 1 field 1 specifier n field n
(a) Variable (e.g., Intel 80x86, VAX)
Operation Address Address Address
field 1 field 2 field 3
(b) Fixed (e.g., Alpha, ARM, MIPS, PowerPC, SPARC, SuperH)
Operation Address Address
specifier field
Operation Address Address Address
specifier 1 specifier 2 field
Operation Address Address Address
specifier field 1 field 2
(c) Hybrid (e.g., IBM 360/370, MIPS16, Thumb, TI TMS320C54x)
2007 Exvies, Inc. All rights reserved.
CS2410: Computer Architecture University of Pittsburgh

How to help compiler writers

= At least 16 GPRs

= Provide regularity
* Orthogonality
* No restrictions on register usage

= Provide primitives, not solutions
* e.g., HLL-like operations

= Simplify trade-offs in alternatives

= Provide instructions that bind constants

CS2410: Computer Architecture

University of Pittsburgh

MIPS example

= Thirty-two 32-bit GPR S
* RO wired to 0 o S y
* Separate 32/16 SP/DP (single-/double- T a4
precision) FP registers G wors. Al immediaes (1~ 1 0pmedite)

Conditional branch instructions (rs is register, rd unused)
Jump register, jump and link register
{rd = 0, rs = destination, immediate = 0)

= Byte/half/word/dword, SP/DP FP ameinsicion

6 5 5 5 5 6

data types T U N |

Register-register ALU operations: rd - rs funct it
Function encodes the data path operation: Add, Sub, . .
Read/write special registers and moves

= Immediate and displacement Sype insiuction
.] 26
addressing modes

Opcode Offset added to PC

Jump and jump and link
Trap and return from exception

= 32-bit fixed instruction encoding

CS2410: Computer Architecture University of Pittsburgh

ARM example

Sixteen 32-bit GPR

Modes
* R14 is link register o
« R15is PC
= Different CPU modes have [= O I I T
different register view - T T I z
= Immediate and . Tt
displacement addressing = - [:
m O d eS ::: :‘- B n::; R: !I':‘R-‘:\l Jn'x
= N T T (N
= “Thumb” mode supports =T —=1f=f =]=[= | =

16-bit instruction encoding . e oer s iwosmm e

Deven replaced by an Atematve register specric 10 e ecepeon mode

CS2410: Computer Architecture University of Pittsburgh

ARM example

Data processing immedate shift
Mis cellansous instructions:

Ses Figure 3-3

Duata processing register shift (2]

Miscellaneous instructions:
Figure 3.3

Multiplies, exirs oadstores:
See Figure 3-2

Data processing immedisie [2]
Undefined instruction (3]

Move immediate 1o stalus register
Load'stane mmediate offset
Load'store register offset
Undefined instrucion

Undefined instruction [4,7]
Load/stare multgle

Undafined instruction [4]

Branch and branch with Ink

Branch and branch with Ink
and change o Thumb (4]

Coprocassor load' stoe and double
register transfers [6]

Coprocessor data processing
Coprocessor register trans fors

Software intomupt

Undefined instruction [4]

CS2410: Computer Architecture

31363928272 IEIAIIITNIQIN VR ITIMNEILIININNIG S B T 4 & 4 3 T Y @
cond[1] |0 O 0| cpeode (S| Rn Rd [uunamnllanm ol Rm
cond[f] [0 O 0|1 0 x x|0|x x x x x X ¥ x X X x ¥ X x x[0|x x x %
cond[1] [0 0 0| opeode |S| Rn ’ Rd ’ Rs |o|shit|t| Rm
cond1] [0 0 0|1 0 x x[0|x x x x x x x x x x x x|0|x x[1]x x x x
cond[1] [0 O Ofx x x x % x % X ¥ X X ¥ ¥ ¥ ¥ x |1/ x(7|x x x X
cond [1] [0 0 1| opcode IS Rn [Fd [role immedale
cond [1] |0 0 TO(x]0 Ofx x x X x X X X X X X X X XXX XXXX
cond[1] |0 O 1 0jR|1 0 Mk 580 ratate [immedate
cond[1] [0 1 O|F|U|B L Rn Rd imvm ediale

cond 1] |0 1 1|P|UJBW]|L Rn Rd |JI||nimurl‘|'|JIl|] Rm
cond[f] [0 1 1|x x x x X X X X X X XXX XX KK NXN|T|xxHX
I'.‘.'Olrl!K(h!!lx!x!!!lxl(l(xxxalx
cond [1] !UUP|U|S‘W|LI Rn I regeier st

T1 11 00)x x x X XX XX XXKXXXXXNXKXXKXKEKHX
cond 1] (1 0 1]L 24-bit offset

11111 01H 24-bit offset

cond [§ |1 |0PU|N|W||. Rn CRd cp_num B-bit offsot
cond[B] [1 1 1 0] opoodet CRn CRd cp_num fopcoded (0 CRm
cond [|1 1 1 nawodulll. CRn Rd p_num ppcodel | 1 CRm
wond [1] LA swi number

11 1111 1% xx x XXX X XXX XXX AXXXTXX XXX X

University of Pittsburgh

ARM example, cont'd

The Condition Field

31 28 27

cond

'—l—'— Condition Field

0000 = EQ (equal) - Zset

0001 = NE (notequal) - Zclear

0010 = CS (unsigned higher or same) - Cset

0011 = CC (unsigned lower) - Cclear

0100 = MI (negative) - Nset

0101 = PL (positive or zero) - Nclear

0110 = VS (overflow) - Vet

0111 = VC (no overflow) - \ clear

1000 = HI (unsigned higher) - Csetand Z clear

1001 = LS (unsigned lower or same) - Cclearor Z set

1010 = GE (greater or equal) - Msetand V set, or N clear and V clear

1011 = LT (less than) - Msetand V clear, or N clear and V set

1100 = GT (greater than) - Zclear, and either N set and Vset, or N clear and V clear
1101 = LE (less than or equal) - Zset, or N set and V clear. or N clear and V set
1101 = AL - always

M= NY - never

CS2410: Computer Architecture

University of Pittsburgh

ARM example

Code Size Performance
1007
804"
604" DARM 0 ARM
v B Thumb-2 B Thumb-2
40+
O Thumb OThumb
20"
o.
(Phelan, '03)
CS2410: Computer Architecture University of Pittsburgh

= Instruction set design requires understanding of
* Application
* Roadmap
* Properties affecting hardware implementation
* Properties affecting software design (e.g., application, compiler, ...)

= Binary compatibility has been a key market driver
* Legacy binaries

= Dynamic binary translation technology may weaken the
dependency

CS2410: Computer Architecture University of Pittsburgh

