
CS2410: Computer Architecture

Instruction Level Parallelism

Sangyeun Cho

Computer Science Department
University of Pittsburgh

CS2410: Computer Architecture University of Pittsburgh

What is instruction level parallelism?

 Execute independent instructions in parallel
• Provide more hardware function units (e.g., adders, cache ports)
• Detect instructions that can be executed in parallel (in hardware or

software)
• Schedule instructions to multiple function units (in hardware or

software)

 Goal is to improve instruction throughput

 How does it differ from general parallel processing?
 How does it differ from pipelining?

• Ideal CPI of single pipeline is 1
• W/ ILP we want CPI < 1 (or IPC > 1)

CS2410: Computer Architecture University of Pittsburgh

Key questions

 How do we find parallel instructions?
• Static, compile-time vs. dynamic, run-time
• Data dependence and control dependence place high bars

 What is the role of ISA for ILP packaging?
• VLIW approach vs. superscalar approach
• EPIC approach (e.g., Intel IA64)

 How can we exploit ILP at run time?
• Minimal hardware support (w/ compiler support)
• Dynamic OOO (out-of-order) execution support

CS2410: Computer Architecture University of Pittsburgh

Data dependence

 Instructions consume values (operands) created by previous
instructions

 Given a sequence of instructions to execute, form a directed
graph using producer-consumer relationships (not
instruction order in the program)
• Nodes are instructions
• Edges represent dependences, possibly labeled with related

information such as latency, etc.

add r1, r2, r3
mul r4, r1, r5

CS2410: Computer Architecture University of Pittsburgh

Data dependence

 What is the minimum execution time, given unlimited resources?

 Other questions
• Can we have a directed cycle?
• What is the max. # of instructions that can be executed in parallel?
• How do we map instructions to (limited) resources? In what order?

2

3

1

1

1

2

2

1

1

2
total 7 cycles

CS2410: Computer Architecture University of Pittsburgh

List scheduling (example impl.)

 Common compiler instruction scheduling algorithm

 Procedure
• Build DPG (data precedence graph)
• Assign priorities to nodes
• Perform scheduling

Start from cycle 0, schedule “ready” instructions
When there are multiple ready instructions, choose the one w/ highest
priority

CS2410: Computer Architecture University of Pittsburgh

List scheduling (example impl.)

(Cooper et al. ’98)

CS2410: Computer Architecture University of Pittsburgh

Name dependence

 Data dependence is “true” dependence
• The consumer instruction can’t be scheduled before the producer one
• “Read-after-write”

 Dependences may be caused by the name of the storage
used in the instructions, not by the producer-consumer
relationship
• These are “false” dependences

 Anti dependence (“write-after-read”)
 Output dependence (“write-after-write”)

add r1, r2, r3
mul r2, r4, r5

add r2, r3, r4
…
mul r2, r5, r6

CS2410: Computer Architecture University of Pittsburgh

Name dependence

 Name dependences may be removed if we have plenty of storage
(i.e., many registers)

 In fact, some compilers first assume that there are unlimited
registers
• You can dump GCC internal representations (before register allocation) to

confirm this
• Compiler maps such “virtual” registers to “architected” registers
• Compiler may generate code to store temporary values to memory when

there are not enough registers

 Hardware can do the opposite – mapping architected registers
(“virtual”) to some physical register – to remove name
dependences register renaming

 Can we rename memory?

CS2410: Computer Architecture University of Pittsburgh

Control dependence

 It determines (limits) the ordering of an instruction i with
respect to a branch instruction so that the instruction i is
executed in correct program order and only when it should
be

 Why are control dependences barriers for extracting more
parallelism and performance?
• Pipelined processor
• Compiler scheduling

CS2410: Computer Architecture University of Pittsburgh

Control flow graph (CFG)

 Nodes: basic blocks
 Edges: possible control changes

 How can you construct CFG?

if (a<b)
k=50;

else
k = j;

for (sum=0,i=0;i < k; i++) {
sum+=a[i];

}

(a<b)?

k = j;k=50;

i=0;
sum=0;
(i>=k)?

…

sum=sum+a[i];
i=i+1;
(i==k)?

yes no

yes

no

yes

no

CS2410: Computer Architecture University of Pittsburgh

Static vs. dynamic scheduling

 Static scheduling
• Schedule instructions at compiler time to get the best execution time

 Dynamic scheduling
• Hardware changes instruction execution sequence in order to

minimize execution time
• Dependences must be honored
• For the best result, false dependences must be removed
• For the best result, control dependences must be tackled

 Implementing precise exception is important

CS2410: Computer Architecture University of Pittsburgh

Dynamic scheduling

 Components
• Check for dependences “do we have ready instructions?”
• Select ready instructions and map them to multiple function units
• The procedure is similar to find parallel instructions from DPG

 Instruction window
• When we look for parallel instructions, we want to consider many

instructions (in “instruction window”) for the best result
• Branches hinder forming a large, accurate window

 We will examine two hardware algorithms: scoreboarding
and Tomasulo’s algorithm

CS2410: Computer Architecture University of Pittsburgh

CDC6600 scoreboard

 A dynamic scheduling method
• A centralized control structure
• Keeps track of each instruction’s progress

 Instructions are allowed to proceed when resources are
available and dependences are satisfied

 Out-of-order execution/completion of instructions

CS2410: Computer Architecture University of Pittsburgh

Basic structure

CS2410: Computer Architecture University of Pittsburgh

Tackling hazards

 Out-of-order execution of instructions may cause WAR and
WAW hazards
• They weren’t interesting in in-order pipeline we examined register

read or write step in an earlier instruction is always before the write
step of a later instruction

 Strategy
• WAR

Stall write-back until all previous instructions read operands

• WAW
Do not issue an instruction if there is another instruction that intends to
write to the same register

CS2410: Computer Architecture University of Pittsburgh

Scoreboard control

 Issue (ID1)
• Check for resource availability
• Check for WAW

 Read operands (ID2)
• Check for RAW (true dependency)

If no pending instructions will write to the same register, operands are fetched
from the register file
Otherwise stall until operands are ready

• Operands always come from register file no forwarding

 Execution (EX)
• FU starts execution on operands
• When result is ready, FU notifies the scoreboard

 Write result (WB)
• Check for WAR

Stall the completing instruction if there is dependency

CS2410: Computer Architecture University of Pittsburgh

Scoreboard data structures

 Instruction status: which of the 4 steps the instruction is in

 FU status: indicates the state of FU; 9 fields
• Busy: is the FU busy?
• Op: operation to perform (e.g., add or sub)
• Fi: destination register
• Fj, Fk: source registers
• Qj, Qk: FU producing Fj and Fk
• Rj, Rk: flags indicating if the associated operand has been read

 Register result status: which FU will generate a value to
update this register?

CS2410: Computer Architecture University of Pittsburgh

Scoreboard example

CS2410: Computer Architecture University of Pittsburgh

Scoreboard example

CS2410: Computer Architecture University of Pittsburgh

Scoreboard example

CS2410: Computer Architecture University of Pittsburgh

Scoreboard limitations

 Small # of instructions available for parallel execution
• Basic block in CDC6600

 Scoreboard size and organization (i.e., complexity)
• ~instruction window
• Centralized structure, not scalable

 Name dependences
• There are WAR and WAW stalls

CS2410: Computer Architecture University of Pittsburgh

Tomasulo’s algorithm

 A dynamic scheduling algorithm

 Invented for IBM 360/91

 Motivation
• High-performance FP without special compiler
• Only 4 FP (architected) registers
• Long memory and FP latencies

CS2410: Computer Architecture University of Pittsburgh

Tomasulo’s algorithm

 Register renaming
• To overcome WAR and WAW (name dependences)
• Provided by reservation stations

 Reservation stations (RS)
• Operands are fetched in RS as they become ready (no restriction on

their order)
• Hazard detection and execution control are distributed
• Results are passed directly to FUs from RS through common data bus

(CDB)

CS2410: Computer Architecture University of Pittsburgh

Tomasulo’s algorithm: hardware

CS2410: Computer Architecture University of Pittsburgh

Tomasulo’s algorithm steps

 Issue
• If there is an empty RS, get the next instruction from instruction queue
• Fetch operands from register file or mark their producer FUs

 Execute
• If operands become ready, the instruction can be executed in the FU
• No unresolved branch allowed (this condition will be relaxed later)

 Write result
• When result is obtained, write it on CDB
• Stores write their data to memory

 Tagging data and objects
• To recognize data of interest, each RS and load buffer is named
• When a result is generated, it is launched on CDB with its tag, after the

name of RS
• Other objects snoop on CDB and catch the result if it is what they’ve

waited for

CS2410: Computer Architecture University of Pittsburgh

Tomasulo’s alg.: data structures

 Each RS has
• Op: operation to perform
• Qj, Qk: RS’s to produce corresponding source operand; “zero”

indicates that source operand is available in Vj or Vk
• Vj, Vk: actual value of source operands
• A: information for memory address calculation
• Busy: whether RS and FU are busy or not

 Each register has
• Qi: name of RS to produce the value to be written to this register

CS2410: Computer Architecture University of Pittsburgh

Tomasulo’s algorithm: example

CS2410: Computer Architecture University of Pittsburgh

L.D F6, 32(R2)
L.D F2, 45(R3)
MUL.D F0, F2, F4
SUB.D F8, F2, F6
DIV.D F10, F0, F6
ADD.D F6, F8, F2 F0

F2
F4
F6
F8
F10

Tomasulo’s algorithm: example

CS2410: Computer Architecture University of Pittsburgh

Tomasulo’s algorithm: example
L.D F6, 32(R2)
L.D F2, 45(R3)
MUL.D F0, F2, F4
SUB.D F8, F2, F6
DIV.D F10, F0, F6
ADD.D F6, F8, F2 F0

F2
F4
F6
F8
F10

LD1

CS2410: Computer Architecture University of Pittsburgh

L.D F6, 32(R2)
L.D F2, 45(R3)
MUL.D F0, F2, F4
SUB.D F8, F2, F6
DIV.D F10, F0, F6
ADD.D F6, F8, F2 F0

F2
F4
F6
F8
F10

LD1

LD2

Tomasulo’s algorithm: example

CS2410: Computer Architecture University of Pittsburgh

L.D F6, 32(R2)
L.D F2, 45(R3)
MUL.D F0, F2, F4
SUB.D F8, F2, F6
DIV.D F10, F0, F6
ADD.D F6, F8, F2 F0

F2
F4
F6
F8
F10

LD1

LD2

LD2 V

MUL1

Tomasulo’s algorithm: example

CS2410: Computer Architecture University of Pittsburgh

L.D F6, 32(R2)
L.D F2, 45(R3)
MUL.D F0, F2, F4
SUB.D F8, F2, F6
DIV.D F10, F0, F6
ADD.D F6, F8, F2 F0

F2
F4
F6
F8
F10

LD1

LD2

LD2 VLD2 V

MUL1

ADD1

LD1 value broadcast

Tomasulo’s algorithm: example

CS2410: Computer Architecture University of Pittsburgh

L.D F6, 32(R2)
L.D F2, 45(R3)
MUL.D F0, F2, F4
SUB.D F8, F2, F6
DIV.D F10, F0, F6
ADD.D F6, F8, F2 F0

F2
F4
F6
F8
F10

LD2

LD2 VLD2 V

MUL1

ADD1
MUL2

MUL1 V

Tomasulo’s algorithm: example

CS2410: Computer Architecture University of Pittsburgh

L.D F6, 32(R2)
L.D F2, 45(R3)
MUL.D F0, F2, F4
SUB.D F8, F2, F6
DIV.D F10, F0, F6
ADD.D F6, F8, F2 F0

F2
F4
F6
F8
F10

LD2

LD2 VLD2 V

MUL1

ADD1
MUL2

MUL1 VLD2ADD1

ADD2

Tomasulo’s algorithm: example

CS2410: Computer Architecture University of Pittsburgh

L.D F6, 32(R2)
L.D F2, 45(R3)
MUL.D F0, F2, F4
SUB.D F8, F2, F6
DIV.D F10, F0, F6
ADD.D F6, F8, F2 F0

F2
F4
F6
F8
F10

LD2

LD2 VLD2 V

MUL1

ADD1
MUL2

MUL1 VLD2ADD1

ADD2

LD2 value broadcast

V
V V

Tomasulo’s algorithm: example

CS2410: Computer Architecture University of Pittsburgh

Tomasulo’s algorithm: summary

 Register renaming
• Automatic removal of WAR and WAW hazards

 Common data bus (CDB)
• Broadcasting result (i.e., forwarding)
• Need additional CDB to commit more than one instructions

simultaneously

 Instructions are issued when an RS is free, not FU is free

 W/ dynamic scheduling
• Instructions are executed based on value production & consumption

rather than the sequence recorded in the program

CS2410: Computer Architecture University of Pittsburgh

Across branches

 A loop example (assume no branch prediction)

for (i=0; i< 1000; i++) {
A[i] = B[i] * C[i];
D[i] = E[i] / F[i];

}

for (j=1; j< 1000; j++) {
A[j] = A[j – 1] / C[j];

}

for (k=0; k< 1000; k++) {
Y = Y + A[k] / F[k];

}

CS2410: Computer Architecture University of Pittsburgh

Loop unrolling

for (i=0; i< 1000; i++) {
A[i] = B[i] * C[i];
D[i] = E[i] / F[i];

}

for (i=0; i< 1000; i+=4) {
A[i] = B[i] * C[i];
A[i+1] = B[i+1] * C[i+1];
A[i+2] = B[i+2] * C[i+2];
A[i+3] = B[i+3] * C[i+3];
D[i] = E[i] / F[i];
D[i+1] = E[i+1] / F[i+1];
D[i+2] = E[i+2] / F[i+2];
D[i+3] = E[i+3] / F[i+3];

}

CS2410: Computer Architecture University of Pittsburgh

Impact of branches

 We want to find more “ready” instructions for parallel
execution

 15~20% of all instructions executed are branches
• Difficult to fetch instructions w/o stalls
• Branch penalty (~# of issue width branch resolution latency)

becomes larger

 Uninterrupted instruction fetching
• We need to know what to fetch (from where) every cycle
• Branches should be predicted

CS2410: Computer Architecture University of Pittsburgh

Branch prediction

 What?
• Taken or not taken (direction)
• Target (where to jump to if taken)

 When?
• When I fetch from the current PC

 (Boils down to get “next PC” given “current PC”)

 How?
• This is the topic of several slides
• Let’s assume a processor with a simple single-issue pipeline for

presentation’s sake

CS2410: Computer Architecture University of Pittsburgh

What to predict 1: T/NT

 Let’s first focus on predicting taken (T) or not taken (NT)
 Static prediction

• Associate each branch with a hint
Always taken
Always not taken
(Don’t know)

• Forward not taken, backward taken
• Compiler hint

 Dynamic prediction
• Simple 1-bit predictor

Remembers the last behavior
• 2-bit predictor

Bias added
• Combined

Choose between two predictors

CS2410: Computer Architecture University of Pittsburgh

1-bit predictor

 Remember the last behavior

 How many hits and misses? Misprediction rate?

for (i=0; i< 100; i++) {
A[i] = B[i] * C[i];
D[i] = E[i] / F[i];

}

for (j=0; j<10; j++) {
for (i=0; i< 100; i++) {
A[i] = B[i] * C[i];
D[i] = E[i] / F[i];

}
}

CS2410: Computer Architecture University of Pittsburgh

2-bit predictor

 Requires two consecutive mispredictions to flip direction

CS2410: Computer Architecture University of Pittsburgh

Branch prediction buffer

 Tag-less table to keep 2N 2-bit counters, indexed with
current PC

2-bit countersPC

N bits

indexing

taken/not taken

Branch predictor

CS2410: Computer Architecture University of Pittsburgh

2-bit predictor performance

CS2410: Computer Architecture University of Pittsburgh

Correlating predictor

 Behavior of a branch can be correlated with other (previous)
branches

 Branch history
• N-bit vector keeping the last N branch outcomes (shift register)
• 11001100 = TTNNTTNN (T being the oldest)

 Also called global predictor

if (aa==2)
aa = 0;

if (bb==2)
bb = 0;

if (aa!=bb) {
…

}

CS2410: Computer Architecture University of Pittsburgh

(m,n) predictor

 Consider last m branches
 Choose from 2m BPBs, each has n-bit predictors

CS2410: Computer Architecture University of Pittsburgh

Combining index and history

 Form a single index from PC and GH

2-bit countersPC

N bits

indexing

Global history

Combining
function

CS2410: Computer Architecture University of Pittsburgh

(2,2) predictor performance

CS2410: Computer Architecture University of Pittsburgh

Combined predictor

 Choose between local and global predictors
 Selector (again a predictor)

 Alpha 21264 example
• 4K-entry global predictor (2-bit counters)

Indexed by 12-bit global history

• Hierarchical local predictor
1K 10-bit pattern table
1K-entry 3-bit counters

• Tournament predictor
4K-entry 2-bit counters

CS2410: Computer Architecture University of Pittsburgh

Selector design

X/Y

predictor 1 was right predictor 2 was right

CS2410: Computer Architecture University of Pittsburgh

Local vs. global?

CS2410: Computer Architecture University of Pittsburgh

Combined predictor performance

“Sweet spot”

CS2410: Computer Architecture University of Pittsburgh

What to predict 2 – target

 Remember – the goal of branch prediction is to determine
the next PC (target of fetching) every cycle

 Requirements
• When fetching a branch, we need to predict (simultaneously with

fetching) if it’s going to be taken or not we talked about this
• At the same time, we need to determine the target of the branch if

the branch is predicted taken we are going to talk about this

CS2410: Computer Architecture University of Pittsburgh

Target prediction

 It’s much more difficult to “predict” target
• Taken/Not taken – just two cases
• A 32-bit target has 232 possibilities!

 But taken target remains the same!
• Just remember the last target then…

CS2410: Computer Architecture University of Pittsburgh

Target prediction w/ BTB
BTB = Branch Target Buffer

CS2410: Computer Architecture University of Pittsburgh

Target prediction w/ BTB

 Use “PC” to look up – why PC?
• “Match” means it’s a branch for sure
• All-bit matching needed; why?

 If match and Predicted Taken, use the stored target for the
next PC

 When no match and it’s a branch (detected later)
• Use some other prediction
• Assume it’s not taken

 After processing a branch, update BTB with correct
information

CS2410: Computer Architecture University of Pittsburgh

Branch prediction & pipelining

CS2410: Computer Architecture University of Pittsburgh

BTB performance

 Two bad cases
• A branch is not found in BTB
• Predicted wrongly

 Example: prediction accuracy is 90%, hit rate in the buffer is
90%, 2-cycle penalty, 60% of branches taken
• Prob. (branch in buffer, mispredicted) = 90% 10% = 0.09
• Prob. (branch not in buffer, taken) = 10% 60% = 0.06
• Branch penalty = (0.09 + 0.06) 2 = 0.30 (cycles)

CS2410: Computer Architecture University of Pittsburgh

What about “indirect jumps”?

 Indirect jumps
• Branch target is not unique
• E.g., jr $31

 BTB has a single target PC entry – can’t store multiple targets…
 With multiple targets stored, how do we choose the right target?

 Fortunately, most indirect jumps are for function return

 Return target can be predicted using a stack Return Address
Stack (RAS)
• The basic idea is to keep storing all the return addresses in a Last In First

Out manner

CS2410: Computer Architecture University of Pittsburgh

RAS performance

CS2410: Computer Architecture University of Pittsburgh

A few announcements

 HW #1 (graded) available to pick up
 We have the mid-term exam this Thursday; it will cover

everything discussed until last week (including branch
prediction)

 Regarding remaining homework assignments
• I’ve reduced 10 assignments down to 8
• HW #3 has been posted (due 10/28)

CS2410: Computer Architecture University of Pittsburgh

Performance of branch prediction

 On a hypothetical “64-issue” superscalar processor model
with 2k instruction window

CS2410: Computer Architecture University of Pittsburgh

Speculative execution

 Execute instructions before their control dependences have
been resolved
• Execute instructions based on speculation (i.e., branch prediction)
• If speculation was right, we’ve done more useful work
• If speculation was wrong, we need to cancel the effects that shouldn’t

have been caused

 Hardware speculation extends the idea of dynamic
scheduling

 Issues
• How and where to buffer speculative results?
• How to cancel executed instructions if speculation was wrong?
• How to implement precise exception?

CS2410: Computer Architecture University of Pittsburgh

Tomasulo’s algorithm extended

CS2410: Computer Architecture University of Pittsburgh

Reorder buffer (ROB)

 In Tomasulo’s algorithm, once an instruction writes its result,
any subsequently issued instructions will find result in the
register file

 With speculation, the register file is not updated until the
instruction commits

 Thus, the ROB supplies operands in interval between
completion of instruction execution and instruction commit
• ROB is a source of operands for instructions like RS
• ROB extends architected registers like RS

CS2410: Computer Architecture University of Pittsburgh

ROB entry

 Each entry in the ROB contains four fields:

 Instruction type
• A branch (has no result to go to a register), a store (has a destination

memory address), or a register operation

 Destination
• Register number (for loads and ALU instructions) or memory address

(for stores)

 Value
• Value of instruction result until the instruction commits

 Ready
• Indicates that instruction has completed execution and the value is

ready

CS2410: Computer Architecture University of Pittsburgh

Speculative execution steps

 Issue
• Get an instruction from instruction queue. Allocate RS and ROB entry.
• Send operands from RF or ROB if available.
• Record ROB entry name at RS (for tagging)

 Execute
• If operand is not ready, monitor CDB. Execute when operands are ready

and FU is idle.
 Write result

• When result is ready, write it on CDB (tagged with ROB entry number).
• ROB and awaiting RS’s are updated.

 Commit
• Normal commit: instruction reaching head of ROB with its result – update

RF and remove it from ROB. Update memory if the instruction is store.
• Branch: if the head instruction is a mispredicted branch, remove this

branch and all the following instructions. Execution starts from the correct
successor.

CS2410: Computer Architecture University of Pittsburgh

IPC > 1

 To achieve IPC > 1, all the pipeline stages should support higher
bandwidth
• High bandwidth i-cache and instruction fetch unit
• High bandwidth decoding
• Dynamic scheduling with multiple issue – multiple functional units
• Multiple completion – multiple buses
• Multiple commit – high bandwidth register file

 Smart implementation techniques are needed, not to increase
clock cycle time

 Two approaches
• Superscalar
• VLIW

CS2410: Computer Architecture University of Pittsburgh

Superscalar processor

 A hardware-oriented design approach
• Parallelism uncovered by hardware
• Data dependence graph constructed at run time
• Performance heavily dependent on speculation techniques and

window size

 Binary compatibility easily maintained across processor
generations

 Early superscalar processors executed 1 integer and 1 FP
instructions (e.g., Alpha 21164)

 Modern superscalar processors
• Out-of-order execution/completion
• Simultaneous multi-threading (SMT) built in
• Deeply pipelined

CS2410: Computer Architecture University of Pittsburgh

VLIW: a compiler-oriented approach

 Parallelism detection done at compile time
• Parallel instructions are packed into a long instruction word

Cheaper hardware impl. – no dependence checking between parallel
instructions

• Finding parallelism can be difficult
Frequent empty slots

 Extensive compiler techniques have been developed to find parallel
operations across basic blocks
• Trace scheduling, profile-driven compilation, …
• Code size vs. performance
• Code compatibility

 Recent examples
• Transmeta’s Crusoe
• Intel’s EPIC architecture (IA-64)
• TI DSP processors

CS2410: Computer Architecture University of Pittsburgh

Three flows in a processor

[Lipasti & Shen 1997]

CS2410: Computer Architecture University of Pittsburgh

High-bandwidth i-cache

 I-cache should provide multiple instructions (say N
instructions) per cycle from a given PC

 N instructions can span multiple cache blocks
• Suppose the current PC points to the last instruction in a cache block

 Solutions
• Multi-banked i-cache

e.g., IBM RS6000

• Trace cache
e.g., Intel Pentium4

CS2410: Computer Architecture University of Pittsburgh

Instruction decode/issue

 Need to establish dependence relationship (i.e., data
dependence graph) between multiple instruction in a cycle
• With N instructions in considerations, O(N2) comparisons
• What about previously buffered instructions?

 Need to look for multiple instructions when choosing a
ready instruction to issue

CS2410: Computer Architecture University of Pittsburgh

Multi-ported data cache

 There can be more than one memory accesses per cycle
• Data cache must be multi-ported not to limit performance

 Multi-porting can be expensive
• More area, power, and latency

 Example techniques
• MIPS R10k: 2-port cache with interleaved multi-banking
• Alpha 21164: 2-port cache with duplicated banking
• Alpha 21264: 2-port cache with time-division multiplexing
• Intel Itanium-2: 4-port cache with circuit-level multi-porting

CS2410: Computer Architecture University of Pittsburgh

Limits of ILP

 What is the maximum (theoretical) ILP in programs?

 We need an ideal processor model
• Register renaming with infinite physical registers

Only true dependences matter

• Oracle branch prediction
No control dependences

• Accurate memory address disambiguation
Memory accesses can be done as early as possible, out of order

• Unlimited resources w/ an ideal 1-cycle latency (incl. memory access)

CS2410: Computer Architecture University of Pittsburgh

Optimistic ILP

CS2410: Computer Architecture University of Pittsburgh

Window size

CS2410: Computer Architecture University of Pittsburgh

Impact of branch prediction

64-issue machine w/ 2k-instruction window

CS2410: Computer Architecture University of Pittsburgh

Fewer physical registers

CS2410: Computer Architecture University of Pittsburgh

Imperfect memory disambiguation

64-issue machine w/ 2k-instruction window 256/256 physical registers

CS2410: Computer Architecture University of Pittsburgh

ILP summary

 Fundamental barriers
• Data dependence
• Control dependence

 Instruction scheduling to extract parallelism
• Static (before running your program)
• Dynamic (when you run your program)

 Two dynamic scheduling hardware algorithms
• CDC6600 scoreboarding
• IBM 360/91 Tomasulo’s algorithm

 Branch prediction for control-speculative execution
• Local, global (correlated), combined
• There are many other smart techniques, e.g., using neural network

 Today’s superscalar processors mostly rely heavily on dynamic
scheduling and other hardware techniques for higher
performance; but they do benefit from sophisticated compilers

CS2410: Computer Architecture University of Pittsburgh

ILP summary

 Limits of ILP
• Potential ILP (50?) vs. realizable ILP (2?)

 Limitations in hardware implementation
• Data dependence among registers

Limited # of physical registers
• Data dependence among memory references

Limited static/dynamic memory disambiguation
• Control dependence

Sophisticated branch prediction, speculative execution, predicated execution, …
• Scalability of key structures

Fetch unit, decode unit, execution pipelines, cache ports, …

 Hardware-based OOO vs. VLIW

 There is a diminishing return as we invest more resources to exploit as
much ILP as possible turn to other forms of parallelism, e.g.,
thread-level parallelism

• How do we achieve higher performance from an inherently single-threaded
program?

CS2410: Computer Architecture University of Pittsburgh

Revisiting loop unrolling

for (i=0; i< 1000; i++) {
A[i] = B[i] * C[i];
D[i] = E[i] / F[i];

}

for (i=0; i< 1000; i+=4) {
A[i] = B[i] * C[i];
A[i+1] = B[i+1] * C[i+1];
A[i+2] = B[i+2] * C[i+2];
A[i+3] = B[i+3] * C[i+3];
D[i] = E[i] / F[i];
D[i+1] = E[i+1] / F[i+1];
D[i+2] = E[i+2] / F[i+2];
D[i+3] = E[i+3] / F[i+3];

}

 Positive effects
• Less loop overhead
• Better scheduling in the loop

body
More parallel operations

• Eliminate very small loops
More opportunities for code
motion

 Problems
• Code size increase
• What if the loop count is not

known at compile time?
• What about a while loop?

CS2410: Computer Architecture University of Pittsburgh

Predicated execution

(normal branch code)

C B

D

A
T N

p1 = (cond)
branch p1, TARGET

mov b, 1
jmp JOIN

TARGET:
mov b, 0

A

B

C

B

C

D

A

(predicated code)

A

B

C

if (cond) {
b = 0;

}
else {

b = 1;
}

p1 = (cond)

(!p1) mov b, 1

(p1) mov b, 0

CS2410: Computer Architecture University of Pittsburgh

Function inlining

 Replace a function call instance (“call foo()”) with the actual
function body (“foo()”)
• Similar to loop unrolling in a sense

 Similar benefits to loop unrolling
• Remove function call overhead

Call/return (and possible branch mispredictions)
Argument/return value passing, stack allocation, and associated spill/reload
operations

• Larger block of instructions for scheduling

 Similar problems
• Primarily code size increase

CS2410: Computer Architecture University of Pittsburgh

Trace scheduling

 Trace scheduling divides a procedure into a set of frequently
executed traces (paths)
• Make frequent traces run fast (common case)
• Trace scheduling may make infrequent paths run slower (rare case)

 Three steps
• Select a trace

Frequency information derived statically or from profile data

• Schedule a trace
Aggressively schedule instructions as if there are no branches into and out
of the trace

• Insert fix-up code
Take care of mess

CS2410: Computer Architecture University of Pittsburgh

Trace scheduling

a=log(x);
if(b>0.01){

c=a/b;
}else{

c=0;
}
y=sin(c);

Suppose profile says
that b>0.01
90% of the time

a=log(x);
c=a/b;
y=sin(c);
if(b<=0.01)

go to fixit;

fixit:
c=0;
y=0; // sin(0)

Now we have larger basic block
for our scheduling and optimizations

CS2410: Computer Architecture University of Pittsburgh

Price of fix-up code

 Assume the code for b>0.01
accounts for 80% of the time

 Optimized trace runs 15%
faster

 Fix-up code may cause the
remaining 20% of the time
slower!

 Assume fix-up code is 30%
slower

By Amdahl’s Law:

Speedup = 1/(0.2+0.8*0.85)
= 1.176

17.6% performance improvement!

Speedup = 1/(0.2*1.3+0.8*0.85)
= 1.110

Over 1/3 of the benefit removed!

CS2410: Computer Architecture University of Pittsburgh

Superblock

 Inserting fix-up code for traces can be quite complex,
especially in the presence of many branch outlets and
aggressive code motion

 A superblock is a trace without side entrances; control can
only enter from the top, but it can leave at one or more exit
points

CS2410: Computer Architecture University of Pittsburgh

Superblock formation

Y

D
100

C
10

B
90

E
90

D
0

F
100

Z

1

90 10

900

0
90

10
99

1

Y

D
100

C
10

B
90

E
90

D
0

F
100

Z

1

90
10

900

0
90

10

99

1

CS2410: Computer Architecture University of Pittsburgh

Superblock formation

Y

D
100

C
10

B
90

E
90

D
0

F
100

Z

1

90
10

900

0
90

10

99

1

Y

D
100

C
10

B
90

E
90

D
0

F
90

Z

1

90 10

900

0

90

10

89.1

0.9

F’
10

10

9.9

0.1

Tail duplication

CS2410: Computer Architecture University of Pittsburgh

CSE in Superblock

opA: mul r1,r2,3

opC: mul r3,r2,3

opB: add r2,r2,199

1

1

Original code

opA: mul r1,r2,3

opC: mul r3,r2,3

opB: add r2,r2,199

1

Code after superblock formation

opC’: mul r3,r2,3

opA: mul r1,r2,3

opC: mov r3,r1

opB: add r2,r2,199

1

Code after CSE

opC’: mul r3,r2,3

CS2410: Computer Architecture University of Pittsburgh

Value prediction

 Data dependence places fundamental limitation
• You can’t achieve a shorter latency than the maximum path length in

the data precedence graph of a program

 What about predicting a value before computation (just like
we predict the outcome of a branch)?
• Branch prediction: binary (T or NT)
• Value prediction: 232 or 264

• Is it possible to predict a value?

 With successful value prediction, you may be able to break
the data dependence chains!

CS2410: Computer Architecture University of Pittsburgh

Value prediction

 Speculative prediction of register values
• Values predicted during fetch and decode stages, forwarded to dependent

instructions
• Dependent instructions can be issued and executed immediately
• Before committing instructions, we must verify the predictions; if wrong,

we must restart instructions that used wrong values

Fetch Decode Issue Execute Commit

Predict
Value Verify

if mispredicted

[Lipasti & Shen 1996]

CS2410: Computer Architecture University of Pittsburgh

Classifying speculative execution

Speculative Execution

Control Speculation Data Speculation

Branch Direction Branch Target Data Location Data Value

What can we
speculate on?

