CS2410: Computer Architecture

Instruction Level Parallelism

Sangyeun Cho

Computer Science Department
University of Pittsburgh

What is instruction level parallelism?

= Execute independent instructions in parallel
* Provide more hardware function units (e.g., adders, cache ports)

» Detect instructions that can be executed in parallel (in hardware or
software)

* Schedule instructions to multiple function units (in hardware or
software)

= Goal is to improve instruction throughput

= How does it differ from general parallel processing?

= How does it differ from pipelining?
* Ideal CPI of single pipeline is 1
¢ W/ ILP we want CPI < 1 (or IPC > 1)

CS2410: Computer Architecture University of Pittsburgh

Key questions

= How do we find parallel instructions?
 Static, compile-time vs. dynamic, run-time
» Data dependence and control dependence place high bars

= What is the role of ISA for ILP packaging?
* VLIW approach vs. superscalar approach
* EPIC approach (e.g., Intel 1A64)

= How can we exploit ILP at run time?
* Minimal hardware support (w/ compiler support)
* Dynamic 00O (out-of-order) execution support

CS2410: Computer Architecture University of Pittsburgh

Data dependence

= Instructions consume values (operands) created by previous
instructions

add r1, r2, r3
mul r4, ri, r5

= Given a sequence of instructions to execute, form a directed
graph using producer-consumer relationships (not
instruction order in the program)
* Nodes are instructions

* Edges represent dependences, possibly labeled with related
information such as latency, etc.

CS2410: Computer Architecture University of Pittsburgh

Data dependence

o
2 1

2 ~
./\1
1 2 5 total 7 cycles

1

= What is the minimum execution time, given unlimited resources?

= Other questions
* Can we have a directed cycle?
* What is the max. # of instructions that can be executed in parallel?
* How do we map instructions to (limited) resources? In what order?

CS2410: Computer Architecture University of Pittsburgh

List scheduling (example impl.)

= Common compiler instruction scheduling algorithm

= Procedure
* Build DPG (data precedence graph)
* Assign priorities to nodes
* Perform scheduling

+ Start from cycle 0, schedule “ready” instructions

« When there are multiple ready instructions, choose the one w/ highest
priority

CS2410: Computer Architecture University of Pittsburgh

List scheduling (example impl.)

eyele =0
ready-list = root nodes in DPG
inflight-list = empty list

while (ready-list or inflight-list not empty, and an issue slot is available)

for op = (all nodes in ready-lisl in descending priority order)
if (a functional unit exists for op to start at cyele)
remove op from ready-list and add to mflight-list
add op to schedule at time cyele
if (op has an outgoing anti-edge)
Add all targets of op's anti-edges that are ready to ready-list
endif
endif
endfor
eyele = eyele + 1
for op = (all nodes in inflight-list)
if {op finishes at time cyele)
remove op from inflight-list
check nodes waiting for op in DPG and add to ready-list
if all operands available
endif
endfor
endwhile

(Cooper et al. '98)

CS2410: Computer Architecture University of Pittsburgh

Name dependence

= Data dependence is “true” dependence
* The consumer instruction can’t be scheduled before the producer one
* "Read-after-write”

= Dependences may be caused by the name of the storage
used in the instructions, not by the producer-consumer
relationship
* These are "false” dependences

add r2, r3, r4
add ri, r2, r3
mul r2, r4, r5 mul r2, r5, ré6

= Anti dependence (“write-after-read”) N
= Output dependence (“write-after-write”) —o—

CS2410: Computer Architecture University of Pittsburgh

Name dependence

= Name dependences may be removed if we have plenty of storage
(i.e., many registers)

= In fact, some compilers first assume that there are unlimited
registers

* You can dump GCC internal representations (before register allocation) to
confirm this

* Compiler maps such “virtual” registers to “architected” registers

* Compiler may generate code to store temporary values to memory when
there are not enough registers

= Hardware can do the opposite — mapping architected registers
("virtual”) to some physical register — to remove name
dependences = register renaming

= Can we rename memory?

CS2410: Computer Architecture University of Pittsburgh

Control dependence

= It determines (limits) the ordering of an instruction i with
respect to a branch instruction so that the instruction i is
executed in correct program order and only when it should
be

= Why are control dependences barriers for extracting more
parallelism and performance?
* Pipelined processor
* Compiler scheduling

CS2410: Computer Architecture University of Pittsburgh

Control flow graph (CFG)

(a<b)?
yes no
if (a<b) k=50; k=j;
k=50;
else \ /
k=j; i=0;
for (sum=0,i=0;i < k; i++) {)
sum+ =alil; (i>=k)?
} l
no
. sum=sum-+alil;
= Nodes: basic blocks ves| RS no
i==k)?

= Edges: possible control changes

yes

= How can you construct CFG?

CS2410: Computer Architecture University of Pittsburgh

Static vs. dynamic scheduling

= Static scheduling
* Schedule instructions at compiler time to get the best execution time

= Dynamic scheduling

* Hardware changes instruction execution sequence in order to
minimize execution time

* Dependences must be honored
* For the best result, false dependences must be removed
* For the best result, control dependences must be tackled

= Implementing precise exception is important

CS2410: Computer Architecture University of Pittsburgh

Dynamic scheduling

= Components
* Check for dependences = “do we have ready instructions?”
* Select ready instructions and map them to multiple function units
* The procedure is similar to find parallel instructions from DPG

= Instruction window

* When we look for parallel instructions, we want to consider many
instructions (in “instruction window") for the best result

* Branches hinder forming a large, accurate window

= We will examine two hardware algorithms: scoreboarding
and Tomasulo's algorithm

CS2410: Computer Architecture University of Pittsburgh

CDC6600 scoreboard

= A dynamic scheduling method
* A centralized control structure
» Keeps track of each instruction’s progress

= Instructions are allowed to proceed when resources are
available and dependences are satisfied

= Qut-of-order execution/completion of instructions

CS2410: Computer Architecture University of Pittsburgh

Basic structure

Fegisters Data buses
d FP mul I
. - 1
. '_j FP divide i
FP add
L]
= integer unit
"_;|
- n |
Caontrol! Li Control/
status status

CS2410: Computer Architecture University of Pittsburgh

Tackling hazards

= Qut-of-order execution of instructions may cause WAR and
WAW hazards

* They weren't interesting in in-order pipeline we examined < register
read or write step in an earlier instruction is always before the write
step of a later instruction

= Strategy

* WAR
« Stall write-back until all previous instructions read operands

« WAW

+ Do not issue an instruction if there is another instruction that intends to
write to the same register

CS2410: Computer Architecture University of Pittsburgh

Scoreboard control

= Issue (ID1)

* Check for resource availability
* Check for WAW

= Read operands (ID2)
* Check for RAW (true dependency)

«+ If no pending instructions will write to the same register, operands are fetched
from the register file

« Otherwise stall until operands are ready

* Operands always come from register file = no forwarding

= Execution (EX)
* FU starts execution on operands

* When result is ready, FU notifies the scoreboard

= Write result (WB)
* Check for WAR

«+ Stall the completing instruction if there is dependency

CS2410: Computer Architecture

Scoreboard data structures

= Instruction status: which of the 4 steps the instruction is in

= FU status: indicates the state of FU; 9 fields

* Busy: is the FU busy?

* Op: operation to perform (e.g., add or sub)

* Fi: destination register
* Fj, Fk: source registers

* Qj, Qk: FU producing Fj and Fk
* Rj, Rk: flags indicating if the associated operand has been read

= Register result status: which FU will generate a value to

update this register?

CS2410: Computer Architecture

University of Pittsburgh University of Pittsburgh
Instruction status Instruction status
Instruction Issue Read operands Execution complete Write result Instruction Issue Read d E: Write result
LD F6,34(R2) " v I LD F6,34(R2) i Al f bl
L0 F2.85(83) 7 i 7 Lo F2,a5(R3) v v y i
WL.D FO,F2,F4 ¥ MUL.D FO,F2,F4 I v \
SUB.D_ FB,F6,F2 7 SUB.D FB.F6.F2 v v ¥ i
DIV.D F10,FO,F6] - DIV.D F10,F0,F6 A
AID.D__F6,F8,F2 B ADD.D_FB,F8,F2 v A A
Functional unit status Functional unit status
Name Busy op Fi Fj Fk Qj Qk Rj Rk Name Busy op Fi i Fk Qj Qk Rj Rk
Integer Yes Load R3 No Lllug\:: No
Multl Yes Mult F2 Fd Integer No Yes Multl Yes Mulk FO F2 F4 No No
Mult2 No Muli2 No
Add Yes S P8 (Fo F2 Integer Yes No Add " Yes Add F& F8 F2 No Ho
Divide Yes Div Fio FO Fb Mult] No Yes Divide Yes Div F10 F Fé Multl No Yes
Register result status Register result status
_
Fo F2 Fa 6 F8 F10 F12 F30 o F2 Fa F6 8 F10 F12 F30
- i _— —
FU Multl Integer Add Divide FU Mult 1 Add Divide
——
CS2410: Computer Architecture University of Pittsburgh €S2410: Computer Architecture University of Pittsburgh

Scoreboard example

Instruction status

Instruction Issue Read i I Write result
S — 5 . ——
A A A
L] +
N B N
oIv.o :]U,FU.FE__ v k) L)

ADD.D FA,F8,F2 W - w P Al

Functional unit status

Name Busy op A F Fk Q ak Rj Rk
Integer No 3 z ___
Multl Mo
Mul2 No
Add No
Divide Yes Dv___FlI0 R F6 No Neo

Register result status

(2] F2 F4 F& F8 F1o F12 . F30

FU Divide

CS2410: Computer Architecture University of Pittsburgh

Scoreboard limitations

= Small # of instructions available for parallel execution
* Basic block in CDC6600

= Scoreboard size and organization (i.e., complexity)
e ~instruction window
e Centralized structure, not scalable

= Name dependences
* There are WAR and WAW stalls

CS2410: Computer Architecture University of Pittsburgh

Tomasulo’s algorithm

= A dynamic scheduling algorithm
= Invented for IBM 360/91

= Motivation
* High-performance FP without special compiler
e Only 4 FP (architected) registers
* Long memory and FP latencies

CS2410: Computer Architecture University of Pittsburgh

Tomasulo’s algorithm

= Register renaming
* To overcome WAR and WAW (name dependences)
* Provided by reservation stations

= Reservation stations (RS)

* Operands are fetched in RS as they become ready (no restriction on
their order)

e Hazard detection and execution control are distributed

* Results are passed directly to FUs from RS through common data bus
(CDB)

CS2410: Computer Architecture University of Pittsburgh

Tomasulo’s algorithm: hardware

From instruction wnig

Tnsucacn FP rogisters l

quaue

Load-store
operations
L] Operand
[Addross unt | s S
Store bullers Ll operations buses
Load buffers
: I E Operation bus

T 2
Reservation [T——1——1} §
statons '

v

(7P ripiers)

Common data bus (CDB) §

CS2410: Computer Architecture University of Pittsburgh

Tomasulo’s algorithm steps

= lIssue
* If there is an empty RS, get the next instruction from instruction queue
* Fetch operands from register file or mark their producer FUs
= Execute
* If operands become ready, the instruction can be executed in the FU
* No unresolved branch allowed (this condition will be relaxed later)
= Write result
* When result is obtained, write it on CDB
» Stores write their data to memory
= Tagging data and objects
* To recognize data of interest, each RS and load buffer is named
* When a result is generated, it is launched on CDB with its tag, after the

name of RS
* Other objects snoop on CDB and catch the result if it is what they've
waited for
CS2410: Computer Architecture University of Pittsburgh

Tomasulo’s alg.: data structures

= Each RS has

* Op: operation to perform

* Qj, Qk: RS’s to produce corresponding source operand; “zero”
indicates that source operand is available in Vj or Vk

* Vj, Vk: actual value of source operands
* A:information for memory address calculation
* Busy: whether RS and FU are busy or not

= Each register has
* Qi: name of RS to produce the value to be written to this register

CS2410: Computer Architecture University of Pittsburgh

Tomasulo’s algorithm: example

Instruction status

Instruction lssue Execute Virite Result
L0 _fq34(R2)] 3 [4

— : i & - — Y
MUL.D FOF2.F4 F
SUB.D FB.FE.5E [gL — -
DIV.D F10,FG,F6 i I _
ADD.D F6,FB(F2 il - E

Reservation stations
Name Busy Op v i Q ak A
Losdl o it A - E
Load? yes Cloa> 3 3) 45 + ReglR3]
Addl yes SUB Mem{34 + Regs[R2]] Load? | §
A2 yes ADD) e, T Adl | fea2
Add3 o e
Multl yes MUL Regs[F4)] " ladd B
Mul2 yes DIV Mem([34 + Regs(R2]]_ Multl = E
Register status
Field FO F2 F4 F6 Fg F1o F12 Fo |
Qi Mol Load2)) A2 Addl Mul2 o
C€S2410: Computer Architecture University of Pittsburgh

Tomasulo’s algorithm: example

From instruction unit

L.D F6, 32(R2)
L.D F2, 45(R3)
MUL.D FO, F2, F4
SUB.D F8, F2, F6
DIV.D F10, FO, F6 queue
ADD.D F6, F8, F2

[]
Instruction FP registers l
[]
Load-stare
operations
Floating-point &D:::m
operations
Operation bus

Comman data bus (CDB)

CS2410: Computer Architecture

University of Pittsburgh

Tomasulo’s algorithm: example

From instruction unit

L.D F6, 32(R2)
L.D F2, 45(R3)
MUL.D FO, F2, F4
SUB.D F8, F2, F6
DIV.D F10, FO, F6
ADD.D F6, F8, F2

FP registers l

Floating-point
operations

Operand
buses

Operation bus.

Commaon data bus (CDB)

CS2410: Computer Architecture

University of Pittsburgh

Tomasulo’s algorithm: example

From instruction unit

L.D F6, 32(R2)
L.D F2, 45(R3)
MUL.D FO, F2, F4

SUB.D F8, F2, F6 Instruction) I
DIV.D F10, FO, F6 queue Fp.oguien
ADD.D F6, F8, F2 D2
[)
Load-store E1
operations
Floating-point &D:::m
Store buffers apsiations:
Operation bus

Comman data bus (CDB)

CS2410: Computer Architecture

University of Pittsburgh

Tomasulo’s algorithm: example

From instruction unit

L.D F6, 32(R2)
L.D F2, 45(R3)
MUL.D FO, F2, F4
SUB.D F8, F2, F6
DIV.D F10, FO, F6
ADD.D F6, F8, F2

FP regi
i = MUL1
[] LD2
LD1
—
Floating-point &D:::m
operations

Operation bus.

Data

Commaon data bus (CDB)

CS2410: Computer Architecture

University of Pittsburgh

Tomasulo’s algorithm: example

L.D F6, 32(R2)
L.D F2, 45(R3)
MUL.D FO, F2, F4
SUB.D F8, F2, F6
DIV.D F10, FO, F6
ADD.D F6, F8, F2

From instruction unit

FP registers l

MUL1
LD2

Floating-point
operations

LD1
ROTT

Operand
buses

Operation bus

Comman data bus (CDB)

CS2410: Computer Architecture

LD1 value broadcast

University of Pittsburgh

Tomasulo’s algorithm: example

L.D F6, 32(R2)
L.D F2, 45(R3)
MUL.D FO, F2, F4
SUB.D F8, F2, F6
DIV.D F10, FO, F6
ADD.D F6, F8, F2

From instruction unit

. FP regi l
queue
MUL1
LD2
Load-store iR
operations MUL2
Floating-point &D:::m
operations
Operation bus.
" 2
Reservation 1
stations
FP multipl

Commaon data bus (CDB)

CS2410: Computer Architecture

University of Pittsburgh

Tomasulo’s algorithm: example

L.D F6, 32(R2)
L.D F2, 45(R3)
MUL.D FO, F2, F4
SUB.D F8, F2, F6
DIV.D F10, FO, F6
ADD.D F6, F8, F2

From instruction unit

Instruction
queue

FP registers l

MUL1
LD2

Floating-point
operations

ADD2
ROTT

MUL2
Operand
buses

Operation bus

Data

-

FP multipli

Comman data bus (CDB)

CS2410: Computer Architecture

University of Pittsburgh

Tomasulo’s algorithm: example

L.D F6, 32(R2)
L.D F2, 45(R3)
MUL.D FO, F2, F4
SUB.D F8, F2, F6
DIV.D F10, FO, F6
ADD.D F6, F8, F2

From instruction unit

. FP regi
queue
MUL1
LD2
ADD2
Load-store rhBin
operations | MUL2
Floating-point &D:::m
operations
Operation bus.
N 2
Rlaservatior 1
stations
FP multipli

Commaon data bus (CDB)

CS2410: Computer Architecture

LD2 value broadcast

University of Pittsburgh

Tomasulo’s algorithm: summary

= Register renaming
e Automatic removal of WAR and WAW hazards

Common data bus (CDB)
* Broadcasting result (i.e., forwarding)

* Need additional CDB to commit more than one instructions
simultaneously

Instructions are issued when an RS is free, not FU is free

= W/ dynamic scheduling

* Instructions are executed based on value production & consumption
rather than the sequence recorded in the program

CS2410: Computer Architecture University of Pittsburgh

Across branches

= A loop example (assume no branch prediction)

for (i=0; i< 1000; i++) {
Ali]l = B[i] * C[il;
DI[i] = E[i]/ Flil;

}

for (j=1; j< 1000; j++) {
Aljl = Alj - 1]/ C[jl;

for (k=0; k< 1000; k++) {
Y =Y + A[k]/ F[k];
}

CS2410: Computer Architecture University of Pittsburgh

Loop unrolling

for (i=0; i< 1000; i++) {
Alil = BIil * C[i];
DI[i] = E[i]/ F[il;

}

for (i=0; i< 1000; i+=4) {
Ali] = B[] * C[i];
Ali+1] = Bli+1] * C[i+1];
Ali+2] = Bli+2] * C[i+2];
Ali+3] = B[i+3] * C[i+3];
D[i] = E[i]/ F[il;
D[i+1] = E[i+1]/F[i+1];
D[i+2] = E[i+2] / Fli+2];
D[i+3] = E[i+3]/ F[i+3];

CS2410: Computer Architecture University of Pittsburgh

Impact of branches

= We want to find more “ready” instructions for parallel
execution

= 15~20% of all instructions executed are branches

 Difficult to fetch instructions w/o stalls

* Branch penalty (~# of issue width x branch resolution latency)
becomes larger

= Uninterrupted instruction fetching
* We need to know what to fetch (from where) every cycle
* Branches should be predicted

CS2410: Computer Architecture University of Pittsburgh

Branch prediction

= What?
» Taken or not taken (direction)
* Target (where to jump to if taken)

= When?
* When | fetch from the current PC

= (Boils down to get “next PC" given “current PC")

= How?
* This is the topic of several slides

* Let’s assume a processor with a simple single-issue pipeline for
presentation’s sake

CS2410: Computer Architecture University of Pittsburgh

What to predict 1: T/NT

= Let's first focus on predicting taken (T) or not taken (NT)

= Static prediction
* Associate each branch with a hint
« Always taken
+ Always not taken
+ (Don't know)
* Forward not taken, backward taken
* Compiler hint
= Dynamic prediction
* Simple 1-bit predictor
+ Remembers the last behavior
e 2-bit predictor
+ Bias added
* Combined
« Choose between two predictors

CS2410: Computer Architecture University of Pittsburgh

1-bit predictor

= Remember the last behavior

for (i=0; i< 100; i++) {
Ali]l = B[i] * C[il;
DI[i] = E[i]/ F[il;

}

= How many hits and misses? Misprediction rate?

for (j=0; j<10; j++) {
for (i=0; i< 100; i++) {
Ali] = BIil * CIil;
D[i] = E[i]/ F[il;
}
}

CS2410: Computer Architecture University of Pittsburgh

2-bit predictor

= Requires two consecutive mispredictions to flip direction

Taken

Mot taken
Pradict taken Predict 1aken

11 i 10

Taken
Taken © Not taken |
. . Mot taken = ==
Predict not taken Predict not taken

h (11} A \ o0

Taken

]
Mot taken

CS2410: Computer Architecture University of Pittsburgh

Branch prediction buffer

= Tag-less table to keep 2N 2-bit counters, indexed with
current PC

Branch predictor

N bits

Pc T

taken/not taken

CS2410: Computer Architecture University of Pittsburgh

2-bit predictor performance

o W 4096 entries:
mat
e 0% 2 bits per anbry
L O Uribmited eniries:
—— ;_" 2 bits per antry

spice
SPECES
banchmaris
feoep
e
L]
agriott
B 10%
0 2% 4% 6% 8% 10% 12% 14% 16% 18%
Fraquency of mispredictions
€S2410: Computer Architecture University of Pittsburgh

Correlating predictor

= Behavior of a branch can be correlated with other (previous)
branches

if (@a==2)
aa=0;

if (bb==2)
bb = 0;

if (aa!=bb) {

}

= Branch history
* N-bit vector keeping the last N branch outcomes (shift register)
* 11001100 = TTNNTTNN (T being the oldest)

= Also called global predictor

CS2410: Computer Architecture University of Pittsburgh

(m,n) predictor

= Consider last m branches
= Choose from 2™ BPBs, each has n-bit predictors

Branch address

N

2-bit per-branch predictors

—
—
—
1 1
{1 = XX prediction
— :
—
1
1
1
| -

2.t global branch history

C€S2410: Computer Architecture University of Pittsburgh

Combining index and history

= Form a single index from PC and GH

N bits

PC

Combining
function

indexing

Global history

CS2410: Computer Architecture

/

2-bit counters

University of Pittsburgh

(2,2) predictor performance

nasa? [0% B 4096 eritries:
% 2 bits par antry
o B Unibmited eniies:
mat300 | 0% 2 bits par antry
s
1 1024 onries:

=22

SPECEY
Benchmarks

10%
0%

O 2% 4% 6% 8% 10% 12% % 6% 18%
Froquency of mispredicions

CS2410: Computer Architecture

University of Pittsburgh

Combined predictor

= Choose between local and global predictors

= Selector (again a predictor)

= Alpha 21264 example

* 4K-entry global predictor (2-bit counters)

+ Indexed by 12-bit global history
 Hierarchical local predictor

+ 1K 10-bit pattern table

+ 1K-entry 3-bit counters
* Tournament predictor

+ 4K-entry 2-bit counters

CS2410: Computer Architecture

University of Pittsburgh

Selector design

predictor 1 was right predictor 2 was right

Sy

a0, 10, 11 00,01, 11

Use pradictor 1 i Usa pradictor 2

10 I on 1 t o
/.—-"- = = . o /--"' == = -"'“-«\.
£ i .
(Use predictor 1 (Use predictor 2
10 b
[4
0, 11 00, 11

C€S2410: Computer Architecture

University of Pittsburgh

Local vs. global?

nasa7 98%

matrix300 100%
tomcaty 94%
doduc
spice
fpppp
gee

espresso

eqntott

0% 10% 20% 30% 40% sSls 60% 70% B0% 90% 100%
Framonurp:ed-cbm%bybcalpredm

CS2410: Computer Architecture University of Pittsburgh

Combined predictor performance

™, “Sweet spot”

~
-

8%

3

Local 2-bit predictors

Conditional branch A%
misprediction rale

Caorrelating predictors

o e ol e s e e e =

Tournament predictors

e ———
- -

re
S

i

96 128 160 192 224 256 288 320 352 384 416 448 480 512
Total predictor size

o
w
a
z

€S2410: Computer Architecture University of Pittsburgh

What to predict 2 - target

= Remember - the goal of branch prediction is to determine
the next PC (target of fetching) every cycle

= Requirements

* When fetching a branch, we need to predict (simultaneously with
fetching) if it's going to be taken or not <= we talked about this

* At the same time, we need to determine the target of the branch if
the branch is predicted taken = we are going to talk about this

CS2410: Computer Architecture University of Pittsburgh

Target prediction

= It's much more difficult to “predict” target
» Taken/Not taken — just two cases
* A 32-bit target has 232 possibilities!

= But taken target remains the same!
* Just remember the last target then...

CS2410: Computer Architecture University of Pittsburgh

Target prediction w/ BTB

BTB = Branch Target Buffer

PC of i ion to fetch
Look up Predicted PC
MNumber of
entries
in branch-
target
buffer
_
No: instruction is]
= nol predicled o be Branch
branch; proceed normally predicted
taken or
Yes: then instruction is branch and predicted untaken
PC should be used as the next PC
CS2410: Computer Architecture University of Pittsburgh

Target prediction w/ BTB

= Use “PC” to look up — why PC?
* "Match” means it's a branch for sure
* All-bit matching needed; why?

= If match and Predicted Taken, use the stored target for the
next PC

= When no match and it's a branch (detected later)
* Use some other prediction
¢ Assume it's not taken

= After processing a branch, update BTB with correct
information

CS2410: Computer Architecture University of Pittsburgh

Branch prediction & pipelining

Send PC 10
mamory and
tranch-tnsget
Eter
'
L
L Ertry found in Yeu
trarch targat
butler?
Send out
predicied
o PC
D |
o Taknn Yos
trunch? 1
Hormal
instruction,
eseres)
l '
Emer Mispreciciod Branch
temnch insiruction [| branch, & fetched cerectly
adaress and Inatruchon restart prodicsd:
EX et PG otch al cihar contrua
i branch- target: delate enncuson wit
targe Bufter anry from o iy
| Inrget butier

CS2410: Computer Architecture University of Pittsburgh

BTB performance

= Two bad cases
* A branch is not found in BTB
* Predicted wrongly

= Example: prediction accuracy is 90%, hit rate in the buffer is
90%, 2-cycle penalty, 60% of branches taken
e Prob. (branch in buffer, mispredicted) = 90% x 10% = 0.09
¢ Prob. (branch not in buffer, taken) = 10% x 60% = 0.06
* Branch penalty = (0.09 + 0.06) x 2 = 0.30 (cycles)

CS2410: Computer Architecture University of Pittsburgh

What about “indirect jumps”?

= Indirect jumps
* Branch target is not unique
e E.g., jr$31
= BTB has a single target PC entry — can’t store multiple targets...
= With multiple targets stored, how do we choose the right target?

= Fortunately, most indirect jumps are for function return

= Return target can be predicted using a stack = Return Address
Stack (RAS)

* The basic idea is to keep storing all the return addresses in a Last In First
Out manner

CS2410: Computer Architecture University of Pittsburgh

RAS performance

45% B i e e e i -gog [

40% | -~ fpppp
35% .| O-espresso |.......
| -~ doduc

Misprediction Bl

0, P
rate 25% ¢ - tomcatv
20% H -
15% Bosris e e o o S ey o s TR B R SR S N s VeV s s
109, [Hrrrremm".
50 e e S ey
1 2 4 8 16
MNumber of entries in the return stack
CS2410: Computer Architecture University of Pittsburgh

A few announcements

= HW #1 (graded) available to pick up

= We have the mid-term exam this Thursday; it will cover
everything discussed until last week (including branch
prediction)

= Regarding remaining homework assignments
* I've reduced 10 assignments down to 8
* HW #3 has been posted (due 10/28)

CS2410: Computer Architecture University of Pittsburgh

Performance of branch prediction

Instruction issues per cycle

1]
Perfect Tournament Standard Static MNone
predictor 2-bit

Branch-prediction scheme

= On a hypothetical “64-issue” superscalar processor model
with 2k instruction window

C€S2410: Computer Architecture University of Pittsburgh

Speculative execution

= Execute instructions before their control dependences have
been resolved
» Execute instructions based on speculation (i.e., branch prediction)
* If speculation was right, we’ve done more useful work

* If speculation was wrong, we need to cancel the effects that shouldn’t
have been caused

= Hardware speculation extends the idea of dynamic
scheduling

= Issues
* How and where to buffer speculative results?
* How to cancel executed instructions if speculation was wrong?
* How to implement precise exception?

CS2410: Computer Architecture University of Pittsburgh

Tomasulo’s algorithm extended

Farder bulfar

From instruction unit

1 Fieg & Data

queue
| SE——— FP rogisters

Load-store

(Oporand

hd
Flaating-point buses

operations

} Load butiors

Store N a
acdress ?“

H—— = 2
i T .nmmn——'—h,

L i statons
data Address 1 l I l
il 7P S [P mupions]
o:ra Common data bus (CDB)

CS2410: Computer Architecture University of Pittsburgh

Store

Reorder buffer (ROB)

= In Tomasulo’s algorithm, once an instruction writes its result,
any subsequently issued instructions will find result in the
register file

= With speculation, the register file is not updated until the
instruction commits

= Thus, the ROB supplies operands in interval between
completion of instruction execution and instruction commit
* ROB is a source of operands for instructions like RS
* ROB extends architected registers like RS

CS2410: Computer Architecture University of Pittsburgh

ROB entry

= Each entry in the ROB contains four fields:

= Instruction type
* A branch (has no result to go to a register), a store (has a destination
memory address), or a register operation
= Destination

* Register number (for loads and ALU instructions) or memory address
(for stores)

= Value
* Value of instruction result until the instruction commits
= Ready
* Indicates that instruction has completed execution and the value is
ready
CS2410: Computer Architecture University of Pittsburgh

Speculative execution steps

= Issue
* Get an instruction from instruction queue. Allocate RS and ROB entry.
* Send operands from RF or ROB if available.
* Record ROB entry name at RS (for tagging)

= Execute
* If operand is not ready, monitor CDB. Execute when operands are ready
and FU is idle.

= Write result
* When result is ready, write it on CDB (tagged with ROB entry number).
* ROB and awaiting RS’s are updated.

= Commit

* Normal commit: instruction reaching head of ROB with its result — update
RF and remove it from ROB. Update memory if the instruction is store.

* Branch: if the head instruction is a mispredicted branch, remove this
branch and all the following instructions. Execution starts from the correct
successor.

CS2410: Computer Architecture University of Pittsburgh

IPC > 1

= To achieve IPC > 1, all the pipeline stages should support higher
bandwidth
* High bandwidth i-cache and instruction fetch unit
* High bandwidth decoding
* Dynamic scheduling with multiple issue — multiple functional units
* Multiple completion — multiple buses
* Multiple commit — high bandwidth register file

= Smart implementation techniques are needed, not to increase
clock cycle time

= Two approaches
* Superscalar
e VLIW

CS2410: Computer Architecture University of Pittsburgh

Superscalar processor

= A hardware-oriented design approach
* Parallelism uncovered by hardware
» Data dependence graph constructed at run time
* Performance heavily dependent on speculation techniques and
window size
= Binary compatibility easily maintained across processor
generations

= Early superscalar processors executed 1 integer and 1 FP
instructions (e.g., Alpha 21164)
= Modern superscalar processors
* Out-of-order execution/completion
* Simultaneous multi-threading (SMT) built in
» Deeply pipelined

CS2410: Computer Architecture University of Pittsburgh

VLIW: a compiler-oriented approach

= Parallelism detection done at compile time

* Parallel instructions are packed into a long instruction word

» Cheaper hardware impl. — no dependence checking between parallel
instructions

* Finding parallelism can be difficult
« Frequent empty slots
= Extensive compiler techniques have been developed to find parallel
operations across basic blocks
* Trace scheduling, profile-driven compilation, ...
* Code size vs. performance
* Code compatibility
= Recent examples
* Transmeta’s Crusoe
* Intel’s EPIC architecture (IA-64)
* TI DSP processors

CS2410: Computer Architecture University of Pittsburgh

Three flows in a processor High-bandwidth i-cache

= |-cache should provide multiple instructions (say N
istuctin instructions) per cycle from a given PC

flow
= N instructions can span multiple cache blocks
e Suppose the current PC points to the last instruction in a cache block

| imtruction
cache

— 1 !
Branch
predictor [~ = | _feuh J
* Instruction

CETTETETEET 1y ffar

Decode |
4|

Floating-point ¢ Media

{
L

RS!_uiuJ n5|_|_|_'!I_LL: nSu_LLJ_I __I - SOIUtlonS
Baes !' u ot i , + Multi-banked i-cache
' e e [T . e.g., IBM RS6000
iq,d,. bt | diin * Trace cache
::?:;::'* I::g;r’{i]'i'lIi".h]-'f'l'E:ITET.H-IEZIE]I_'I | . e.g_’ |nte| Pentium4
Commit | 1
S = Reservation station sl [ESTSTL SoTeeT) A Data cache | !
==
[Lipasti & Shen 1997]
CS2410: Computer Architecture University of Pittsburgh CS2410: Computer Architecture University of Pittsburgh
Instruction decode/issue Multi-ported data cache
= Need to establish dependence relationship (i.e., data = There can be more than one memory accesses per cycle
dependence graph) between multiple instruction in a cycle + Data cache must be multi-ported not to limit performance
e With N instructions in considerations, O(N2?) comparisons
. 1 i 1 ? . . .
What about previously buffered instructions? - Multi-porting can be expensive

* More area, power, and latency

= Need to look for multiple instructions when choosing a
ready instruction to issue - Example techniques

* MIPS R10k: 2-port cache with interleaved multi-banking

* Alpha 21164: 2-port cache with duplicated banking

* Alpha 21264: 2-port cache with time-division multiplexing

* Intel Itanium-2: 4-port cache with circuit-level multi-porting

CS2410: Computer Architecture University of Pittsburgh €52410: Computer Architecture University of Pittsburgh

Limits of ILP

= What is the maximum (theoretical) ILP in programs?

= We need an ideal processor model
* Register renaming with infinite physical registers
+ Only true dependences matter
e Oracle branch prediction
+ No control dependences
* Accurate memory address disambiguation
+ Memory accesses can be done as early as possible, out of order
e Unlimited resources w/ an ideal 1-cycle latency (incl. memory access)

CS2410: Computer Architecture University of Pittsburgh

Optimistic ILP

occ I 55
espresso. N 53
SPEC -1
benchmarks — pppp | 75
docuc I | 9
tomeatv. I 50

0 20 40 60 80 100 120 140 160
Instruction issues per cycle

€S2410: Computer Architecture University of Pittsburgh

Window size

Instruction issues per cycle

o
Infinite 2K 512 128 3z 8 4
Window size

CS2410: Computer Architecture University of Pittsburgh

Impact of branch prediction

64-issue machine w/ 2k-instruction window

60

50

40

Instruction issues per cycle 30

20
10
0 "
Perfect Tournament Standard Static MNone
predictor 2-bit

Branch-prediction scheme

C€S2410: Computer Architecture University of Pittsburgh

Fewer physical registers

60 o
. -& gce
50 | = o~ fpppp
- espresso
40 : -4~ doduc
o - i
Instruction issues percycle 30 - tomcatv
20 } o
.y
108
0 . A A A
Infinite 256 128 64 a2 None
CS2410: Computer Architecture University of Pittsburgh

Imperfect memory disambiguation

64-issue machine w/ 2k-instruction window 256/256 physical registers
60

50 -&- gce
-o- fpppp
40 -0~ espresso

-a~ doduc

Instruction issues per cycle 30 - i
=i tomcatv

0 . .)
Perfact Global/stack Inspection MNone
perfect

Alias analysis technigue

CS2410: Computer Architecture University of Pittsburgh

ILP summary

= Fundamental barriers
» Data dependence
* Control dependence
= Instruction scheduling to extract parallelism
* Static (before running your program)
* Dynamic (when you run your program)
= Two dynamic scheduling hardware algorithms
* CDC6600 scoreboarding
* IBM 360/91 Tomasulo’s algorithm
= Branch prediction for control-speculative execution
* Local, global (correlated), combined
* There are many other smart techniques, e.g., using neural network

» Today's superscalar processors mostly rely heavily on dynamic
scheduling and other hardware techniques for higher
performance; but they do benefit from sophisticated compilers

CS2410: Computer Architecture University of Pittsburgh

ILP summary

= Limits of ILP
« Potential ILP (507?) vs. realizable ILP (2?)

= Limitations in hardware implementation
« Data dependence among registers
Limited # of physical registers
« Data dependence among memory references
+ Limited static/dynamic memory disambiguation
« Control dependence
+ Sophisticated branch prediction, speculative execution, predicated execution, ...
e Scalability of key structures
Fetch unit, decode unit, execution pipelines, cache ports, ...

= Hardware-based OOO vs. VLIW

= There is a diminishing return as we invest more resources to exploit as
much ILP as possible = turn to other forms of parallelism, e.g.,
thread-level parallelism

* How do we achieve higher performance from an inherently single-threaded
program?

CS2410: Computer Architecture University of Pittsburgh

Revisiting loop unrolling

= Positive effects

for (i=0; i< 1000; i++) { * Less loop overhead
Ali] = BIi] * C[i; I
D{'i]] - EH}/F“[]"! + Better scheduling in the loop
} body
« More parallel operations
for (i=0; i< 1000; i+=4) { * Eliminate very small loops
Ali] = BIil * CI[il; + More opportunities for code
Ali+1] = Bli+1] * Cli+1]; motion
Ali+2] = B[i+2] * C[i+2];
Ali+3] = B[i+3] * C[i+3]; = Problems
DIil = E[il/ F[il; .
Dli+1] = E[i+1]/ Fli+1]: * Code size increase
Dl = Al R el + What if the loop count is not
Dli+3] = E[i+3]/F{i+3]; known at compile time?
} 7
* What about a while loop?
CS2410: Computer Architecture University of Pittsburgh

Predicated execution

(normal branch code) (predicated code)
if (cond) { -|- N A
b =0;
) B 5
else { C
oo g >
A‘ p1 = (cond) ‘ A
branch p1, TARGET p1 = (cond)
B
b, 1
‘ jnrzwopvjom ‘ ('p1) mov b, 1
C C
TARGET:
‘ v b, 0 ‘ (p1) mov b, 0
CS2410: Computer Architecture University of Pittsburgh

Function inlining

= Replace a function call instance (“call foo()"”) with the actual
function body (“foo()")
* Similar to loop unrolling in a sense

= Similar benefits to loop unrolling
¢ Remove function call overhead
+ Call/return (and possible branch mispredictions)

« Argument/return value passing, stack allocation, and associated spill/reload
operations

 Larger block of instructions for scheduling

= Similar problems
* Primarily code size increase

CS2410: Computer Architecture University of Pittsburgh

Trace scheduling

= Trace scheduling divides a procedure into a set of frequently
executed traces (paths)
* Make frequent traces run fast (common case)
* Trace scheduling may make infrequent paths run slower (rare case)

= Three steps
* Select a trace
+ Frequency information derived statically or from profile data
* Schedule a trace

+ Aggressively schedule instructions as if there are no branches into and out
of the trace

 Insert fix-up code
+ Take care of mess

CS2410: Computer Architecture University of Pittsburgh

Trace scheduling

a=log(x); a=log(x); fixit:
iT(b>0.01){ c=a/b; c=0;

c=a/b; y=sin(c); y=0; // sin(0)
Yelse{)| if(b<=0.01)

c=0; go to Fixit;
}
y=sin(c);

Now we have larger basic block
for our scheduling and optimizations

Suppose profile says
that b>0.01
90% of the time

CS2410: Computer Architecture University of Pittsburgh

Price of fix-up code

= Assume the code for b>0.01 * Fix-up code may cause the
accounts for 80% of the time r(lema|n||ng 20% of the time
.. slower!
= Optimized trace runs 15% i)
fagter ° = Assume fix-up code is 30%
slower

By Amdahl’s Law:

Speedup = 1/(0.2+0.8*0.85) Speedup = 1/(0.2%1.3+0.8*0.85)
=1.176 =1.110

17.6% performance improvement! Over 1/3 of the benefit removed!

CS2410: Computer Architecture University of Pittsburgh

Superblock

= Inserting fix-up code for traces can be quite complex,
especially in the presence of many branch outlets and
aggressive code motion

= Asuperblock is a trace without side entrances; control can
only enter from the top, but it can leave at one or more exit
points

CS2410: Computer Architecture University of Pittsburgh

Superblock formation

CS2410: Computer Architecture University of Pittsburgh

Superblock formation

Tail duplication

C
10
0
]
D H
0
\0‘ .
CS2410: Computer Architecture University of Pittsburgh

CSE in Superblock

opA: mul r1,r2,3

opA: mul r1,r2,3

929 opB: add r2,r2,1

opC’: mul r3,r2,3
opC: mulr3,r2,3 |

opB: add r2,r2,1

opC: mul r3,r2,3

Original code

99 opB: add r2,r2,1

opC’: mul r3,r2,3

Code after CSE

CS2410: Computer Architecture University of Pittsburgh

Value prediction

= Data dependence places fundamental limitation

* You can’t achieve a shorter latency than the maximum path length in
the data precedence graph of a program

= What about predicting a value before computation (just like
we predict the outcome of a branch)?
* Branch prediction: binary (T or NT)
 Value prediction: 232 or 264
* Is it possible to predict a value?

= With successful value prediction, you may be able to break
the data dependence chains!

CS2410: Computer Architecture University of Pittsburgh

Value prediction

= Speculative prediction of register values

* Values predicted during fetch and decode stages, forwarded to dependent
instructions

* Dependent instructions can be issued and executed immediately

» Before committing instructions, we must verify the predictions; if wrong,
we must restart instructions that used wrong values

Fetch |—| Decode [—| |Issue |—| Execute T Commit

Predict J if mispredicted
Value

Verify

[Lipasti & Shen 1996]

CS2410: Computer Architecture University of Pittsburgh

Classifying speculative execution

What can we Speculative Execution
speculate on?

Control Speculation | Data Speculation

DEYERVEINLS

Data Location

Branch Direction | | Branch Target |

CS2410: Computer Architecture University of Pittsburgh

