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What is instruction level parallelism?

 Execute independent instructions in parallel
• Provide more hardware function units (e.g., adders, cache ports)
• Detect instructions that can be executed in parallel (in hardware or 

software)
• Schedule instructions to multiple function units (in hardware or 

software)

 Goal is to improve instruction throughput

 How does it differ from general parallel processing?
 How does it differ from pipelining?

• Ideal CPI of single pipeline is 1
• W/ ILP we want CPI < 1 (or IPC > 1)
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Key questions 

 How do we find parallel instructions?
• Static, compile-time vs. dynamic, run-time
• Data dependence and control dependence place high bars

 What is the role of ISA for ILP packaging?
• VLIW approach vs. superscalar approach
• EPIC approach (e.g., Intel IA64)

 How can we exploit ILP at run time?
• Minimal hardware support (w/ compiler support)
• Dynamic OOO (out-of-order) execution support
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Data dependence

 Instructions consume values (operands) created by previous 
instructions

 Given a sequence of instructions to execute, form a directed 
graph using producer-consumer relationships (not 
instruction order in the program)
• Nodes are instructions
• Edges represent dependences, possibly labeled with related 

information such as latency, etc.

add r1, r2, r3
mul r4, r1, r5
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Data dependence

 What is the minimum execution time, given unlimited resources?

 Other questions
• Can we have a directed cycle?
• What is the max. # of instructions that can be executed in parallel?
• How do we map instructions to (limited) resources? In what order?
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List scheduling (example impl.)

 Common compiler instruction scheduling algorithm

 Procedure
• Build DPG (data precedence graph)
• Assign priorities to nodes
• Perform scheduling

Start from cycle 0, schedule “ready” instructions
When there are multiple ready instructions, choose the one w/ highest 
priority
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List scheduling (example impl.)

(Cooper et al. ’98)
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Name dependence

 Data dependence is “true” dependence
• The consumer instruction can’t be scheduled before the producer one
• “Read-after-write”

 Dependences may be caused by the name of the storage 
used in the instructions, not by the producer-consumer 
relationship
• These are “false” dependences

 Anti dependence (“write-after-read”)
 Output dependence (“write-after-write”)

add r1, r2, r3
mul r2, r4, r5

add r2, r3, r4
…
mul r2, r5, r6
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Name dependence

 Name dependences may be removed if we have plenty of storage 
(i.e., many registers)

 In fact, some compilers first assume that there are unlimited 
registers
• You can dump GCC internal representations (before register allocation) to 

confirm this
• Compiler maps such “virtual” registers to “architected” registers
• Compiler may generate code to store temporary values to memory when 

there are not enough registers

 Hardware can do the opposite – mapping architected registers 
(“virtual”) to some physical register – to remove name 
dependences  register renaming

 Can we rename memory?
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Control dependence

 It determines (limits) the ordering of an instruction i with 
respect to a branch instruction so that the instruction i is 
executed in correct program order and only when it should 
be

 Why are control dependences barriers for extracting more 
parallelism and performance?
• Pipelined processor
• Compiler scheduling
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Control flow graph (CFG)

 Nodes: basic blocks
 Edges: possible control changes

 How can you construct CFG?

if (a<b)
k=50;

else
k = j;

for (sum=0,i=0;i < k; i++) {
sum+=a[i];

}

(a<b)?

k = j;k=50;

i=0;
sum=0;
(i>=k)?

…

sum=sum+a[i];
i=i+1;
(i==k)?

yes no

yes

no

yes

no
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Static vs. dynamic scheduling

 Static scheduling
• Schedule instructions at compiler time to get the best execution time

 Dynamic scheduling
• Hardware changes instruction execution sequence in order to 

minimize execution time
• Dependences must be honored
• For the best result, false dependences must be removed
• For the best result, control dependences must be tackled

 Implementing precise exception is important
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Dynamic scheduling

 Components
• Check for dependences  “do we have ready instructions?”
• Select ready instructions and map them to multiple function units
• The procedure is similar to find parallel instructions from DPG

 Instruction window
• When we look for parallel instructions, we want to consider many 

instructions (in “instruction window”) for the best result
• Branches hinder forming a large, accurate window

 We will examine two hardware algorithms: scoreboarding 
and Tomasulo’s algorithm
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CDC6600 scoreboard

 A dynamic scheduling method
• A centralized control structure
• Keeps track of each instruction’s progress

 Instructions are allowed to proceed when resources are 
available and dependences are satisfied

 Out-of-order execution/completion of instructions
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Basic structure
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Tackling hazards

 Out-of-order execution of instructions may cause WAR and 
WAW hazards
• They weren’t interesting in in-order pipeline we examined  register 

read or write step in an earlier instruction is always before the write 
step of a later instruction

 Strategy
• WAR

Stall write-back until all previous instructions read operands

• WAW
Do not issue an instruction if there is another instruction that intends to 
write to the same register
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Scoreboard control

 Issue (ID1)
• Check for resource availability
• Check for WAW

 Read operands (ID2)
• Check for RAW (true dependency)

If no pending instructions will write to the same register, operands are fetched 
from the register file
Otherwise stall until operands are ready

• Operands always come from register file  no forwarding

 Execution (EX)
• FU starts execution on operands
• When result is ready, FU notifies the scoreboard

 Write result (WB)
• Check for WAR

Stall the completing instruction if there is dependency
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Scoreboard data structures

 Instruction status: which of the 4 steps the instruction is in

 FU status: indicates the state of FU; 9 fields
• Busy: is the FU busy?
• Op: operation to perform (e.g., add or sub)
• Fi: destination register
• Fj, Fk: source registers
• Qj, Qk: FU producing Fj and Fk
• Rj, Rk: flags indicating if the associated operand has been read

 Register result status: which FU will generate a value to 
update this register?
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Scoreboard example
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Scoreboard example
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Scoreboard example
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Scoreboard limitations

 Small # of instructions available for parallel execution
• Basic block in CDC6600

 Scoreboard size and organization (i.e., complexity)
• ~instruction window
• Centralized structure, not scalable

 Name dependences
• There are WAR and WAW stalls
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Tomasulo’s algorithm

 A dynamic scheduling algorithm

 Invented for IBM 360/91

 Motivation
• High-performance FP without special compiler
• Only 4 FP (architected) registers
• Long memory and FP latencies
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Tomasulo’s algorithm

 Register renaming
• To overcome WAR and WAW (name dependences)
• Provided by reservation stations

 Reservation stations (RS)
• Operands are fetched in RS as they become ready (no restriction on 

their order)
• Hazard detection and execution control are distributed
• Results are passed directly to FUs from RS through common data bus

(CDB)
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Tomasulo’s algorithm: hardware
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Tomasulo’s algorithm steps

 Issue
• If there is an empty RS, get the next instruction from instruction queue
• Fetch operands from register file or mark their producer FUs

 Execute
• If operands become ready, the instruction can be executed in the FU
• No unresolved branch allowed (this condition will be relaxed later)

 Write result
• When result is obtained, write it on CDB
• Stores write their data to memory

 Tagging data and objects
• To recognize data of interest, each RS and load buffer is named
• When a result is generated, it is launched on CDB with its tag, after the 

name of RS
• Other objects snoop on CDB and catch the result if it is what they’ve 

waited for
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Tomasulo’s alg.: data structures

 Each RS has
• Op: operation to perform
• Qj, Qk: RS’s to produce corresponding source operand; “zero” 

indicates that source operand is available in Vj or Vk
• Vj, Vk: actual value of source operands
• A: information for memory address calculation
• Busy: whether RS and FU are busy or not

 Each register has
• Qi: name of RS to produce the value to be written to this register
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Tomasulo’s algorithm: example
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L.D F6, 32(R2)
L.D F2, 45(R3)
MUL.D F0, F2, F4
SUB.D F8, F2, F6
DIV.D F10, F0, F6
ADD.D F6, F8, F2 F0

F2
F4
F6
F8
F10

Tomasulo’s algorithm: example
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Tomasulo’s algorithm: example
L.D F6, 32(R2)
L.D F2, 45(R3)
MUL.D F0, F2, F4
SUB.D F8, F2, F6
DIV.D F10, F0, F6
ADD.D F6, F8, F2 F0

F2
F4
F6
F8
F10

LD1
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L.D F6, 32(R2)
L.D F2, 45(R3)
MUL.D F0, F2, F4
SUB.D F8, F2, F6
DIV.D F10, F0, F6
ADD.D F6, F8, F2 F0

F2
F4
F6
F8
F10

LD1

LD2

Tomasulo’s algorithm: example
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L.D F6, 32(R2)
L.D F2, 45(R3)
MUL.D F0, F2, F4
SUB.D F8, F2, F6
DIV.D F10, F0, F6
ADD.D F6, F8, F2 F0

F2
F4
F6
F8
F10

LD1

LD2

LD2 V

MUL1

Tomasulo’s algorithm: example
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L.D F6, 32(R2)
L.D F2, 45(R3)
MUL.D F0, F2, F4
SUB.D F8, F2, F6
DIV.D F10, F0, F6
ADD.D F6, F8, F2 F0

F2
F4
F6
F8
F10

LD1

LD2

LD2 VLD2 V

MUL1

ADD1

LD1 value broadcast

Tomasulo’s algorithm: example
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L.D F6, 32(R2)
L.D F2, 45(R3)
MUL.D F0, F2, F4
SUB.D F8, F2, F6
DIV.D F10, F0, F6
ADD.D F6, F8, F2 F0

F2
F4
F6
F8
F10

LD2

LD2 VLD2 V

MUL1

ADD1
MUL2

MUL1 V

Tomasulo’s algorithm: example
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L.D F6, 32(R2)
L.D F2, 45(R3)
MUL.D F0, F2, F4
SUB.D F8, F2, F6
DIV.D F10, F0, F6
ADD.D F6, F8, F2 F0

F2
F4
F6
F8
F10

LD2

LD2 VLD2 V

MUL1

ADD1
MUL2

MUL1 VLD2ADD1

ADD2

Tomasulo’s algorithm: example
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L.D F6, 32(R2)
L.D F2, 45(R3)
MUL.D F0, F2, F4
SUB.D F8, F2, F6
DIV.D F10, F0, F6
ADD.D F6, F8, F2 F0

F2
F4
F6
F8
F10

LD2

LD2 VLD2 V

MUL1

ADD1
MUL2

MUL1 VLD2ADD1

ADD2

LD2 value broadcast

V
V V

Tomasulo’s algorithm: example
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Tomasulo’s algorithm: summary

 Register renaming
• Automatic removal of WAR and WAW hazards

 Common data bus (CDB)
• Broadcasting result (i.e., forwarding)
• Need additional CDB to commit more than one instructions 

simultaneously

 Instructions are issued when an RS is free, not FU is free

 W/ dynamic scheduling
• Instructions are executed based on value production & consumption 

rather than the sequence recorded in the program
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Across branches

 A loop example (assume no branch prediction)

for (i=0; i< 1000; i++) {
A[i] = B[i] * C[i];
D[i] = E[i] / F[i];

}

for (j=1; j< 1000; j++) {
A[j] = A[j – 1] / C[j];

}

for (k=0; k< 1000; k++) {
Y = Y + A[k] / F[k];

}
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Loop unrolling

for (i=0; i< 1000; i++) {
A[i] = B[i] * C[i];
D[i] = E[i] / F[i];

}

for (i=0; i< 1000; i+=4) {
A[i] = B[i] * C[i];
A[i+1] = B[i+1] * C[i+1];
A[i+2] = B[i+2] * C[i+2];
A[i+3] = B[i+3] * C[i+3];
D[i] = E[i] / F[i];
D[i+1] = E[i+1] / F[i+1];
D[i+2] = E[i+2] / F[i+2];
D[i+3] = E[i+3] / F[i+3];

}
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Impact of branches

 We want to find more “ready” instructions for parallel 
execution

 15~20% of all instructions executed are branches
• Difficult to fetch instructions w/o stalls
• Branch penalty (~# of issue width  branch resolution latency) 

becomes larger

 Uninterrupted instruction fetching
• We need to know what to fetch (from where) every cycle
• Branches should be predicted
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Branch prediction

 What?
• Taken or not taken (direction)
• Target (where to jump to if taken)

 When?
• When I fetch from the current PC

 (Boils down to get “next PC” given “current PC”)

 How?
• This is the topic of several slides
• Let’s assume a processor with a simple single-issue pipeline for 

presentation’s sake
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What to predict 1: T/NT

 Let’s first focus on predicting taken (T) or not taken (NT)
 Static prediction

• Associate each branch with a hint
Always taken
Always not taken
(Don’t know)

• Forward not taken, backward taken
• Compiler hint

 Dynamic prediction
• Simple 1-bit predictor

Remembers the last behavior
• 2-bit predictor

Bias added
• Combined

Choose between two predictors
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1-bit predictor

 Remember the last behavior

 How many hits and misses? Misprediction rate?

for (i=0; i< 100; i++) {
A[i] = B[i] * C[i];
D[i] = E[i] / F[i];

}

for (j=0; j<10; j++) {
for (i=0; i< 100; i++) {
A[i] = B[i] * C[i];
D[i] = E[i] / F[i];

}
}
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2-bit predictor

 Requires two consecutive mispredictions to flip direction
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Branch prediction buffer

 Tag-less table to keep 2N 2-bit counters, indexed with 
current PC

2-bit countersPC

N bits

indexing

taken/not taken

Branch predictor
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2-bit predictor performance
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Correlating predictor

 Behavior of a branch can be correlated with other (previous) 
branches

 Branch history
• N-bit vector keeping the last N branch outcomes (shift register)
• 11001100 = TTNNTTNN (T being the oldest)

 Also called global predictor

if (aa==2)
aa = 0;

if (bb==2)
bb = 0;

if (aa!=bb) {
…

}
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(m,n) predictor

 Consider last m branches
 Choose from 2m BPBs, each has n-bit predictors
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Combining index and history

 Form a single index from PC and GH

2-bit countersPC

N bits

indexing

Global history

Combining
function
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(2,2) predictor performance
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Combined predictor

 Choose between local and global predictors
 Selector (again a predictor)

 Alpha 21264 example
• 4K-entry global predictor (2-bit counters)

Indexed by 12-bit global history

• Hierarchical local predictor
1K 10-bit pattern table
1K-entry 3-bit counters

• Tournament predictor
4K-entry 2-bit counters
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Selector design

X/Y

predictor 1 was right predictor 2 was right
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Local vs. global?
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Combined predictor performance

“Sweet spot”
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What to predict 2 – target 

 Remember – the goal of branch prediction is to determine 
the next PC (target of fetching) every cycle

 Requirements
• When fetching a branch, we need to predict (simultaneously with 

fetching) if it’s going to be taken or not  we talked about this
• At the same time, we need to determine the target of the branch if 

the branch is predicted taken  we are going to talk about this
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Target prediction

 It’s much more difficult to “predict” target
• Taken/Not taken – just two cases
• A 32-bit target has 232 possibilities!

 But taken target remains the same!
• Just remember the last target then…
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Target prediction w/ BTB
BTB = Branch Target Buffer

CS2410: Computer Architecture University of Pittsburgh

Target prediction w/ BTB

 Use “PC” to look up – why PC?
• “Match” means it’s a branch for sure
• All-bit matching needed; why?

 If match and Predicted Taken, use the stored target for the 
next PC

 When no match and it’s a branch (detected later)
• Use some other prediction
• Assume it’s not taken

 After processing a branch, update BTB with correct 
information
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Branch prediction & pipelining
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BTB performance

 Two bad cases
• A branch is not found in BTB
• Predicted wrongly

 Example: prediction accuracy is 90%, hit rate in the buffer is 
90%, 2-cycle penalty, 60% of branches taken
• Prob. (branch in buffer, mispredicted) = 90%  10% = 0.09
• Prob. (branch not in buffer, taken) = 10%  60% = 0.06
• Branch penalty = (0.09 + 0.06)  2 = 0.30 (cycles)
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What about “indirect jumps”?

 Indirect jumps
• Branch target is not unique
• E.g., jr $31

 BTB has a single target PC entry – can’t store multiple targets…
 With multiple targets stored, how do we choose the right target?

 Fortunately, most indirect jumps are for function return

 Return target can be predicted using a stack  Return Address 
Stack (RAS)
• The basic idea is to keep storing all the return addresses in a Last In First 

Out manner

CS2410: Computer Architecture University of Pittsburgh

RAS performance
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A few announcements

 HW #1 (graded) available to pick up
 We have the mid-term exam this Thursday; it will cover 

everything discussed until last week (including branch 
prediction)

 Regarding remaining homework assignments
• I’ve reduced 10 assignments down to 8
• HW #3 has been posted (due 10/28)
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Performance of branch prediction

 On a hypothetical “64-issue” superscalar processor model 
with 2k instruction window
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Speculative execution

 Execute instructions before their control dependences have 
been resolved
• Execute instructions based on speculation (i.e., branch prediction)
• If speculation was right, we’ve done more useful work
• If speculation was wrong, we need to cancel the effects that shouldn’t 

have been caused

 Hardware speculation extends the idea of dynamic 
scheduling

 Issues
• How and where to buffer speculative results?
• How to cancel executed instructions if speculation was wrong?
• How to implement precise exception?
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Tomasulo’s algorithm extended
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Reorder buffer (ROB)

 In Tomasulo’s algorithm, once an instruction writes its result, 
any subsequently issued instructions will find result in the 
register file

 With speculation, the register file is not updated until the 
instruction commits

 Thus, the ROB supplies operands in interval between 
completion of instruction execution and instruction commit
• ROB is a source of operands for instructions like RS
• ROB extends architected registers like RS
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ROB entry

 Each entry in the ROB contains four fields:

 Instruction type
• A branch (has no result to go to a register), a store (has a destination 

memory address), or a register operation

 Destination
• Register number (for loads and ALU instructions) or memory address 

(for stores)

 Value
• Value of instruction result until the instruction commits

 Ready
• Indicates that instruction has completed execution and the value is 

ready
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Speculative execution steps

 Issue
• Get an instruction from instruction queue. Allocate RS and ROB entry.
• Send operands from RF or ROB if available.
• Record ROB entry name at RS (for tagging)

 Execute
• If operand is not ready, monitor CDB. Execute when operands are ready 

and FU is idle.
 Write result

• When result is ready, write it on CDB (tagged with ROB entry number).
• ROB and awaiting RS’s are updated.

 Commit
• Normal commit: instruction reaching head of ROB with its result – update 

RF and remove it from ROB. Update memory if the instruction is store.
• Branch: if the head instruction is a mispredicted branch, remove this 

branch and all the following instructions. Execution starts from the correct 
successor.
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IPC > 1

 To achieve IPC > 1, all the pipeline stages should support higher 
bandwidth
• High bandwidth i-cache and instruction fetch unit
• High bandwidth decoding
• Dynamic scheduling with multiple issue – multiple functional units
• Multiple completion – multiple buses
• Multiple commit – high bandwidth register file

 Smart implementation techniques are needed, not to increase 
clock cycle time

 Two approaches
• Superscalar
• VLIW
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Superscalar processor

 A hardware-oriented design approach
• Parallelism uncovered by hardware
• Data dependence graph constructed at run time
• Performance heavily dependent on speculation techniques and 

window size

 Binary compatibility easily maintained across processor 
generations

 Early superscalar processors executed 1 integer and 1 FP 
instructions (e.g., Alpha 21164)

 Modern superscalar processors
• Out-of-order execution/completion
• Simultaneous multi-threading (SMT) built in
• Deeply pipelined
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VLIW: a compiler-oriented approach

 Parallelism detection done at compile time
• Parallel instructions are packed into a long instruction word

Cheaper hardware impl. – no dependence checking between parallel 
instructions

• Finding parallelism can be difficult
Frequent empty slots

 Extensive compiler techniques have been developed to find parallel 
operations across basic blocks
• Trace scheduling, profile-driven compilation, …
• Code size vs. performance
• Code compatibility

 Recent examples
• Transmeta’s Crusoe
• Intel’s EPIC architecture (IA-64)
• TI DSP processors
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Three flows in a processor

[Lipasti & Shen 1997]
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High-bandwidth i-cache

 I-cache should provide multiple instructions (say N 
instructions) per cycle from a given PC

 N instructions can span multiple cache blocks
• Suppose the current PC points to the last instruction in a cache block

 Solutions
• Multi-banked i-cache

e.g., IBM RS6000

• Trace cache
e.g., Intel Pentium4
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Instruction decode/issue

 Need to establish dependence relationship (i.e., data 
dependence graph) between multiple instruction in a cycle
• With N instructions in considerations, O(N2) comparisons
• What about previously buffered instructions?

 Need to look for multiple instructions when choosing a 
ready instruction to issue
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Multi-ported data cache

 There can be more than one memory accesses per cycle
• Data cache must be multi-ported not to limit performance

 Multi-porting can be expensive
• More area, power, and latency

 Example techniques
• MIPS R10k: 2-port cache with interleaved multi-banking
• Alpha 21164: 2-port cache with duplicated banking
• Alpha 21264: 2-port cache with time-division multiplexing
• Intel Itanium-2: 4-port cache with circuit-level multi-porting
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Limits of ILP

 What is the maximum (theoretical) ILP in programs?

 We need an ideal processor model
• Register renaming with infinite physical registers

Only true dependences matter

• Oracle branch prediction
No control dependences

• Accurate memory address disambiguation
Memory accesses can be done as early as possible, out of order

• Unlimited resources w/ an ideal 1-cycle latency (incl. memory access)
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Optimistic ILP
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Window size
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Impact of branch prediction

64-issue machine w/ 2k-instruction window
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Fewer physical registers
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Imperfect memory disambiguation

64-issue machine w/ 2k-instruction window 256/256 physical registers
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ILP summary

 Fundamental barriers
• Data dependence
• Control dependence

 Instruction scheduling to extract parallelism
• Static (before running your program)
• Dynamic (when you run your program)

 Two dynamic scheduling hardware algorithms
• CDC6600 scoreboarding
• IBM 360/91 Tomasulo’s algorithm

 Branch prediction for control-speculative execution
• Local, global (correlated), combined
• There are many other smart techniques, e.g., using neural network

 Today’s superscalar processors mostly rely heavily on dynamic 
scheduling and other hardware techniques for higher 
performance; but they do benefit from sophisticated compilers
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ILP summary

 Limits of ILP
• Potential ILP (50?) vs. realizable ILP (2?)

 Limitations in hardware implementation
• Data dependence among registers

Limited # of physical registers
• Data dependence among memory references

Limited static/dynamic memory disambiguation
• Control dependence

Sophisticated branch prediction, speculative execution, predicated execution, …
• Scalability of key structures

Fetch unit, decode unit, execution pipelines, cache ports, …

 Hardware-based OOO vs. VLIW

 There is a diminishing return as we invest more resources to exploit as 
much ILP as possible  turn to other forms of parallelism, e.g., 
thread-level parallelism

• How do we achieve higher performance from an inherently single-threaded 
program?
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Revisiting loop unrolling

for (i=0; i< 1000; i++) {
A[i] = B[i] * C[i];
D[i] = E[i] / F[i];

}

for (i=0; i< 1000; i+=4) {
A[i] = B[i] * C[i];
A[i+1] = B[i+1] * C[i+1];
A[i+2] = B[i+2] * C[i+2];
A[i+3] = B[i+3] * C[i+3];
D[i] = E[i] / F[i];
D[i+1] = E[i+1] / F[i+1];
D[i+2] = E[i+2] / F[i+2];
D[i+3] = E[i+3] / F[i+3];

}

 Positive effects
• Less loop overhead
• Better scheduling in the loop 

body
More parallel operations

• Eliminate very small loops
More opportunities for code 
motion

 Problems
• Code size increase
• What if the loop count is not 

known at compile time?
• What about a while loop?
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Predicated execution

(normal branch code)

C B

D

A
T N

p1 = (cond)
branch p1, TARGET

mov b, 1 
jmp JOIN

TARGET:
mov b, 0

A

B

C

B

C

D

A

(predicated code) 

A

B

C

if (cond) {
b = 0;

}
else {

b = 1;
}

p1 = (cond)

(!p1) mov b, 1

(p1) mov b, 0
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Function inlining

 Replace a function call instance (“call foo()”) with the actual 
function body (“foo()”)
• Similar to loop unrolling in a sense

 Similar benefits to loop unrolling
• Remove function call overhead

Call/return (and possible branch mispredictions)
Argument/return value passing, stack allocation, and associated spill/reload 
operations

• Larger block of instructions for scheduling

 Similar problems
• Primarily code size increase
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Trace scheduling

 Trace scheduling divides a procedure into a set of frequently 
executed traces (paths)
• Make frequent traces run fast (common case)
• Trace scheduling may make infrequent paths run slower (rare case)

 Three steps
• Select a trace

Frequency information derived statically or from profile data

• Schedule a trace
Aggressively schedule instructions as if there are no branches into and out 
of the trace

• Insert fix-up code
Take care of mess
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Trace scheduling

a=log(x);
if(b>0.01){

c=a/b;
}else{

c=0;
}
y=sin(c);

Suppose profile says
that b>0.01
90% of the time

a=log(x);
c=a/b;
y=sin(c);
if(b<=0.01)

go to fixit; 

fixit:
c=0;
y=0; // sin(0)

Now we have larger basic block
for our scheduling and optimizations
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Price of fix-up code

 Assume the code for b>0.01 
accounts for 80% of the time

 Optimized trace runs 15% 
faster

 Fix-up code may cause the 
remaining 20% of the time 
slower!

 Assume fix-up code is 30% 
slower

By Amdahl’s Law:

Speedup = 1/(0.2+0.8*0.85)
= 1.176

17.6% performance improvement!

Speedup = 1/(0.2*1.3+0.8*0.85)
= 1.110

Over 1/3 of the benefit removed!
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Superblock

 Inserting fix-up code for traces can be quite complex, 
especially in the presence of many branch outlets and 
aggressive code motion

 A superblock is a trace without side entrances; control can 
only enter from the top, but it can leave at one or more exit 
points
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Superblock formation
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Superblock formation
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Tail duplication
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CSE in Superblock

opA: mul r1,r2,3

opC: mul r3,r2,3

opB: add r2,r2,199

1

1

Original code

opA: mul r1,r2,3

opC: mul r3,r2,3

opB: add r2,r2,199

1

Code after superblock formation

opC’: mul r3,r2,3

opA: mul r1,r2,3

opC: mov r3,r1

opB: add r2,r2,199

1

Code after CSE

opC’: mul r3,r2,3
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Value prediction

 Data dependence places fundamental limitation
• You can’t achieve a shorter latency than the maximum path length in 

the data precedence graph of a program

 What about predicting a value before computation (just like 
we predict the outcome of a branch)?
• Branch prediction: binary (T or NT)
• Value prediction: 232 or 264

• Is it possible to predict a value?

 With successful value prediction, you may be able to break 
the data dependence chains!
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Value prediction

 Speculative prediction of register values
• Values predicted during fetch and decode stages, forwarded to dependent 

instructions
• Dependent instructions can be issued and executed immediately
• Before committing instructions, we must verify the predictions; if wrong, 

we must restart instructions that used wrong values

Fetch Decode Issue Execute Commit

Predict
Value Verify

if mispredicted

[Lipasti & Shen 1996]
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Classifying speculative execution

Speculative Execution

Control Speculation Data Speculation

Branch Direction Branch Target Data Location Data Value

What can we
speculate on?


