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Recent multicore design trends
 Modular designs based on relatively simple cores

• Easier to validate (a single core)
• Easier to scale (the same validated design replicated multiple times)
• Due to these reasons, future “many-core” processors may look like this
• Examples: Tilera TILE*, Intel 48-core chip [Howard et al., ISSCC ’10]

University of Pittsburgh

Recent multicore design trends
 Modular designs based on relatively simple cores

• Easier to validate (a single core)
• Easier to scale (the same validated design replicated multiple times)
• Due to these reasons, future “many-core” processors will look like this
• Examples: Tilera TILE*, Intel 48-core chip [Howard et al., ISSCC ’10]

 Design focus shifts from cores to “uncores”
• Network on-chip (NoC): bus, crossbar, ring, 2D/3D mesh, …
• Memory hierarchy: caches, coherence mechanisms, memory 

controllers, …
• System-on-chip components like network MAC, cypher, …

 Note also:
• In this design, aggregate cache capacity increases as we add more tiles
• Some tiles may be active while others are inactive
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L2 cache design issues
 L2 caches occupy a major portion (prob. the largest) on chip

 Capacity vs. latency
• Off-chip access (still) expensive
• On-chip latency can grow; with switched on-chip networks, we have 

NUCA (Non-Uniform Cache Architecture)
• Private cache vs. shared cache or a hybrid scheme?

 Quality of service
• Interference (capacity/bandwidth)
• Explicit/implicit capacity partitioning

 Manageability, fault and yield
• Not all caches have to be active
• Hard (irreversible) faults + process variation + soft faults
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Private cache vs. shared cache

 Short hit latency (always local)

 High on-chip miss rate

 Long miss resolution time (i.e., are 
there replicas?

 Low on-chip miss rate

 Straightforward data location

 Long average hit latency

 Uncontrolled interference
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Historical perspective
 Private designs were there

• Multiprocessors based on microprocessors
 Shared cache clustering [Nayfeh and Olukotun, ISCA ‘94]

 Multicores with private design more straightforward
• Earlier AMD chips and Sun Microsystems’ UltraSPARC processors

 Intel, IBM, and Sun pushed for shared caches (e.g., Xeon 
products, POWER-4/5/6, Niagara*)
• A variety of workloads perform relatively well

 More recently, private caches re-gain popularity
• We have more transistors
• Interference is easily controlled
• Match well with on-/off-chip (shared) L3 $$ [Oh et al., ISVLSI ‘09]

University of Pittsburgh

Shared $$ issue 1: NUCA
 A compromise design

• Large monolithic shared cache: conceptually simple but very slow
• Smaller cache slices w/ disparate latencies [Kim et al., ASPLOS ‘02]

Interleave data to all available slices (e.g., IBM POWER-*)

 Problems
• Blind data distribution with no provisions for latency hiding
• As a result, simple NUCA performance is not scalable

your
program

your
data
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Improving program-data distance
 Key idea: replicate or migrate
 Victim replication [Zhang and Asanović, ISCA ’05]

• Victims from private L1 cache are “replicated” to local L2 bank
• Essentially, local L2 banks incorporate large victim caching space
• A natural hybrid scheme that takes advantages of shared & private $$

 Adaptive Selective Replication [Beckmann et al., MICRO ‘06]

• Uncontrolled replication can be detrimental (shared cache degenerates 
to private cache)

• Based on benefit and cost, control replication level
• Hardware support quite complex

 Adaptive Controlled Migration [Hammoud, Cho, and Melhem, HiPEAC ‘09]

• Migrate (rather than replicate) a block to minimize average access 
latency to this block based on Manhattan distance

• Caveat: book-keeping overheads
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3-way communication
 Once you migrate a cache block away from its home, how do 

you locate it? [Hammoud, Cho, and Melhem, HiPEAC ‘09]

B
home tile of B

new host of B

another requester
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3

2
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Cache block location strategies
 Always-go-home

• “Go to the home tile (directory) to find the tracking information”
• Lots of 3-way cache-to-cache transfers

 Broadcasting
• “Don’t remember anything”
• Expensive

 Caching of tracking information at potential requesters
• “Remember (locally) where previously accessed blocks are”
• Quickly locate the target block locally (after first miss)
• Need maintenance (coherence) of distributed information
• We proposed and studied one such technique [Hammoud, Cho, and Melhem, 

HiPEAC ‘09]
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Caching of tracking information

…
B

home tile of BL2$$ D
ir. Tr
T

Rcore

B primary
tracking info. b

requester tile for B

L2$$ D
ir.

Tr
T

Rcore

tag ptr

replicated
tracking info.

 Primary tracking information at home tile
• Shows where the block has been migrated to
• Keeps track of who has copied the tracking information (bit vector)

 Tracking information table (TrT)
• A copy of the tracking information (only one pointer)
• Updated as necessary (initiated by the directory of the home tile)

B
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A flexible data mapping approach
 Key idea: What if we distribute memory pages to cache banks 

instead of memory blocks? [Cho and Jin, MICRO ‘06]

Memory blocks Memory pages
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Observation

Memory pages Program 1

Program 2

OS PAGE ALLOCATION
OS PAGE ALLOCATION

 Software maps data to different $$

 Key: OS page allocation policies

 Flexible
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Shared $$ issue 2: interference
 Co-scheduled programs compete for cache capacity freely 

(“capitalism”)
 Well-behaving programs get damages if another program vie 

for more cache capacity w/ little reuse (e.g., streaming)
 Performance loss due to interference hard to predict

on 8-core Niagara

2×
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Explicit/implicit partitioning
 Strict partitioning based on system directives

• E.g., program A gets 768KB and program B 256KB
• System must allow a user to specify partition sizes [Iyer, ICS ‘04][Guo et al., 

MICRO ‘07]

 Architectural/system mechanisms
• Way partitioning (e.g., 3 vs. 2 ways) [Suh et al., ICS ‘01][Kim et al., PACT ‘04]

• Bin/bank partitioning: maps pages to cache bins (no hardware support 
needed) [Liu et al., HPCA ‘04][Cho, Jin and Lee, RTCSA ‘07][Lin et al., HPCA ‘08]

…

3 ways to program A 2 ways to program B
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Explicit/implicit partitioning
 Strict partitioning based on system directives

• E.g., program A gets 768KB and program B 256KB
• System must allow a user to specify partition sizes [Iyer, ICS ‘04][Guo et al., 

MICRO ‘07]

 Architectural/system mechanisms
• Way partitioning (e.g., 5 vs. 3 ways) [Suh et al., ICS ‘01][Kim et al., PACT ‘04]

• Bin/bank partitioning: maps pages to cache bins (no hardware support 
needed) [Liu et al., HPCA ‘04][Cho, Jin and Lee, RTCSA ‘07][Lin et al., HPCA ‘08]

 Implicit partitioning based on utility (“utilitarian”)
• Way partitioning based on marginal gains [Suh et al., ICS ‘01][Qureshi et al., 

MICRO ‘06]

• Bank level [Lee, Cho and Childers, HPCA ’10]

• Bank + way level [Lee, Cho and Childers, HPCA ’11]
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Explicit partitioning
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Implicit partitioning

(cache capacity) (cache capacity)
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Private $$ issue: capacity borrowing
 The main drawback of private caches is fixed (small) capacity
 Assume that we have an underlying mechanism for enforcing 

correctness of cache access semantics;
 Key idea: borrow (or steal) capacity from others

• How much capacity do I need and opt to borrow?
• Who may be a potential capacity donor?
• Do we allow performance degradation of a capacity donor?

 Cooperative Caching (CC) [Chang and Sohi, ISCA ‘06]
• Stealing coordinated by a centralized directory (is not scalable)

 Dynamic Spill Receive (DSR) [Qureshi, HPCA ‘09]
• Each node is a spiller or a receiver
• On eviction from a spiller, randomly choose a receiver to copy the data into; 

then, for data access later, use broadcasting
 StimulusCache [Lee, Cho, and Childers, HPCA ‘10]

• It’s likely we’ll have “excess cache” in the future
• Intelligently share the capacity provided by excess caches based on utility
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Core disabling uneconomical

 Many unused (excess) L2 caches exist
 Problem exacerbated with many cores
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Flow-in#N: # data blocks flowing to EC#N

Hit#N: # data blocks hit at EC#N

Dynamic sharing policy
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Flow-in#2Flow-in#2
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Hit/Flow-in ↑  More ECs
Hit/Flow-in ↓  Less ECs

Dynamic sharing policy
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L2Core 0

L2Core 1

L2Core 2

L2Core 3

Core 0: At least 1 EC 
No harmful effect on EC#2

 Allocate 2 ECs

Dynamic sharing policy

EC #1

Main
memory

EC #2

Hits#1
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L2Core 0

L2Core 1

L2Core 2
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Core 2: At least 1 EC
Harmful effect on EC#2

 Allocate 1 EC

Dynamic sharing policy

EC #1

Main
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L2Core 0

L2Core 1

L2Core 2

L2Core 3

Core 2: No benefit with ECs

 Allocate 0 EC

Dynamic sharing policy

EC #1

Main
memory

EC #2
Flow-in#2
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L2Core 0

L2Core 1

L2Core 2

L2Core 3

Maximized capacity utilization

Minimized capacity interference

Dynamic sharing policy

Main
memory

EC #1 EC #2
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Summary: priv. vs. shared caching
 For a small- to medium-scale multicore processor, shared 

caching appears good (for its simplicity)
• A variety of workloads run well
• Care must be taken about interferences
• Because of NUCA effects, this approach is not scalable!

 For larger-scale multicore processors, private cache 
schemes appear more promising
• Free performance isolation
• Less NUCA effect
• Easier fault isolation
• Capacity stealing a necessity
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Summary: hypothetical caching 

(256kB L2 cache slice)
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 Tackle both miss rate and locality through judicious data 
mapping! [Jin and Cho, ICPP ‘08]
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Summary: hypothetical caching 
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In the remainder of this talk
 CloudCache

• Private cache based scheme for large-scale multicore processors
• Capacity borrowing at way/bank level & distance awareness
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A 30,000-feet snapshot
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Cache cloud Working core

High hit rate
& fast access

Low hit rate
& slow access

C

C Working core

 Each cloud is an exclusive private cache for a working core
 Clouds are built with nearby cache ways organized in a chain
 Clouds are built in a two-step process: Dynamic global 

partitioning and cache cloud formation
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Step 1: Dynamic global partitioning
 Global capacity allocator (GCA) runs a partitioning 

algorithm periodically using “hit counts” information
• Each working core sends GCA hit counts from “allocated capacity” and 

additional “monitoring capacity” (of 32 ways)

 Our partitioning considers both utility [Qureshi & Patt, MICRO ‘06]
and QoS

 This step computes how much capacity to give to each core

networknetwork

GCA

Hit counts
Cache 

alloc. info

…

from allocated capacity
from monitoring capacity

Allocation
engine

Allocation
engine

…

Counter buffer

GCA
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0.75

1. Local L2 cache first
2. Threads w/ larger capacity demand first
3. Closer L2 banks first
4. Allocate capacity as much as possible

 Allocation is done only for sound L2 banks

2.751.75

Step 2: Cache cloud formation
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2
0
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2.75

1.25

Goal Capacity to allocate

1.250.25

0

0

Repeat!
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Cache cloud chaining example

1 2

3 4 5

6 7 8

4 1 5 7 3 6 8 24 1 5 7 3 6 8 2

8 6 6 4 4 3 2 2

MRU LRU

Cloud capacity

Core ID

Token count

35

Working core 4

2

6

Working core 2

0-hop distance1-hop distance 2-hop distance
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Architectural support

L2
router

Dir
L1 Proc

Global capacity allocator

L2
router

Dir
L1 Proc

Global capacity allocatorGlobal capacity allocator

L2

Router

Dir

L1 Proc

Cloud table

Monitor tags

Hit counters

Home Core ID Token #Next Core ID

Home Core ID Token #Next Core ID
Home Core ID Token #Next Core ID

Capacity allocation

Cache cloud chaining

 Cloud table resembles StimulusCache’s NECP
 Additional hardware is per-way hit counters and monitor tags
 We do not need core ID tracking information per block
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Capacity allocation example

Global capacity allocatorGlobal capacity allocator

Seven working cores
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Capacity allocation example

Global capacity allocatorGlobal capacity allocator
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Repartition
every ‘T’ cycles
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Capacity allocation example

Global capacity allocatorGlobal capacity allocator
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CloudCache is fast?
 Remote L2 access has 3-way communication

Global capacity allocatorGlobal capacity allocator

(1) Directory lookup
(2) Request forwarding
(3) Data forwarding

Distance-aware cache
cloud formation tackles
only (3)!

University of Pittsburgh

Limited target broadcast (LTB)
 Make common case “super fast” and rare case “not so fast”

Global capacity allocatorGlobal capacity allocator

Private data: 
Limited target broadcast
 No wait for directory lookup

Shared data:
Directory-based coherence

Private data ≫ Shared data
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LTB example

w/o broadcasting
1 1

2 3 4 5

6

2 3 4 5

1
1

1 6w/ broadcasting

Dir. 
request BroadcastLocal L2 hit

Dir. 
response Broadcast hit

time

time
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When is LTB used?
 Shared data: Access ordering is managed by directory

• LTBP is NOT used

 Private data: Access ordering is not needed
• Fast access with broadcast first, then notify directory

 Race condition?
• When there is an access request for private data from a non-owner core 

before directory is updated
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LTB protocol (LTBP)

RR

WW BB

start

1

2

3

4
Input Action

1 Request from other cores Broadcast lock request 

2 Ack from the owner Process non-owner request

3 Nack from the owner

4 Request from the owner
R:     Ready
W:    Wait
B:     Busy

BLBL BUBU

BU:  Broadcast unlock
BL:   Broadcast lock

Directory

L2 cache 1

2

Input Action

1 Broadcast lock request Ack

2 Invalidation
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Quality of Service (QoS) support
 QoS Maximum	performance	degradation
 sampling	factor, 																					32	in	this	work
 private	cache	capacity, 												8	in	this	work	
 currently	allocated	capacity
 Base cycle: Cycles (time) with private cache (estimated)

 .Base	cycle 	current	cycle ∑ 	 		  current	cycle																																																																													current	cycle ∑ 	 			
 Estimated cycle: Cycles with cache capacity ‘j’
 Estimated	cycle j Base	cycle ∑ 	 .

 Min j 				s. t. Estimated	cycle j / 1 QoS Base	cycle
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DSR vs. ECC vs. CloudCache
 Dynamic Spill Receive [Quresh, HPCA ’09]

• Node is either spiller or receiver depending on memory usage
• Spiller nodes randomly “spill” evicted data to a receiver node

 Elastic Cooperative Caching [Herrero et al., ISCA ‘10]
• Each node has private area and shared area
• Nodes with high memory demand can spill evicted data to shared area 

in a randomly selected node
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Experimental setup
 TPTS [Lee et al., SPE ‘10, Cho et al., ICPP ‘08]

• 64-core CMP with 8×8 2D mesh, 4-cycles/hop
• Core: Intel’s ATOM-like two-issue in-order pipeline
• Directory-based MESI protocol
• Four independent DRAM controllers, four ports/controller
• DRAM with Samsung DDR3-1600 timing

 Workloads
• SPEC2006 (10B cycles)

High/medium/low based on MPKI for varying cache capacity
• PARSEC (simlarge input set)

16 threads/application
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Impact of global partitioning 
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L2 cache access latency
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CloudCache w/ LTB
fast local access + fast remote access
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16 threads 

1
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32 and 64 threads
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Effect of QoS enforcement
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CloudCache summary
 Future processors will carry many more cores and cache 

resources and future workloads will be heterogeneous
 Low-level caches must become more scalable and flexible

 We proposed CloudCache w/ three techniques:
• Global “private” capacity allocation to eliminate interference and to 

minimize on-chip misses
• Distance-aware data placement to overcome NUCA latency
• Limited target broadcast to overcome directory lookup latency

 Proposed techniques synergistically improve performance
 Still, we find that global capacity allocation the most effective
 QoS is naturally supported in CloudCache
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