Sangyeun Cho

Computer Science Department
University of Pittsburgh

I
Credits

= Parts of the work presented in this talk are from the results

obtained in collaboration with students and faculty at the
University of Pittsburgh:

+ Mohammad Hammoud

+ Leidin

* Hyunjin Lee

« Kiyeon Lee

« Prof. Bruce Childers

«  Prof. Rami Melhem

= Partial support has come as:
* NSF grant CCF-0702236
« NSF grant CCF-0952273
« A. Richard Newton Graduate Scholarship, ACM DAC 2008

University of Pittsburgh

Recent multicore design trends

= Modular designs based on relatively simple cores
- Easier to validate (a single core)
- Easier to scale (the same validated design replicated multiple times)
« Due to these reasons, future “many-core” processors may look like this
« Examples: Tilera TILE*, Intel 48-core chip [Howard et al., ISSCC 10]
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Recent multicore design trends

= Modular designs based on relatively simple cores
- Easier to validate (a single core)
- Easier to scale (the same validated design replicated multiple times)
« Due to these reasons, future “many-core” processors will look like this
« Examples: Tilera TILE*, Intel 48-core chip [Howard et al., ISSCC 10]

= Design focus shifts from cores to “uncores”
» Network on-chip (NoC): bus, crossbar, ring, 2D/3D mesh, ...

+ Memory hierarchy: caches, coherence mechanisms, memory
controllers, ...

+ System-on-chip components like network MAC, cypher, ...

= Note also:
+ In this design, aggregate cache capacity increases as we add more tiles
+ Some tiles may be active while others are inactive
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L2 cache design issues

L2 caches occupy a major portion (prob. the largest) on chip

Capacity vs. latency
- Off-chip access (still) expensive

+  On-chip latency can grow; with switched on-chip networks, we have
NUCA (Non-Uniform Cache Architecture)

» Private cache vs. shared cache or a hybrid scheme?
Quality of service

+ Interference (capacity/bandwidth)

- Explicit/implicit capacity partitioning
Manageability, fault and yield

+ Not all caches have to be active

+ Hard (irreversible) faults + process variation + soft faults
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Private cache vs. shared cache
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Historical perspective

= Private designs were there
+ Multiprocessors based on microprocessors

= Shared cache clustering [Nayfeh and Olukotun, ISCA '94]

= Multicores with private design more straightforward
- Earlier AMD chips and Sun Microsystems’ UltraSPARC processors
= Intel, IBM, and Sun pushed for shared caches (e.g., Xeon
products, POWER-4/5/6, Niagara*)

« A variety of workloads perform relatively well

= More recently, private caches re-gain popularity
+ We have more transistors
 Interference is easily controlled
+ Match well with on-/off-chip (shared) L3 $$ [Oh et al., ISVLSI ‘09]
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Shared $% issue 1: NUCA

= A compromise design
« Large monolithic shared cache: conceptually simple but very slow
« Smaller cache slices w/ disparate latencies [Kim et al., ASPLOS ‘02]
+ Interleave data to all available slices (e.g., IBM POWER-*)
= Problems
+ Blind data distribution with no provisions for latency hiding
+ As a result, simple NUCA performance is not scalable
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Improving program-data distance

= Key idea: replicate or migrate

= Victim replication [zhang and Asanovi¢, ISCA '05]
« Victims from private L1 cache are “replicated” to local L2 bank
+ Essentially, local L2 banks incorporate large victim caching space
A natural hybrid scheme that takes advantages of shared & private $$

= Adaptive Selective Replication geckmann et al., MICRO '06]

« Uncontrolled replication can be detrimental (shared cache degenerates
to private cache)

- Based on benefit and cost, control replication level
« Hardware support quite complex

= Adaptive Controlled Migration [Hammoud, Cho, and Melhem, HIPEAC ‘09]

+ Migrate (rather than replicate) a block to minimize average access
latency to this block based on Manhattan distance

- Caveat: book-keeping overheads
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3-way communication

= Once you migrate a cache block away from its home, how do
you locate it? [Hammoud, Cho, and Melhem, HIPEAC ‘09]
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3-way communication

= Once you migrate a cache block away from its home, how do
you locate it? [Hammoud, Cho, and Melhem, HIPEAC ‘09]

requester

II 3
IE

new host of B

\ home tile of B

University of Pittsburgh

e
I
Cache block location strategies
= Always-go-home

+ “Go to the home tile (directory) to find the tracking information”
 Lots of 3-way cache-to-cache transfers

= Broadcasting
* “Don’t remember anything”
+ Expensive

= Caching of tracking information at potential requesters
+ “Remember (locally) where previously accessed blocks are”
- Quickly locate the target block locally (after first miss)
+ Need maintenance (coherence) of distributed information

+ We proposed and studied one such technique [Hammoud, Cho, and Melhem,
HIPEAC ‘09]
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Caching of tracking information

requester tile for B
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= Primary tracking information at home tile

«  Shows where the block has been migrated to

+ Keeps track of who has copied the tracking information (bit vector)
= Tracking information table (TrT)

A copy of the tracking information (only one pointer)

+ Updated as necessary (initiated by the directory of the home tile)
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A flexible data mapping approach

= Key idea: What if we distribute memory pages to cache banks

instead of memory blocks? [cho and Jin, MICRO ‘06]
Memory blocks

Memory pages
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Observation

Memory pages Program 1

O Software maps data to different $$

O Key: OS page allocation policies
O Flexible
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Shared $$ issue 2: interference

= Co-scheduled programs compete for cache capacity freely
(“capitalism”)

= Well-behaving programs get damages if another program vie
for more cache capacity w/ little reuse (e.g., streaming)

= Performance loss due to interference hard to predict
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Explicit/implicit partitioning

= Strict partitioning based on system directives
+ E.g., program A gets 768KB and program B 256KB

+  System must allow a user to specify partition sizes [lyer, ICS ‘04][Guo et al.,
MICRO ‘07]

= Architectural/system mechanisms
« Way partitioning (e.g., 3 vs. 2 ways) [Suh et al., ICS ‘01][Kim et al., PACT ‘04]

« Bin/bank partitioning: maps pages to cache bins (no hardware support
needed) [Liu et al., HPCA ‘04][Cho, Jin and Lee, RTCSA ‘07][Lin et al., HPCA ‘08]
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Explicit/implicit partitioning

= Strict partitioning based on system directives
+ E.g., program A gets 768KB and program B 256KB

+  System must allow a user to specify partition sizes [lyer, ICS ‘04][Guo et al.,
MICRO ‘07]

= Architectural/system mechanisms
« Way partitioning (e.g., 5 vs. 3 ways) [Suh et al., ICS ‘01][Kim et al., PACT ‘04]

+ Bin/bank partitioning: maps pages to cache bins (no hardware support
needed) [Liu et al., HPCA ‘04][Cho, Jin and Lee, RTCSA ‘07][Lin et al., HPCA ‘08]

= Implicit partitioning based on utility (“utilitarian”)

+ Way partitioning based on marginal gains [Suh et al., ICS ‘01][Qureshi et al.,
MICRO ‘06]

» Bank level [Lee, Cho and Childers, HPCA '10]
+ Bank + way level [Lee, Cho and Childers, HPCA '11]
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Explicit partitioning
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Implicit partitioning
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Private $$ issue: capacity borrowing

= The main drawback of private caches is fixed (small) capacity
= Assume that we have an underlying mechanism for enforcing
correctness of cache access semantics;

= Key idea: borrow (or steal) capacity from others

+ How much capacity do | need and opt to borrow?

+  Who may be a potential capacity donor?

« Do we allow performance degradation of a capacity donor?
= Cooperative Caching (CC) [Chang and Sohi, ISCA ‘06]

Stealing coordinated by a centralized directory (is not scalable)

= Dynamic Spill Receive (DSR) [Qureshi, HPCA ‘09]

+ Each node is a spiller or a receiver

« On eviction from a spiller, randomly choose a receiver to copy the data into;
then, for data access later, use broadcasting

«  StimulusCache |[Lee, Cho, and Childers, HPCA ‘10]
+ It's likely we'll have “excess cache” in the future
- Intelligently share the capacity provided by excess caches based on utility
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Core disabling uneconomical
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= Many unused (excess) L2 caches exist
= Problem exacerbated with many cores
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Dynamic sharing policy

Main
memory

Core 3

Flow-in#N: # data blocks flowing to EC#N

Hit#N: # data blocks hit at EC#N

Dynamic sharing policy

Main
memory

Core 3

Hit/Flow-in 1 =» More ECs
Hit/Flow-in | =» Less ECs
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Main
memory

EC #2

Core 0: At least 1 EC
No harmful effect on EC#2

=>» Allocate 2 ECs
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Dynamic sharing policy

Flow-in#1 X Flow-in#2 Main
memory

Core 1: At least 2 ECs

=>» Allocate 2 ECs
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Dynamic sharing policy

Core 0

Core 1

Main
" memory

EC #2

Core 3

Core 2: At least 1 EC
Harmful effect on EC#2

=> Allocate 1 EC
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Dynamic sharing policy

Core 0

Core 1 Main

memory

Core 2

Core 3

Core 2: No benefit with ECs

= Allocate 0 EC

University of Pittsburgh




Dynamic sharing policy
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Summary: priv. vs. shared caching

= For a small- to medium-scale multicore processor, shared
caching appears good (for its simplicity)
A variety of workloads run well
+ Care must be taken about interferences
- Because of NUCA effects, this approach is not scalable!

= For larger-scale multicore processors, private cache
schemes appear more promising
- Free performance isolation
+ Less NUCA effect
- Easier fault isolation
« Capacity stealing a necessity

University of Pittsburgh
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Summary: hypothetical caching

= Tackle both miss rate and locality through judicious data
mapping! [in and Cho, ICPP 08]
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Summary: hypothetical caching

Program location

# pages mapped
N
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Summary: hypothetical caching
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In the remainder of this talk

= CloudCache
« Private cache based scheme for large-scale multicore processors
« Capacity borrowing at way/bank level & distance awareness

University of Pittsburgh
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A 30,000-feet snapshot

o 0
High hit rate
0 & fast access
G Low hit rate
e o & slow access
o
e Working core
Cache cloud . Working core

= Each cloud is an exclusive private cache for a working core
= Clouds are built with nearby cache ways organized in a chain

= Clouds are built in a two-step process: Dynamic global
partitioning and cache cloud formation

University of Pittsburgh

. wesoruum]
I
Step 1: Dynamic global partitioning

= Global capacity allocator (GCA) runs a partitioning
algorithm periodically using “hit counts” information

« Each working core sends GCA hit counts from “allocated capacity” and
additional “monitoring capacity” (of 32 ways)

= Our partitioning considers both utility [Qureshi & Patt, MICRO ‘06]
and QoS

= This step computes how much capacity to give to each core

Allocation _,
engine
v

e —
Cache Counter buffer
alloc. info

Hit counts

== from allocated capacity
from monitoring capacity

GCA
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Step 2: Cache cloud formation

-----------------------------------------------------------

35---C-;-I-O-S-é-r-i_-z---b-a-h-k-é-ﬁ-rusut ------------------------------ .: Repeat!
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4: Allocate capacity as much as possible  ,+"

= Allocation is done only for sound L2 banks

University of Pittsburgh

I
Cache cloud chaining example
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Architectural support
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= Cloud table resembles StimulusCache’s NECP
= Additional hardware is per-way hit counters and monitor tags
= We do not need core ID tracking information per block
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Capacity allocation example
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Capacity allocation example Capacity allocation example
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CloudCache is fast? Limited target broadcast (LTB)

= Remote L2 access has 3-way communication = Make common case “super fast” and rare case “not so fast”
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LTB example

I I £ p t |

request response Local L2 hit Broadcast Broadcast hit
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When is LTB used?

= Shared data: Access ordering is managed by directory
« LTBP is NOT used

= Private data: Access ordering is not needed

« Fast access with broadcast first, then notify directory
‘lllllllllllIlllllllIlllllllIllllllllllllllllllllllllllllllllll.
Race condition?

« When there is an access request for private data from a non-owner core
before directory is updated

AN I NS NN N NN NN NN SN E NS NN NS EESEEEEEEEEEEEEEEEEEEEsnssnmmnns?
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=
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LTB protocol (LTBP)

Input Action

1| Request from other cores Broadcast lock request

Ack from the owner Process non-owner request

Nack from the owner

rlw(nN

Request from the owner

L2 cache
(1
Input Action
@ @ 1| Broadcast lock request | Ack
2] 2| Invalidation

BU: Broadcast unlock
BL: Broadcast lock
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Quality of Service (QoS) support

= QoS = Maximum performance degradation
32 in this work
8 in this work

= Fs = sampling factor,
= K = private cache capacity,
= n = currently allocated capacity

= Base cycle: Cycles (time) with private cache (estimated)

current cycle + Y-, 1 Hits(i) X Fg X miss latency (n > K)

= Base cycle = { current cycle (n=K)
current cycle — YK Hits(i) X Fs x miss latency (n < K)

= Estimated cycle: Cycles with cache capacity
= Estimated cycle(j) = Base cycle + Zﬁ(:jﬂ Hits(i) X Fg X miss latency
* Cgos = Min(j) s.t. Estimated cycle(j)/(1 + QoS) < Base cycle
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DSR vs. ECC vs. CloudCache

= Dynamic Spill Receive [Quresh, HPCA '09]
» Node is either spiller or receiver depending on memory usage
+ Spiller nodes randomly “spill” evicted data to a receiver node
= Elastic Cooperative Caching [Herrero et al., ISCA ‘10]
« Each node has private area and shared area

+ Nodes with high memory demand can spill evicted data to shared area
in a randomly selected node

r'y
Allocated

DSR ke ECC CloudCache

capacity
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p0 pl p2 p3 pd pS p6 p? p0 pl p2 p3 pd p5 pb p? p0 pl p2 p3 pd p5 p6 p7

n Private capacity K Shared capacity K Cache capacity benefit: pO<pl< .. < p6 < p7
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Experimental setup

= TPTS [Lee et al., SPE ‘10, Cho et al., ICPP ‘08]
» 64-core CMP with 8 x8 2D mesh, 4-cycles/hop
« Core: Intel's ATOM-like two-issue in-order pipeline
+ Directory-based MESI protocol
+ Four independent DRAM controllers, four ports/controller
- DRAM with Samsung DDR3-1600 timing

= Workloads
- SPEC2006 (10B cycles)
« High/medium/low based on MPKI for varying cache capacity
+ PARSEC (simlarge input set)
« 16 threads/application
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Impact of global partitioning Impact of global partitioning
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Impact of global partitioning

Shared Private DSR ECC CloudCache
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Impact of global partitioning
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16 threads

U EEEE NN NN NN NS EE NN NN NS EEENNE NN NN SN NN N NSNS NS NEN NSNS NENENNEEENENEENEEENEEEEENEEEEEEEE,

H g - ® Shared D58 ECC ®CLOUD :
H- 2~ :
1 ® Shared ® DSR ECC = CLOUD :
P E2 o :
E £ o H
; o i v :
3= CLLEECLEE S
E 3 B :osi
' g =
"--- J. n = -:
i ‘L} Comb2 Light2 Medium2 Heavy?2 .

University of Pittsburgh

I —
32 and 64 threads
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Effect of QoS enforcement
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CloudCache summary

= Future processors will carry many more cores and cache
resources and future workloads will be heterogeneous

= Low-level caches must become more scalable and flexible

= We proposed CloudCache w/ three techniques:
+ Global “private” capacity allocation to eliminate interference and to
minimize on-chip misses
- Distance-aware data placement to overcome NUCA latency
+ Limited target broadcast to overcome directory lookup latency

= Proposed techniques synergistically improve performance
= Still, we find that global capacity allocation the most effective
= QoS is naturally supported in CloudCache

University of Pittsburgh

Our multicore cache publications

= Cho and Jin, “Managing Distributed, Shared L2 Caches through OS-Level
Page Allocation,” MICRO 2006. Best paper nominee.

= Cho, Jin and Lee, “Achieving Predictable Performance with On-Chip Shared
L2 Caches for Manycore-Based Real-Time Systems,” RTCSA 2007. Invited
paper.

= Hammoud, Cho and Melhem, “ACM: An Efficient Approach for Managing
Shared Caches in Chip Multiprocessors,” HIPEAC 2008.

= Hammoud, Cho and Melhem, “Dynamic Cache Clustering for Chip
Multiprocessors,” ICS 2008.

= Jin and Cho, “Taming Single-Thread Program Performance on Many
Distributed On-Chip L2 Caches,” ICPP 2008.

= Oh, Lee, Lee, and Cho, “An Analytical Model to Study Optimal Area
Breakdown between Cores and Caches in a Chip Multiprocessor,” ISVLSI
2009.

= Jin and Cho, “SOS: A Software-Oriented Distributed Shared Cache
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