
CloudCache:
Expanding and Shrinking Private Caches

CloudCache:
Expanding and Shrinking Private Caches

Sangyeun Cho

Computer Science Department
University of Pittsburgh

Sangyeun Cho

Computer Science Department
University of Pittsburgh

University of Pittsburgh

Credits
 Parts of the work presented in this talk are from the results

obtained in collaboration with students and faculty at the
University of Pittsburgh:
• Mohammad Hammoud
• Lei Jin
• Hyunjin Lee
• Kiyeon Lee
• Prof. Bruce Childers
• Prof. Rami Melhem

 Partial support has come as:
• NSF grant CCF-0702236
• NSF grant CCF-0952273
• A. Richard Newton Graduate Scholarship, ACM DAC 2008

University of Pittsburgh

Recent multicore design trends
 Modular designs based on relatively simple cores

• Easier to validate (a single core)
• Easier to scale (the same validated design replicated multiple times)
• Due to these reasons, future “many-core” processors may look like this
• Examples: Tilera TILE*, Intel 48-core chip [Howard et al., ISSCC ’10]

University of Pittsburgh

Recent multicore design trends
 Modular designs based on relatively simple cores

• Easier to validate (a single core)
• Easier to scale (the same validated design replicated multiple times)
• Due to these reasons, future “many-core” processors will look like this
• Examples: Tilera TILE*, Intel 48-core chip [Howard et al., ISSCC ’10]

 Design focus shifts from cores to “uncores”
• Network on-chip (NoC): bus, crossbar, ring, 2D/3D mesh, …
• Memory hierarchy: caches, coherence mechanisms, memory

controllers, …
• System-on-chip components like network MAC, cypher, …

 Note also:
• In this design, aggregate cache capacity increases as we add more tiles
• Some tiles may be active while others are inactive

University of Pittsburgh

L2 cache design issues
 L2 caches occupy a major portion (prob. the largest) on chip

 Capacity vs. latency
• Off-chip access (still) expensive
• On-chip latency can grow; with switched on-chip networks, we have

NUCA (Non-Uniform Cache Architecture)
• Private cache vs. shared cache or a hybrid scheme?

 Quality of service
• Interference (capacity/bandwidth)
• Explicit/implicit capacity partitioning

 Manageability, fault and yield
• Not all caches have to be active
• Hard (irreversible) faults + process variation + soft faults

University of Pittsburgh

Private cache vs. shared cache

 Short hit latency (always local)

 High on-chip miss rate

 Long miss resolution time (i.e., are
there replicas?

 Low on-chip miss rate

 Straightforward data location

 Long average hit latency

 Uncontrolled interference

University of Pittsburgh

Historical perspective
 Private designs were there

• Multiprocessors based on microprocessors
 Shared cache clustering [Nayfeh and Olukotun, ISCA ‘94]

 Multicores with private design more straightforward
• Earlier AMD chips and Sun Microsystems’ UltraSPARC processors

 Intel, IBM, and Sun pushed for shared caches (e.g., Xeon
products, POWER-4/5/6, Niagara*)
• A variety of workloads perform relatively well

 More recently, private caches re-gain popularity
• We have more transistors
• Interference is easily controlled
• Match well with on-/off-chip (shared) L3 $$ [Oh et al., ISVLSI ‘09]

University of Pittsburgh

Shared $$ issue 1: NUCA
 A compromise design

• Large monolithic shared cache: conceptually simple but very slow
• Smaller cache slices w/ disparate latencies [Kim et al., ASPLOS ‘02]

Interleave data to all available slices (e.g., IBM POWER-*)

 Problems
• Blind data distribution with no provisions for latency hiding
• As a result, simple NUCA performance is not scalable

your
program

your
data

University of Pittsburgh

Improving program-data distance
 Key idea: replicate or migrate
 Victim replication [Zhang and Asanović, ISCA ’05]

• Victims from private L1 cache are “replicated” to local L2 bank
• Essentially, local L2 banks incorporate large victim caching space
• A natural hybrid scheme that takes advantages of shared & private $$

 Adaptive Selective Replication [Beckmann et al., MICRO ‘06]

• Uncontrolled replication can be detrimental (shared cache degenerates
to private cache)

• Based on benefit and cost, control replication level
• Hardware support quite complex

 Adaptive Controlled Migration [Hammoud, Cho, and Melhem, HiPEAC ‘09]

• Migrate (rather than replicate) a block to minimize average access
latency to this block based on Manhattan distance

• Caveat: book-keeping overheads

University of Pittsburgh

3-way communication
 Once you migrate a cache block away from its home, how do

you locate it? [Hammoud, Cho, and Melhem, HiPEAC ‘09]

B
home tile of B

new host of B

another requester

1

3

2

University of Pittsburgh

3-way communication
 Once you migrate a cache block away from its home, how do

you locate it? [Hammoud, Cho, and Melhem, HiPEAC ‘09]

B

home tile of B

new host of B

requester

1

3

2

University of Pittsburgh

Cache block location strategies
 Always-go-home

• “Go to the home tile (directory) to find the tracking information”
• Lots of 3-way cache-to-cache transfers

 Broadcasting
• “Don’t remember anything”
• Expensive

 Caching of tracking information at potential requesters
• “Remember (locally) where previously accessed blocks are”
• Quickly locate the target block locally (after first miss)
• Need maintenance (coherence) of distributed information
• We proposed and studied one such technique [Hammoud, Cho, and Melhem,

HiPEAC ‘09]

University of Pittsburgh

Caching of tracking information

…
B

home tile of BL2$$ D
ir. Tr
T

Rcore

B primary
tracking info. b

requester tile for B

L2$$ D
ir.

Tr
T

Rcore

tag ptr

replicated
tracking info.

 Primary tracking information at home tile
• Shows where the block has been migrated to
• Keeps track of who has copied the tracking information (bit vector)

 Tracking information table (TrT)
• A copy of the tracking information (only one pointer)
• Updated as necessary (initiated by the directory of the home tile)

B

University of Pittsburgh

A flexible data mapping approach
 Key idea: What if we distribute memory pages to cache banks

instead of memory blocks? [Cho and Jin, MICRO ‘06]

Memory blocks Memory pages

University of Pittsburgh

Observation

Memory pages Program 1

Program 2

OS PAGE ALLOCATION
OS PAGE ALLOCATION

 Software maps data to different $$

 Key: OS page allocation policies

 Flexible

University of Pittsburgh

Shared $$ issue 2: interference
 Co-scheduled programs compete for cache capacity freely

(“capitalism”)
 Well-behaving programs get damages if another program vie

for more cache capacity w/ little reuse (e.g., streaming)
 Performance loss due to interference hard to predict

on 8-core Niagara

2×

University of Pittsburgh

Explicit/implicit partitioning
 Strict partitioning based on system directives

• E.g., program A gets 768KB and program B 256KB
• System must allow a user to specify partition sizes [Iyer, ICS ‘04][Guo et al.,

MICRO ‘07]

 Architectural/system mechanisms
• Way partitioning (e.g., 3 vs. 2 ways) [Suh et al., ICS ‘01][Kim et al., PACT ‘04]

• Bin/bank partitioning: maps pages to cache bins (no hardware support
needed) [Liu et al., HPCA ‘04][Cho, Jin and Lee, RTCSA ‘07][Lin et al., HPCA ‘08]

…

3 ways to program A 2 ways to program B

University of Pittsburgh

Explicit/implicit partitioning
 Strict partitioning based on system directives

• E.g., program A gets 768KB and program B 256KB
• System must allow a user to specify partition sizes [Iyer, ICS ‘04][Guo et al.,

MICRO ‘07]

 Architectural/system mechanisms
• Way partitioning (e.g., 5 vs. 3 ways) [Suh et al., ICS ‘01][Kim et al., PACT ‘04]

• Bin/bank partitioning: maps pages to cache bins (no hardware support
needed) [Liu et al., HPCA ‘04][Cho, Jin and Lee, RTCSA ‘07][Lin et al., HPCA ‘08]

 Implicit partitioning based on utility (“utilitarian”)
• Way partitioning based on marginal gains [Suh et al., ICS ‘01][Qureshi et al.,

MICRO ‘06]

• Bank level [Lee, Cho and Childers, HPCA ’10]

• Bank + way level [Lee, Cho and Childers, HPCA ’11]

University of Pittsburgh

Explicit partitioning

University of Pittsburgh

Implicit partitioning

(cache capacity) (cache capacity)

University of Pittsburgh

Private $$ issue: capacity borrowing
 The main drawback of private caches is fixed (small) capacity
 Assume that we have an underlying mechanism for enforcing

correctness of cache access semantics;
 Key idea: borrow (or steal) capacity from others

• How much capacity do I need and opt to borrow?
• Who may be a potential capacity donor?
• Do we allow performance degradation of a capacity donor?

 Cooperative Caching (CC) [Chang and Sohi, ISCA ‘06]
• Stealing coordinated by a centralized directory (is not scalable)

 Dynamic Spill Receive (DSR) [Qureshi, HPCA ‘09]
• Each node is a spiller or a receiver
• On eviction from a spiller, randomly choose a receiver to copy the data into;

then, for data access later, use broadcasting
 StimulusCache [Lee, Cho, and Childers, HPCA ‘10]

• It’s likely we’ll have “excess cache” in the future
• Intelligently share the capacity provided by excess caches based on utility

University of Pittsburgh

Core disabling uneconomical

 Many unused (excess) L2 caches exist
 Problem exacerbated with many cores

0%

5%

10%

15%

20%

25%

30%

35%

40%

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

pr
ob

ab
ili
ty

of sound cores/ L2 caches

L2 cache

processing logic

core (L2 + proc. Logic)

32 core

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 2 3 4 5 6 7 8

Pr
ob

ab
ili
ty

of sound cores/ L2 caches

8 core L2 cache

processing logic

core (L2 + proc. logic)

University of Pittsburgh

Flow-in#N: # data blocks flowing to EC#N

Hit#N: # data blocks hit at EC#N

Dynamic sharing policy

L2Core 0

L2Core 1

L2Core 2

L2Core 3

EC #1

Main
memoryFlow-in#1

EC #2

Hits#1

Hits#2

Flow-in#2Flow-in#2

University of Pittsburgh

Hit/Flow-in ↑ More ECs
Hit/Flow-in ↓ Less ECs

Dynamic sharing policy

L2Core 0

L2Core 1

L2Core 2

L2Core 3

EC #1

Main
memoryFlow-in#1

EC #2

Hits#1

Hits#2

Flow-in#2Flow-in#2

University of Pittsburgh

L2Core 0

L2Core 1

L2Core 2

L2Core 3

Core 0: At least 1 EC
No harmful effect on EC#2

 Allocate 2 ECs

Dynamic sharing policy

EC #1

Main
memory

EC #2

Hits#1

University of Pittsburgh

L2Core 0

L2Core 1

L2Core 2

L2Core 3

Core 1: At least 2 ECs

 Allocate 2 ECs

Dynamic sharing policy

EC #1

Main
memory

EC #2

Hits#2

Flow-in#2

University of Pittsburgh

L2Core 0

L2Core 1

L2Core 2

L2Core 3

Core 2: At least 1 EC
Harmful effect on EC#2

 Allocate 1 EC

Dynamic sharing policy

EC #1

Main
memory

EC #2

Hits#1

Flow-in#2

University of Pittsburgh

L2Core 0

L2Core 1

L2Core 2

L2Core 3

Core 2: No benefit with ECs

 Allocate 0 EC

Dynamic sharing policy

EC #1

Main
memory

EC #2
Flow-in#2

University of Pittsburgh

L2Core 0

L2Core 1

L2Core 2

L2Core 3

Maximized capacity utilization

Minimized capacity interference

Dynamic sharing policy

Main
memory

EC #1 EC #2

2

2

1

0

EC#

University of Pittsburgh

Summary: priv. vs. shared caching
 For a small- to medium-scale multicore processor, shared

caching appears good (for its simplicity)
• A variety of workloads run well
• Care must be taken about interferences
• Because of NUCA effects, this approach is not scalable!

 For larger-scale multicore processors, private cache
schemes appear more promising
• Free performance isolation
• Less NUCA effect
• Easier fault isolation
• Capacity stealing a necessity

University of Pittsburgh

Summary: hypothetical caching

(256kB L2 cache slice)

R
el

at
iv

e
pe

rfo
rm

an
ce

to
 s

ha
re

d
ca

ch
in

g
(w

/o
 p

ro
fil

in
g)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

gzip vp
r gcc mcf

cra
fty

pars
e r eo

n

gap
vo

rte
x

bzip
2

tw
olf

wupwise sw
im

mgrid mesa art
eq

uake
am

mp
g-m

ea
n

private w/ profiling
shared w/ profiling
static 2D coloring

 Tackle both miss rate and locality through judicious data
mapping! [Jin and Cho, ICPP ‘08]

University of Pittsburgh

0

50

100

150

200

250

300

350

400

450

Summary: hypothetical caching

pa

ge
s

m
ap

pe
d

(256kB L2 cache bank)

Program location

GCC

X
Y

University of Pittsburgh

Summary: hypothetical caching
alpha 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

ammp

art

bzip2

crafty

eon

equake

gap

gcc

gzip

mcf

mesa

mgrid

parser

swim

twolf

vortex

vpr

wupwise

private caching shared caching(256kB L2 cache bank)

University of Pittsburgh

In the remainder of this talk
 CloudCache

• Private cache based scheme for large-scale multicore processors
• Capacity borrowing at way/bank level & distance awareness

University of Pittsburgh

A 30,000-feet snapshot

1

2

3
4

5

6

8
9

7

Cache cloud Working core

High hit rate
& fast access

Low hit rate
& slow access

C

C Working core

 Each cloud is an exclusive private cache for a working core
 Clouds are built with nearby cache ways organized in a chain
 Clouds are built in a two-step process: Dynamic global

partitioning and cache cloud formation

University of Pittsburgh

Step 1: Dynamic global partitioning
 Global capacity allocator (GCA) runs a partitioning

algorithm periodically using “hit counts” information
• Each working core sends GCA hit counts from “allocated capacity” and

additional “monitoring capacity” (of 32 ways)

 Our partitioning considers both utility [Qureshi & Patt, MICRO ‘06]
and QoS

 This step computes how much capacity to give to each core

networknetwork

GCA

Hit counts
Cache

alloc. info

…

from allocated capacity
from monitoring capacity

Allocation
engine

Allocation
engine

…

Counter buffer

GCA

University of Pittsburgh

0.75

1. Local L2 cache first
2. Threads w/ larger capacity demand first
3. Closer L2 banks first
4. Allocate capacity as much as possible

 Allocation is done only for sound L2 banks

2.751.75

Step 2: Cache cloud formation

0

3

1

2
0

1

2.75

1.25

Goal Capacity to allocate

1.250.25

0

0

Repeat!

University of Pittsburgh

Cache cloud chaining example

1 2

3 4 5

6 7 8

4 1 5 7 3 6 8 24 1 5 7 3 6 8 2

8 6 6 4 4 3 2 2

MRU LRU

Cloud capacity

Core ID

Token count

35

Working core 4

2

6

Working core 2

0-hop distance1-hop distance 2-hop distance

University of Pittsburgh

Architectural support

L2
router

Dir
L1 Proc

Global capacity allocator

L2
router

Dir
L1 Proc

Global capacity allocatorGlobal capacity allocator

L2

Router

Dir

L1 Proc

Cloud table

Monitor tags

Hit counters

Home Core ID Token #Next Core ID

Home Core ID Token #Next Core ID
Home Core ID Token #Next Core ID

Capacity allocation

Cache cloud chaining

 Cloud table resembles StimulusCache’s NECP
 Additional hardware is per-way hit counters and monitor tags
 We do not need core ID tracking information per block

University of Pittsburgh

Capacity allocation example

Global capacity allocatorGlobal capacity allocator

Seven working cores
10.5

8
12.625
0.75
9.625

14.5

8

University of Pittsburgh

Capacity allocation example

Global capacity allocatorGlobal capacity allocator

10.5
8

12.625
0.75
9.625

14.5

8
13.125

8.5
7.875
7

11
11.5

6

Repartition
every ‘T’ cycles

University of Pittsburgh

Capacity allocation example

Global capacity allocatorGlobal capacity allocator

13.125
8.5
7.875
7

11
11.5

6

University of Pittsburgh

CloudCache is fast?
 Remote L2 access has 3-way communication

Global capacity allocatorGlobal capacity allocator

(1) Directory lookup
(2) Request forwarding
(3) Data forwarding

Distance-aware cache
cloud formation tackles
only (3)!

University of Pittsburgh

Limited target broadcast (LTB)
 Make common case “super fast” and rare case “not so fast”

Global capacity allocatorGlobal capacity allocator

Private data:
Limited target broadcast
 No wait for directory lookup

Shared data:
Directory-based coherence

Private data ≫ Shared data

University of Pittsburgh

LTB example

w/o broadcasting
1 1

2 3 4 5

6

2 3 4 5

1
1

1 6w/ broadcasting

Dir.
request BroadcastLocal L2 hit

Dir.
response Broadcast hit

time

time
University of Pittsburgh

When is LTB used?
 Shared data: Access ordering is managed by directory

• LTBP is NOT used

 Private data: Access ordering is not needed
• Fast access with broadcast first, then notify directory

 Race condition?
• When there is an access request for private data from a non-owner core

before directory is updated

University of Pittsburgh

LTB protocol (LTBP)

RR

WW BB

start

1

2

3

4
Input Action

1 Request from other cores Broadcast lock request

2 Ack from the owner Process non-owner request

3 Nack from the owner

4 Request from the owner
R: Ready
W: Wait
B: Busy

BLBL BUBU

BU: Broadcast unlock
BL: Broadcast lock

Directory

L2 cache 1

2

Input Action

1 Broadcast lock request Ack

2 Invalidation

University of Pittsburgh

Quality of Service (QoS) support
 QoS Maximum	performance	degradation
 sampling	factor, 																					32	in	this	work
 private	cache	capacity, 												8	in	this	work	
 currently	allocated	capacity
 Base cycle: Cycles (time) with private cache (estimated)

 .Base	cycle 	current	cycle ∑ 	 		 current	cycle																																																																													current	cycle ∑ 	 			
 Estimated cycle: Cycles with cache capacity ‘j’
 Estimated	cycle j Base	cycle ∑ 	 .

 Min j 				s. t. Estimated	cycle j / 1 QoS Base	cycle

University of Pittsburgh

DSR vs. ECC vs. CloudCache
 Dynamic Spill Receive [Quresh, HPCA ’09]

• Node is either spiller or receiver depending on memory usage
• Spiller nodes randomly “spill” evicted data to a receiver node

 Elastic Cooperative Caching [Herrero et al., ISCA ‘10]
• Each node has private area and shared area
• Nodes with high memory demand can spill evicted data to shared area

in a randomly selected node

University of Pittsburgh

Experimental setup
 TPTS [Lee et al., SPE ‘10, Cho et al., ICPP ‘08]

• 64-core CMP with 8×8 2D mesh, 4-cycles/hop
• Core: Intel’s ATOM-like two-issue in-order pipeline
• Directory-based MESI protocol
• Four independent DRAM controllers, four ports/controller
• DRAM with Samsung DDR3-1600 timing

 Workloads
• SPEC2006 (10B cycles)

High/medium/low based on MPKI for varying cache capacity
• PARSEC (simlarge input set)

16 threads/application

University of Pittsburgh

Impact of global partitioning

High

Medium

Low

High

M
P

K
I

University of Pittsburgh

Impact of global partitioning

High

Medium

Low

High
M

P
K

I

University of Pittsburgh

Impact of global partitioning

High

Medium

Low

High

M
P

K
I

University of Pittsburgh

Impact of global partitioning

High

Medium

Low

High

M
P

K
I

University of Pittsburgh

Impact of global partitioning

High

Medium

Low

High

M
P

K
I

University of Pittsburgh

L2 cache access latency
Access # 401.bzip2

Private

DSR

Shared

0%

50%

100%

CloudCache w/o LTB0.E+00

1.E+06

2.E+06

0%

50%

100%

0.E+00

1.E+06

2.E+06

0%

50%

100%

ECC0.E+00

1.E+06

2.E+06

0%

50%

100%

0.E+00

1.E+06

2.E+06
0%

50%

100%

0.E+00

1.E+06

2.E+06

0%

50%

100%

0 100 200 300

CloudCache w/ LTB

access latency

0.E+00

1.E+06

2.E+06

0 100 200 300

Shared:
widely spread latency

Private:
fast local access + off-chip access

DSR & ECC:
fast local access + widely spread latency

CloudCache w/o LTB
fast local access + narrowly spread latency

CloudCache w/ LTB
fast local access + fast remote access

University of Pittsburgh

16 threads

1

University of Pittsburgh

32 and 64 threads

University of Pittsburgh

PARSEC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Comb1 Comb2 Comb3 Comb4 Comb5

sp
ee

du
p

to
 p

riv
at

e

Shared DSR ECC CLOUD

University of Pittsburgh

PARSEC

0

0.5

1

1.5

2

swaption blacksch. canneal bodytrack swaption facesim canneal ferret

Comb2 Comb5

sp
ee

du
p

to
 p

riv
at

e

Shared DSR ECC CLOUD

University of Pittsburgh

Effect of QoS enforcement

0.9

1

1.1

1.2

1.3

1.4

1.5

1 21 41 61 81 101 121 141 161 181

sp
ee
du

p
to
 p
riv

at
e

No QoS 98% QoS 95% QoS

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1 11 21 31 41 51 61 71 81 91

different programs

University of Pittsburgh

CloudCache summary
 Future processors will carry many more cores and cache

resources and future workloads will be heterogeneous
 Low-level caches must become more scalable and flexible

 We proposed CloudCache w/ three techniques:
• Global “private” capacity allocation to eliminate interference and to

minimize on-chip misses
• Distance-aware data placement to overcome NUCA latency
• Limited target broadcast to overcome directory lookup latency

 Proposed techniques synergistically improve performance
 Still, we find that global capacity allocation the most effective
 QoS is naturally supported in CloudCache

University of Pittsburgh

Our multicore cache publications
 Cho and Jin, “Managing Distributed, Shared L2 Caches through OS-Level

Page Allocation,” MICRO 2006. Best paper nominee.
 Cho, Jin and Lee, “Achieving Predictable Performance with On-Chip Shared

L2 Caches for Manycore-Based Real-Time Systems,” RTCSA 2007. Invited
paper.

 Hammoud, Cho and Melhem, “ACM: An Efficient Approach for Managing
Shared Caches in Chip Multiprocessors,” HiPEAC 2008.

 Hammoud, Cho and Melhem, “Dynamic Cache Clustering for Chip
Multiprocessors,” ICS 2008.

 Jin and Cho, “Taming Single-Thread Program Performance on Many
Distributed On-Chip L2 Caches,” ICPP 2008.

 Oh, Lee, Lee, and Cho, “An Analytical Model to Study Optimal Area
Breakdown between Cores and Caches in a Chip Multiprocessor,” ISVLSI
2009.

 Jin and Cho, “SOS: A Software-Oriented Distributed Shared Cache
Management Approach for Chip Multiprocessors,” PACT 2009.

 Lee, Cho and Childers, “StimulusCache: Boosting Performance of Chip
Multiprocessors with Excess Cache,” HPCA 2010.

 Hammoud, Cho and Melhem, “Cache Equalizer: A Placement Mechanism for
Chip Multiprocessor Distributed Shared Caches,” HiPEAC 2011.

 Lee, Cho and Childers, “CloudCache: Expanding and Shrinking Private
Caches,” HPCA 2011.

