Sangyeun Cho

Computer Science Department
University of Pittsburgh

I
Credits

= Parts of the work presented in this talk are from the results

obtained in collaboration with students and faculty at the
University of Pittsburgh:

+ Mohammad Hammoud

+ Leidin

* Hyunjin Lee

« Kiyeon Lee

« Prof. Bruce Childers

« Prof. Rami Melhem

= Partial support has come as:
* NSF grant CCF-0702236
« NSF grant CCF-0952273
« A. Richard Newton Graduate Scholarship, ACM DAC 2008

University of Pittsburgh

Recent multicore design trends

= Modular designs based on relatively simple cores
- Easier to validate (a single core)
- Easier to scale (the same validated design replicated multiple times)
« Due to these reasons, future “many-core” processors may look like this
« Examples: Tilera TILE*, Intel 48-core chip [Howard et al., ISSCC 10]

ch
" g
1
[vre| SIF
W Router Tike

University of Pittsburgh

. esverum
I
Recent multicore design trends

= Modular designs based on relatively simple cores
- Easier to validate (a single core)
- Easier to scale (the same validated design replicated multiple times)
« Due to these reasons, future “many-core” processors will look like this
« Examples: Tilera TILE*, Intel 48-core chip [Howard et al., ISSCC 10]

= Design focus shifts from cores to “uncores”
» Network on-chip (NoC): bus, crossbar, ring, 2D/3D mesh, ...

+ Memory hierarchy: caches, coherence mechanisms, memory
controllers, ...

+ System-on-chip components like network MAC, cypher, ...

= Note also:
+ In this design, aggregate cache capacity increases as we add more tiles
+ Some tiles may be active while others are inactive

University of Pittsburgh

I
L2 cache design issues

L2 caches occupy a major portion (prob. the largest) on chip

Capacity vs. latency
- Off-chip access (still) expensive

+ On-chip latency can grow; with switched on-chip networks, we have
NUCA (Non-Uniform Cache Architecture)

» Private cache vs. shared cache or a hybrid scheme?
Quality of service

+ Interference (capacity/bandwidth)

- Explicit/implicit capacity partitioning
Manageability, fault and yield

+ Not all caches have to be active

+ Hard (irreversible) faults + process variation + soft faults

University of Pittsburgh

Private cache vs. shared cache

interconnect
’—h ’—h ’—i |

4

1
1
1
1
1
1
| L1§ L1§
1
1
1
1
1
1

L2 L2

interconnect |

to memory to memory
M Short hit latency (always local) M Low on-chip miss rate
High on-chip miss rate M Straightforward data location

Long miss resolution time (i.e., are
there replicas?

Long average hit latency

Uncontrolled interference

University of Pittsburgh

. neyoriun
I
Historical perspective

= Private designs were there
+ Multiprocessors based on microprocessors

= Shared cache clustering [Nayfeh and Olukotun, ISCA '94]

= Multicores with private design more straightforward
- Earlier AMD chips and Sun Microsystems’ UltraSPARC processors
= Intel, IBM, and Sun pushed for shared caches (e.g., Xeon
products, POWER-4/5/6, Niagara*)

« A variety of workloads perform relatively well

= More recently, private caches re-gain popularity
+ We have more transistors
 Interference is easily controlled
+ Match well with on-/off-chip (shared) L3 $$ [Oh et al., ISVLSI ‘09]

University of Pittsburgh

Shared $% issue 1: NUCA

= A compromise design
« Large monolithic shared cache: conceptually simple but very slow
« Smaller cache slices w/ disparate latencies [Kim et al., ASPLOS ‘02]
+ Interleave data to all available slices (e.g., IBM POWER-*)
= Problems
+ Blind data distribution with no provisions for latency hiding
+ As a result, simple NUCA performance is not scalable

)

(=]
(=1
o

your
data

o
o

Tile 0 (worst case),

[
o

your
program

=
o

Center tile (best case)

Avg. Cache Hit Latency (cycles
o0
(=]

i=J

16 tiles 64 tiles 256 tiles 1024 tiles

University of Pittsburgh

I
Improving program-data distance

= Key idea: replicate or migrate

= Victim replication [zhang and Asanovi¢, ISCA '05]
« Victims from private L1 cache are “replicated” to local L2 bank
+ Essentially, local L2 banks incorporate large victim caching space
A natural hybrid scheme that takes advantages of shared & private $$

= Adaptive Selective Replication geckmann et al., MICRO '06]

« Uncontrolled replication can be detrimental (shared cache degenerates
to private cache)

- Based on benefit and cost, control replication level
« Hardware support quite complex

= Adaptive Controlled Migration [Hammoud, Cho, and Melhem, HIPEAC ‘09]

+ Migrate (rather than replicate) a block to minimize average access
latency to this block based on Manhattan distance

- Caveat: book-keeping overheads

University of Pittsburgh

I
3-way communication

= Once you migrate a cache block away from its home, how do
you locate it? [Hammoud, Cho, and Melhem, HIPEAC ‘09]

new host of B

another requester

\ home tile of B

I .1‘ I

University of Pittsburgh

. wesyerum
I
3-way communication

= Once you migrate a cache block away from its home, how do
you locate it? [Hammoud, Cho, and Melhem, HIPEAC ‘09]

requester

II 3
IE

new host of B

\ home tile of B

University of Pittsburgh

e
I
Cache block location strategies
= Always-go-home

+ “Go to the home tile (directory) to find the tracking information”
 Lots of 3-way cache-to-cache transfers

= Broadcasting
* “Don’t remember anything”
+ Expensive

= Caching of tracking information at potential requesters
+ “Remember (locally) where previously accessed blocks are”
- Quickly locate the target block locally (after first miss)
+ Need maintenance (coherence) of distributed information

+ We proposed and studied one such technique [Hammoud, Cho, and Melhem,
HIPEAC ‘09]

University of Pittsburgh

Caching of tracking information

requester tile for B

\
\

replicated ™

tracking info. \\

primary

-
- racking info.

= Primary tracking information at home tile

« Shows where the block has been migrated to

+ Keeps track of who has copied the tracking information (bit vector)
= Tracking information table (TrT)

A copy of the tracking information (only one pointer)

+ Updated as necessary (initiated by the directory of the home tile)

University of Pittsburgh

A flexible data mapping approach

= Key idea: What if we distribute memory pages to cache banks

instead of memory blocks? [cho and Jin, MICRO ‘06]
Memory blocks

Memory pages

University of Pittsburgh

L Unventyoleusuo]
I
Observation

Memory pages Program 1

O Software maps data to different $$

O Key: OS page allocation policies
O Flexible

University of Pittsburgh

Shared $$ issue 2: interference

= Co-scheduled programs compete for cache capacity freely
(“capitalism”)

= Well-behaving programs get damages if another program vie
for more cache capacity w/ little reuse (e.g., streaming)

= Performance loss due to interference hard to predict

250
on 8-core Niagara

[
=
=]

2X

E U U © o

wn
=

=4
=1

Execution time (seconds)

w
o

art

+ 1gzip)

+ 3 gzip _

+ 5 gzip _
+7gzip E—
+ 3 gee _

+ S gec _
+7gcc —

+ 1gee

University of Pittsburgh

Explicit/implicit partitioning

= Strict partitioning based on system directives
+ E.g., program A gets 768KB and program B 256KB

+ System must allow a user to specify partition sizes [lyer, ICS ‘04][Guo et al.,
MICRO ‘07]

= Architectural/system mechanisms
« Way partitioning (e.g., 3 vs. 2 ways) [Suh et al., ICS ‘01][Kim et al., PACT ‘04]

« Bin/bank partitioning: maps pages to cache bins (no hardware support
needed) [Liu et al., HPCA ‘04][Cho, Jin and Lee, RTCSA ‘07][Lin et al., HPCA ‘08]

— y PAQE SiZE

cache bin 0 I| — !' see ‘ ‘
i_"___ — — —— —

cache bin | | ‘ ses ‘ ‘l
cache bin (N-1) wayD | way 1 | @ @@ |w (K-Z) | w. (K1) ‘

University of Pittsburgh

-
Explicit/implicit partitioning

= Strict partitioning based on system directives
+ E.g., program A gets 768KB and program B 256KB

+ System must allow a user to specify partition sizes [lyer, ICS ‘04][Guo et al.,
MICRO ‘07]

= Architectural/system mechanisms
« Way partitioning (e.g., 5 vs. 3 ways) [Suh et al., ICS ‘01][Kim et al., PACT ‘04]

+ Bin/bank partitioning: maps pages to cache bins (no hardware support
needed) [Liu et al., HPCA ‘04][Cho, Jin and Lee, RTCSA ‘07][Lin et al., HPCA ‘08]

= Implicit partitioning based on utility (“utilitarian”)

+ Way partitioning based on marginal gains [Suh et al., ICS ‘01][Qureshi et al.,
MICRO ‘06]

» Bank level [Lee, Cho and Childers, HPCA '10]
+ Bank + way level [Lee, Cho and Childers, HPCA '11]

University of Pittsburgh

Explicit partitioning

0% L 20% 7

e 2DPriy

g "Q‘_‘:t‘ﬂ\ - —

b 20Spread20 W : ‘W |
2D5Spread60

8% S Presch™l .a0m

12% -40% \\\
-16% Shared BR -60%

e '

4%
0% T 1 8% s
12%
. -16%
e -20%
-24%

eon vortex S
-B% - -28% -

o
o

c

=

2 gzip art \..
o -0% 1 -80%

3 “no contention” “high contention”

S A% — 4%

E

o

‘s

-1}

a

University of Pittsburgh

. esyoruam
- |
Implicit partitioning

—_ § - — 6 _ .

:— al- —.— al-

= Lo [+ equake| | '\\ - equakei_

- e ! -—y = 5 . ¢ - mr —

f:' ol X .\L i vpr | &S n vpI

£ o egeeaaaeasae g 4 |UTILY, LRL

Z o £ 3]s

=1 . | ‘,_.' '... —

g2 3 g 3 | 5, T .

5 —= T i LRU* = JUTIL

& | | [LRU}- 1 %, =

;S

=0 1 T 0+ ——— et
0 2 4 6 8 1012 14 16 0 2 4 6 8 10 12 14 16

(cache capacity) (cache capacity)

University of Pittsburgh

N
Private $$ issue: capacity borrowing

= The main drawback of private caches is fixed (small) capacity
= Assume that we have an underlying mechanism for enforcing
correctness of cache access semantics;

= Key idea: borrow (or steal) capacity from others

+ How much capacity do | need and opt to borrow?

+ Who may be a potential capacity donor?

« Do we allow performance degradation of a capacity donor?
= Cooperative Caching (CC) [Chang and Sohi, ISCA ‘06]

Stealing coordinated by a centralized directory (is not scalable)

= Dynamic Spill Receive (DSR) [Qureshi, HPCA ‘09]

+ Each node is a spiller or a receiver

« On eviction from a spiller, randomly choose a receiver to copy the data into;
then, for data access later, use broadcasting

« StimulusCache |[Lee, Cho, and Childers, HPCA ‘10]
+ It's likely we'll have “excess cache” in the future
- Intelligently share the capacity provided by excess caches based on utility

University of Pittsburgh

Core disabling uneconomical

80% 40%

0% | 8 core a=pm] 2 cache 5% | 32 core 12 cache
el=processing logic e@=processing logic

60% ; 30%
o ; core (L2 + proc. logic) -) core (L2 + proc. Logic)
£ 50% 2 25%
z / z J ¢
F] 40% = 20%
2 30% - 2 15% -

20— 10%

10% 5%

0% -+ 1% ﬁza—#,—,i 0% - T
1 2 3 4 5 6 7 8 1617 181920212223242526272829303132

of sound cores/ L2 caches # of sound cores/ L2 caches

= Many unused (excess) L2 caches exist
= Problem exacerbated with many cores

University of Pittsburgh

. wesyerum
I
Dynamic sharing policy

Main
memory

Core 3

Flow-in#N: # data blocks flowing to EC#N

Hit#N: # data blocks hit at EC#N

Dynamic sharing policy

Main
memory

Core 3

Hit/Flow-in 1 =» More ECs
Hit/Flow-in | =» Less ECs

University of Pittsburgh

University of Pittsburgh

Main
memory

EC #2

Core 0: At least 1 EC
No harmful effect on EC#2

=>» Allocate 2 ECs

University of Pittsburgh

Dynamic sharing policy

Flow-in#1 X Flow-in#2 Main
memory

Core 1: At least 2 ECs

=>» Allocate 2 ECs

University of Pittsburgh

. wesyerum
I
Dynamic sharing policy

Core 0

Core 1

Main
" memory

EC #2

Core 3

Core 2: At least 1 EC
Harmful effect on EC#2

=> Allocate 1 EC

University of Pittsburgh

Dynamic sharing policy

Core 0

Core 1 Main

memory

Core 2

Core 3

Core 2: No benefit with ECs

= Allocate 0 EC

University of Pittsburgh

Dynamic sharing policy

m
(9
E 2

Core 0
Core 1 —--
.

Core 2

Core 3

Maximized capacity utilization

Minimized capacity interference

University of Pittsburgh

I
Summary: priv. vs. shared caching

= For a small- to medium-scale multicore processor, shared
caching appears good (for its simplicity)
A variety of workloads run well
+ Care must be taken about interferences
- Because of NUCA effects, this approach is not scalable!

= For larger-scale multicore processors, private cache
schemes appear more promising
- Free performance isolation
+ Less NUCA effect
- Easier fault isolation
« Capacity stealing a necessity

University of Pittsburgh

I
Summary: hypothetical caching

= Tackle both miss rate and locality through judicious data
mapping! [in and Cho, ICPP 08]

3.0

B private w/ profiling
5 25 shared w/ profiling | |
£ W static 2D coloring
]
o
S 20
2
8z
ez
g2 15
=
O ©
£8
o 3 1.0
2
< @
22 05
0.0

SR
QD ;N &
& & S

(256kB L2 cache slice)

University of Pittsburgh

. esverum
I
Summary: hypothetical caching

Program location

pages mapped
N
1%
o

University of Pittsburgh

I
Summary: hypothetical caching

~ ~
ammp [N ! |
art | | ! \
bip2 | [| | 1 !
crafty] I I !
eon | I | !
equalg I | !
gap| I----] ‘l
gCCI I
oein I I I
mef] I] I !
mesq | | I
moriq [1] I
parser I N N \ |
swim | [| I
owort | I | !
vortex | I I 1
wro\ /I \ !
wpwise [N 7
\ 7/ N/

private caching (256kB L2 cache bank) shared caching

University of Pittsburgh

I
In the remainder of this talk

= CloudCache
« Private cache based scheme for large-scale multicore processors
« Capacity borrowing at way/bank level & distance awareness

University of Pittsburgh

L s
-
A 30,000-feet snapshot

o 0
High hit rate
0 & fast access
G Low hit rate
e o & slow access
o
e Working core
Cache cloud . Working core

= Each cloud is an exclusive private cache for a working core
= Clouds are built with nearby cache ways organized in a chain

= Clouds are built in a two-step process: Dynamic global
partitioning and cache cloud formation

University of Pittsburgh

. wesoruum]
I
Step 1: Dynamic global partitioning

= Global capacity allocator (GCA) runs a partitioning
algorithm periodically using “hit counts” information

« Each working core sends GCA hit counts from “allocated capacity” and
additional “monitoring capacity” (of 32 ways)

= Our partitioning considers both utility [Qureshi & Patt, MICRO ‘06]
and QoS

= This step computes how much capacity to give to each core

Allocation _,
engine
v

e —
Cache Counter buffer
alloc. info

Hit counts

== from allocated capacity
from monitoring capacity

GCA

University of Pittsburgh

Step 2: Cache cloud formation

35---C-;-I-O-S-é-r-i_-z---b-a-h-k-é-ﬁ-rusut ------------------------------ .: Repeat!

I3 3LTLLY L1 L] LR L1 L] L1 Ll LR LA L L] 1Ty

4: Allocate capacity as much as possible ,+"

= Allocation is done only for sound L2 banks

University of Pittsburgh

I
Cache cloud chaining example

- . I_". v
-
1 B2 ya Working core 2
T aguy - Ege
¥l
} 3 (1 4 ff 5 H
N b
-
a%
6
6 7 8
p 0-hop disfgntehop disfnnce’ 2-hop distance

Working core 4

MRU / LRU
Core ID 4 1 5 | | 6]8[2
Token count 8 6 6 4 4 322
Cloud capacity 35

University of Pittsburgh

Architectural support

e"NNEEEEEENEEEEEEEEEEEN ,‘
5 E EE . (I\:Ilg I'g:;‘tags
routgr .
- DiE %% R!uw C_L_T_T_T | Hit counters
L1 | Proc +]u ﬁa NNy
EmEnm LA NN i
E LHELH @% * Cloud table
E _—rE |_F E u |Home Core ID [Next Core ID | Token #
2 e v i ity
Egi% %clty :":ﬁll,:e E : | Home Core IDI Nex.l Core ID | Token # |
eassmmmmmEEEEEEEEEEE . o

= Cloud table resembles StimulusCache’s NECP
= Additional hardware is per-way hit counters and monitor tags
= We do not need core ID tracking information per block

University of Pittsburgh

. svoruws)
B |
Capacity allocation example

l:E .:ﬂ{ﬂ_i_j I_I_|:| |_rII| I_'_IZI]_I_|Z| 9®¥en Yorking cores

[BCELHEELELELBEE = ¢
[OLOLOCELOCEEEEE N = res
[BERLHCHEEEE = o
= ﬁMMMﬂwmu

Global capacity allocator

University of Pittsburgh

I I
Capacity allocation example Capacity allocation example

In
In
In
ins
In
i
H
in

=, : 135 :)) 1:(:125 =2, 512l Sl SlSS|nElns : 12125
i BB o 5 5 s e |l S|] | LS| N | p—_—s
[HEH EHEHEH| = 12625 5> 7875 LHEHEE BHIHIHEH| = 785
FHES FHEEEH = oo 3 o [HEHEEEEEEEEEEEE =
FHER FHEHEH = 145 » s (HEHEHEHEEBEHEHEE| = s
CEIE fEEELE CEE LR

CELE BELERE Repton EE RN

CloudCache is fast? Limited target broadcast (LTB)

= Remote L2 access has 3-way communication = Make common case “super fast” and rare case “not so fast”

@@@@@ (1) Directory lookup @@@@@ P_ri\(ate data:
FENE FEPRFE FE PR B 8 0 B s N
@%@ FHEEEBER| (3) Data forwarding @%@ FHEEEEES
Exi v E

Shared data:

LHEH % FHEBER 3?:2";;}:;";;‘; (:::li-s EBHEH BELELELE Directory-based coherence
CECECHLOLELELDLE cowre CECECHLOLECELELE
@ @ %%c%c% @ @ @ @ %%c%cg @ @ Private data > Shared data

I
LTB example

I I £ p t |

request response Local L2 hit Broadcast Broadcast hit

o
Teeoel
$444

0
000
1 ¢4

w/o broadcasting

—Q

time

w/ broadcasting

—>0
—0 PO

time

University of Pittsburgh

I
When is LTB used?

= Shared data: Access ordering is managed by directory
« LTBP is NOT used

= Private data: Access ordering is not needed

« Fast access with broadcast first, then notify directory
‘lllllllllllIlllllllIlllllllIllllllllllllllllllllllllllllllllll.
Race condition?

« When there is an access request for private data from a non-owner core
before directory is updated

AN I NS NN N NN NN NN SN E NS NN NS EESEEEEEEEEEEEEEEEEEEEsnssnmmnns?

e EEEEEEy
=
asssmmnn?®

University of Pittsburgh

I
LTB protocol (LTBP)

Input Action

1| Request from other cores Broadcast lock request

Ack from the owner Process non-owner request

Nack from the owner

rlw(nN

Request from the owner

L2 cache
(1
Input Action
@ @ 1| Broadcast lock request | Ack
2] 2| Invalidation

BU: Broadcast unlock
BL: Broadcast lock

University of Pittsburgh

st
N
Quality of Service (QoS) support

= QoS = Maximum performance degradation
32 in this work
8 in this work

= Fs = sampling factor,
= K = private cache capacity,
= n = currently allocated capacity

= Base cycle: Cycles (time) with private cache (estimated)

current cycle + Y-, 1 Hits(i) X Fg X miss latency (n > K)

= Base cycle = { current cycle (n=K)
current cycle — YK Hits(i) X Fs x miss latency (n < K)

= Estimated cycle: Cycles with cache capacity
= Estimated cycle(j) = Base cycle + Zﬁ(:jﬂ Hits(i) X Fg X miss latency
* Cgos = Min(j) s.t. Estimated cycle(j)/(1 + QoS) < Base cycle

University of Pittsburgh

I
DSR vs. ECC vs. CloudCache

= Dynamic Spill Receive [Quresh, HPCA '09]
» Node is either spiller or receiver depending on memory usage
+ Spiller nodes randomly “spill” evicted data to a receiver node
= Elastic Cooperative Caching [Herrero et al., ISCA ‘10]
« Each node has private area and shared area

+ Nodes with high memory demand can spill evicted data to shared area
in a randomly selected node

r'y
Allocated

DSR ke ECC CloudCache

capacity

8088 :.ooooff ...oBBEE

p0 pl p2 p3 pd pS p6 p? p0 pl p2 p3 pd p5 pb p? p0 pl p2 p3 pd p5 p6 p7

n Private capacity K Shared capacity K Cache capacity benefit: pO<pl< .. < p6 < p7

I
Experimental setup

= TPTS [Lee et al., SPE ‘10, Cho et al., ICPP ‘08]
» 64-core CMP with 8 x8 2D mesh, 4-cycles/hop
« Core: Intel's ATOM-like two-issue in-order pipeline
+ Directory-based MESI protocol
+ Four independent DRAM controllers, four ports/controller
- DRAM with Samsung DDR3-1600 timing

= Workloads
- SPEC2006 (10B cycles)
« High/medium/low based on MPKI for varying cache capacity
+ PARSEC (simlarge input set)
« 16 threads/application

University of Pittsburgh University of Pittsburgh
Impact of global partitioning Impact of global partitioning
30 30
Shared Private D58 ECC CloudCache Shared Private DSR ECC CloudCache
High | High
10
£ 0 120 o 0 &0 110 H RO 12 o an w0 120 o &0 L 10 o £ 0 120 o 0 &0 110 o 0 RO 120
DSR ECC CloudCache
High
< “ Abecaitia o ks
o » A = 12 W0 80 120 0 B w0 a0 80 [FT 40 H0 120
2 4
Shared Private D5R ECC CloudCache
y
Medium
1
a T l.ll. b i ek ke ekl
o an B0 120 o 40 R 120 o 0 &0 110 o A0 R0 120 L an &0 120
a6
Shared Private DSR ECC CloudCache
1}
o8
o |
oh |
A B0 1 L a0 i 12 L Rl B0 1 4 R 120 40 B0 1

University of Pittsburgh

Impact of global partitioning

Shared Private DSR ECC CloudCache
High
4 m s
o » a0 &0 120 o a0 80 10 o w0 L] w0 a0 0 e @ 4 a0]
=

University of Pittsburgh

MPKI

Private

Impact of global partitioning

DsR ECC CloudCache

Medium

VI N TR T W RNy

University of Pittsburgh

B |
Impact of global partitioning

MPKI

016
Shared Private DSR ECC CloudCache
o1r

o8

0,08

o 20 80 wooa an &0 e 0 a0 B0 e o 80 &0 (P 0 =0 120

ersity of Pittsburgh

ccess # 401.bzip2
e Tiisssssssssssssssnsnnnnnnnunnnnnnnnnnn,
T 100% (]
IJ H
50% :
.
S Shared =
(RESEESREERRREERSBES S, .
.
50% .
Ll 09 Private :
fllllllllllllllﬁg@(/; :
.
50% :
.
0% DSR H
100% .
.
——————————————————— 50% :
11 ECC. >
----------------'8?-'-:-‘-‘-'-'-'::::::.‘.‘.'1‘
100% L]
.
- 50% l H
.
I 0% CloudCache w/o LTB :
ot e
I .
"
50% "
CloudCache w/LTB H
\ o :
4

annndnn@en200n 300 nnnnnnnnnfnnd0un0dunns
access latency

L2 cache access latency

Shared:
widely spread latency

Private:
fast local access + off-chip access

DSR & ECC:
fast local access + widely spread latency

CloudCache wi/o LTB
fast local access + narrowly spread latency

CloudCache w/ LTB
fast local access + fast remote access

ersity of Pittsburgh

I ——
16 threads

U EEEE NN NN NN NS EE NN NN NS EEENNE NN NN SN NN N NSNS NS NEN NSNS NENENNEEENENEENEEENEEEEENEEEEEEEE,

H g - ® Shared D58 ECC ®CLOUD :
H- 2~ :
1 ® Shared ® DSR ECC = CLOUD :
P E2 o :
E £ o H
; o i v :
3= CLLEECLEE S
E 3 B :osi
' g =
"--- J. n = -:
i ‘L} Comb2 Light2 Medium2 Heavy?2 .

University of Pittsburgh

I —
32 and 64 threads

: ® Shared ® DSR ECC = CLOUD H
s :
N :
T | - :
; ® Shared ®m DSR ECC ® CLOUD :
E 80% 35% :
L
50% “'Sf“ :
: 0% 40N :
: 30% 15% :
E 20% l 10% I I .
I FT0E I 5% l :
H 0% . T 0% :
i :
*aun Comb2 Light2 Comb2 Light2 =t
32 threads 64 threads

University of Pittsburgh

PARSEC

m Shared mDSR ECC m CLOUD
1.6

1.4
1.2 1

0.8 -

speedup to private

0.2

Comb1 Comb2 Comb3 Comb4 Comb5

University of Pittsburgh

PARSEC

® Shared mDSR ECC mCLOUD

speedup to private

swaption | blacksch. | canneal |bodytrack

swaption | facesim | canneal ferret
Comb2 Comb5

University of Pittsburgh

Effect of QoS enforcement

—No QoS —98% QoS 95% QoS

1.5
41 :
..l L]
141 & 1099 :
[] o - .
- N . "
© - . L
2 13 2 =0.98 H
f= & = -
o O. : :
2 o 10.97 - .
a 1.2 o H .
'g : :096 H
8 B - H
all —&—— = :
@ K 10.95 .
g . "
D - "
19t e f09 :
[] " "
* * H H
0o Teaggaanst®’ 1003 e ———
. - n = .
R L e S e S SO -

different programs

University of Pittsburgh

B |
CloudCache summary

= Future processors will carry many more cores and cache
resources and future workloads will be heterogeneous

= Low-level caches must become more scalable and flexible

= We proposed CloudCache w/ three techniques:
+ Global “private” capacity allocation to eliminate interference and to
minimize on-chip misses
- Distance-aware data placement to overcome NUCA latency
+ Limited target broadcast to overcome directory lookup latency

= Proposed techniques synergistically improve performance
= Still, we find that global capacity allocation the most effective
= QoS is naturally supported in CloudCache

University of Pittsburgh

Our multicore cache publications

= Cho and Jin, “Managing Distributed, Shared L2 Caches through OS-Level
Page Allocation,” MICRO 2006. Best paper nominee.

= Cho, Jin and Lee, “Achieving Predictable Performance with On-Chip Shared
L2 Caches for Manycore-Based Real-Time Systems,” RTCSA 2007. Invited
paper.

= Hammoud, Cho and Melhem, “ACM: An Efficient Approach for Managing
Shared Caches in Chip Multiprocessors,” HIPEAC 2008.

= Hammoud, Cho and Melhem, “Dynamic Cache Clustering for Chip
Multiprocessors,” ICS 2008.

= Jin and Cho, “Taming Single-Thread Program Performance on Many
Distributed On-Chip L2 Caches,” ICPP 2008.

= Oh, Lee, Lee, and Cho, “An Analytical Model to Study Optimal Area
Breakdown between Cores and Caches in a Chip Multiprocessor,” ISVLSI
2009.

= Jin and Cho, “SOS: A Software-Oriented Distributed Shared Cache
Management Approach for Chip Multiprocessors,” PACT 2009.

= Lee, Cho and Childers, “StimulusCache: Boosting Performance of Chip
Multiprocessors with Excess Cache,” HPCA 2010.

= Hammoud, Cho and Melhem, “Cache Equalizer: A Placement Mechanism for
Chip Multiprocessor Distributed Shared Caches,” HIPEAC 2011.

= Lee, Cho and Childers, “CloudCache: Expanding and Shrinking Private
Caches,” HPCA 2011.

University of Pittsburgh

