
 1/3

University of Pittsburgh
Department of Computer Science

CS2410 – Computer Architecture

Assignment #2

(Due on Wednesday October 5)

NOTE: (1) This is an individual assignment. (2) No late submission is accepted.

PART I [60]
Here is a *very* brief description of the "ACME" instruction set architecture. The focus of this part of the

homework is on instruction encoding and pipeline design.

- ACME is a 32-bit load/store architecture.

- There are 16 32-bit general-purpose registers, R0~R15, and a status register SR.

- In general, instructions are 16 bits long ("instruction word" = 16 bits). Certain instructions may

require additional 16-bit instruction word(s).

- Instructions are grouped into: Data transfer, arithmetic/logical/shift, control, and system. Typically,

an arithmetic instruction involves one or two register operands. The following table captures the

instruction set.

Group Instructions

Data transfer * Load and store instructions per data type

ldb/stb Ry, @(Rx + D) ; load/store byte, D: an immediate displacement value

ldh/sth Ry, @(Rx + D) ; load/store half

ldw/stw Ry, @(Rx + D) ; load/store word

* Data initialization for a register

ld Rx, #Imm ; load immediate

ld16 Rx, #Imm:16 (requires a second instruction word) ; load immediate

ld32 Rx, #Imm:32 (requires a second/third instruction word) ; load 32-bit

immediate

mv Ry, SR ; Ry = SR (status register)

mv SR, Rx ; SR = Rx

Arithmetic/logical/shift * Arithmetic

add Ry, Rx ; add, Ry = Ry + Rx

addi Ry, Rx, #Imm ; add immediate, Ry = Rx + #Imm (signed)

adc Ry, Rx ; add with carry, Ry = Ry + Rx + C

sub Ry, Rx ; sub, Ry = Ry – Rx

sbc Ry, Rx ; sub with carry, Ry = Ry – Rx – !C

* Shift, n = 1, 4, 8, 16

shl[n] Rx ; shift left by n bits, Rx = Rx << n

shr[n] Rx ; shift right by n bits, Rx = Rx >> n

shra[n] Rx ; shift right arithmetic by n bits, Rx = sext(Rx) >> n

shlc[n] Rx ; shift left by n bits with carry, Rx = {Rx, C} << n

 2/3

shrc[n] Rx ; shift right by n bits with carry, Rx = {C, Rx} >> n

rol[n] Rx ; rotate left by n bits

ror[n] Rx ; rotate right by n bits

* Logic

and Ry, Rx ; bit-wise and, Ry = Ry & Rx

or Ry, Rx ; bit-wise or, Ry = Ry | Rx

not Ry, Rx ; bit-wise not, Ry = !Rx

xor Ry, Rx ; bit-wise xor, Ry = Ry ^ Rx

andi Ry, Rx, #Imm

ori Ry, Rx, #Imm

xori Ry, Rx, #Imm

* Misc.

sextb Rx ; sign-extend byte

sexth Rx ; sign-extend half

* Compare

cmp Ry, Rx ; compare Ry with Rx and set the "test bit"

cmp Ry, #Imm ; compare Ry with #Imm and set the "test bit"

tst SR, #Imm:8 ; test bits (non-destructive bit-wise AND) in SR

Control br <target> ; branch

brt <target> ; branch if the test bit is "true"

brf <target> ; branch if the test bit is "false"

bsr <target> ; branch subroutine

jmp Rx ; jump register

jsr Rx ; jump subroutine register

System nop ; no-op

brk ; break

swi #Imm; software interrupt

(a) [30] Encode the instruction set. Show your encoding in a table. You will have to make assumptions

here and there. For example, in certain cases, the width of the immediate field is not specified in the

above table. In this case, assume a width for the immediate field and justify. Then, calculate the "unused"

space in your encoding. Express the unused space in terms of # of new instructions you can add later,

when the instructions are in a specific format (e.g., XXX Ry, Rx).

(b) [30] When the above ACME ISA was released within the company, an application engineer visited and

asked you to add a few more "useful" instructions. They are (1) multiply (32 bits by 32 bits) and (2) a set of

atomic memory bit read-modify-write operations: test-and-set, test-and-reset, and test-and-flip. These

operations perform a byte read, test a specific bit in the byte, and update the specified bit in the memory in

an atomic fashion. For example, test-and-set will retrieve a byte, move the specified bit value to the test bit

in the status register, and set the specified bit in the memory by writing the properly modified byte back to

the memory. The format of the test-and-set instruction is: tset @(Rx+D), #Imm:3. Note that with the 3-bit

immediate value, you can select a bit in an 8-bit amount.

Your circuit designer told you that the multiply operation can take two cycles to complete (from multiplier

input to output) but it can be pipelined. Besides, you realize that the result of 32x32 multiplication is 64 bits.

 3/3

You also realize that atomic bit operations access memory twice (read and write).

Assuming a vanilla 5-stage pipeline (Fetch-Decode-eXecute-Memory-Writeback), discuss how these

instructions can be accommodated, with detailed description of the potential complexities in pipeline

management. Analyze the CPI impact of the new instructions. If needed, give example codes. Find

unused space in the original map and encode these instructions. Show your encoding.

PART II [40]

Read the following two papers (posted on the course web page): (1) McFarling and (2) Smith and

Pleszkun. Briefly summarize the papers first.

Discuss new (interesting) things that you learned.

Branch prediction and correct interrupt handling may add considerable complexity to (single) pipeline

design. Explain how these will complicate superscalar processor design where there are multiple pipelines.

Submit your work at the class or directly to the mailbox of the instructor (box #276), located in
the mail room on 5th floor, SENSQ.

